
Ulf Leser

Datenbanksysteme II:
Query Execution

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 2

Content of this Lecture

• Overview: Query optimization
• Relational operators
• Implementing (some) relational operators
• Query execution models

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 3

5 Layer Architecture

We are here

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4

Query Optimization

• We have
– Structured Query Language SQL
– Relational algebra
– How to access tuples in many ways (scan, index, …)

• Now
– Given a SQL query
– Find a fast way and order of accessing tuples from different tables

such that the answer to the query is computed
– Usually, we won’t find the best way, but avoid the worst
– Use knowledge about value distributions, access paths, query

operators, IO cost, …
– Compile a declarative query in an “optimal” executable program

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5

Steps (Sketch)

• Translate query in a logical query execution plan (QEP)

– Structured representation of a relational algebra expression

• Logical optimization: QEPs are rewritten in other,
semantically equivalent and hopefully faster QEPs
– E.g., selection is commutative: σA(σB(expr)) = σB(σA(expr))

• Physical optimization: For each (relational) operator in the
query, we have multiple possible implementations
– Table access: scan, indexes, sorted access through index, …
– Joins: Nested loop, sort-merge, hash, …

• Query execution: Execute the best query plan found

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6

parse

convert

estimate selectivities

Logical / physical
Rewriting

execute

SQL query

Parse tree

Logical QEP

Overview Optimization

Annotated QEP

Many equivalent QEPs

Best plan

Search space traversal

Result

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7

parse

convert

estimate selectivities

Logical / physical
Rewriting

execute

SQL query

Parse tree

Logical QEP

Update
statistics

Overview Optimization

Annotated QEP

Many equivalent QEPs

Best plan

Search space traversal

Result

Stat Store

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8

parse

convert

estimate selectivities

Logical / physical
Rewriting

execute

SQL query

Parse tree

Logical QEP

Adaptive Optimization

Annotated QEP

Many equivalent QEPs

Best plan

Search space traversal

Update selectivities

Plan adaptation

Annotated QEP

Result

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 9

SELECT title
FROM starsIn
WHERE starName IN (
 SELECT name
 FROM movieStar
 WHERE birthdate LIKE ‘%1960’
);

(Find all movies with stars born in 1960)

Example SQL query

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10

<Query>

<SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Tuple> IN <Query>

title StarsIn <Attribute> (<Query>)

starName <SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Attribute> LIKE <Pattern>

name MovieStar birthDate ‘%1960’

Parse Tree

SELECT title
FROM starsIn
WHERE starName IN (
 SELECT name
 FROM movieStar
 WHERE birthdate LIKE ‘%1960’
);

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11

Πtitle

σstarName=name

starsIn Πname

σbirthdate LIKE ‘%1960’

 movieStar

×

SELECT title
FROM starsIn
WHERE starName IN (
 SELECT name
 FROM movieStar
 WHERE birthdate LIKE ‘%1960’
);

Relational Algebra / Logical Query Plan

Πtitle (σstarName=name(starsIn) × σbirthdate(movieStar))

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12

Πtitle

starName=name

StarsIn Πname

σbirthdate LIKE ‘%1960’

 MovieStar

Question:
Push projection to

StarsIn?

Improved Logical Query Plan

σstarName=name

StarsIn Πname

σbirthdate LIKE ‘%1960’

 MovieStar

×

Πtitle

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 13

Hash join

sequential scan index scan
Parameters: Selectivity,
fragmentation of data file,
 size of tuples, ,...

StarsIn MovieStar

Physical Plan

Parameters: Join order,
selectivity, memory size,

size of attributes, …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 14

Content of this Lecture

• Overview: Query optimization
• Relational operators
• Implementing (some) relational operators
• Query execution models

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 15

Relational Operations: One Table

• In the following: Table means table or intermediate result
• Selection σ: WHERE clause

– Read table and filter tuples based on condition
– Possibility: Use index to access only the qualifying tuples
– Selection never increases table length (selectivity)
– Conjunctions, disjunction, equality, negation, …

• Projection π: SELECT clause
– Read table and manipulate columns
– In SET semantic, also duplicates must be filtered
– Projection usually decreases breadth of table

• When not?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16

Relational Operations: One Table cont’d

• Group-by: Grouping and aggregation

– Put all tuples with equal values in all grouping attributes into one
bag; output one tuple per bag by aggregating values

– Implementation by sorting or hashing

• Distinct: Duplicate elimination
– Read table and remove all duplicate tuples
– May also be injected to speed-up EXIST clauses
– Implementation by sorting or hashing

• Order-by: Sorting
– Always last clause in query, but injected often by optimizer
– Pipeline breaker

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17

Relational Operations: Two Tables

• Cartesian product x

– Read two tables and build all pairs of tuples
– Usually avoided – combine product and selection to join
– Products in a plan are hints to wrong queries
– Specified implicitly by FROM clause

• Join ⋈
– All pairs of tuple matching the join condition
– Natural join, theta join, equi join, semi join, outer join
– Expensive – favorite target of optimizers
– Possibility: Join-order and join implementation
– Specified implicitly or explicitly in WHERE clause

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18

Relational Operations: Two Queries

• Union ∪

– Read two tables and build union of all tuples
– Duplicates are removed (alternative: UNION-ALL)
– Requires tables to have same schema

• Intersection ∩
– Read two tables and build intersection of tuples
– Requires tables to have same schema
– Same as join over all attributes

• Minus ⁄
– Subtract tuples of one table from tuples from the other
– Requires tables to have same schema

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19

Content of this Lecture

• Overview: Query optimization
• Relational operators
• Implementing (some) relational operators
• Query execution models

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20

Select versus Update

• We do not discuss update, delete, insert
• Update and delete usually have embedded queries –

“normal” optimization
– But: data tuples must be loaded (and locked and changed and

persistently written if TX not rolled-back)
– Some tricks don’t work any more

• Insert may have query

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21

Implementing Operations

• Most single table operations are straight-forward

– See book by Garcia-Molina, Ullmann, Widom for detailed discussion

• Joins are more complicated – later
• Sorting, especially for large tables, is important

– External sorting – we have seen Merge-Sort

• We sketch three single table operations
– Scanning a table
– Duplicate elimination
– Group By

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22

Scanning a Table

• At the bottom of each operator tree are relations
• Accessing them implies a table scan

• If table T has b blocks, this costs b IO

• Often better: Combine with next operation in plan
– SELECT t.A, t.B FROM t WHERE A=5
– Selection: If index on T.A available, perform index scan

• Assume |T|=n, |A|=a different values, z=n/a tuples with T.A=a
– Index has height logk(n)
– Scan B+ index and find all matching TIDs
– Accessing z tuples from T costs 1-z IO (sequential or random)

• Especially effective if A is a key: Only one tuple selected

– Projection: Integrate into table scan
• Read complete tuples, but only pass-on attributes that are needed

– Why not read partial tuples?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23

Scanning a Table 2

• Conditions can be complex
 SELECT t.A, t.B FROM t
WHERE A=5 AND (B<4 OR B>9) AND C=‘müller’ …

• Approach
– Compute conjunctive normal form
– Independent indexes: Find TID lists for each conjunct, then intersect
– With MDIS: Directly find matching TIDs
– Without indexes: Scan table and evaluate condition for each tuple

• For complex conditions and small tables, linear scanning
usually is faster
– Depends on expected result size
– Cost-based optimization required

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24

Duplicate Elimination

• Option 1: Sorting
• Sort table on DISTINCT columns

– Can be skipped if table is already sorted

• Scan sorted table and output only unique tuples
• Generates output in sorted order (for later reuse)
• Pipeline breaker (see later)
• Memory: Use external sorting, then pipeline

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25

Duplicate Elimination

• Option 2: Use hashing
• Scan table and build hash table on all unique values

– Needs good hash function, avoid conflicts

• When reading a tuple, check if it has already been seen
– If not: insert tuple and copy it to the output; else: skip tuple
– No pipeline breaker
– Does not sort result (but existing sorting would remain)

• No pipeline breaker
• Memory: Problem; assumes S to fit in memory

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26

Performance

• Assumptions

– Main memory: m blocks
– Table: b blocks

• Using external sorting
– If table is sorted, we need b IO
– If table not sorted, we need 2*b*ceiling(logm(b))-b IO

• Using internal data structure
– If all distinct values fit into m, we need b IO

• Estimate from statistics

– Otherwise … use two pass algorithms (e.g. hash-join like; later)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 27

Grouping and Aggregation

• SELECT must contain only GROUP BY attributes and

aggregate functions
• Partition result of inner query by GROUP BY attributes
• For each partition, compute one result tuple: GROUP BY

attributes and aggregate function applied on values of
other attributes in this partition
– Note: Depending on the aggregate function, we might need to

buffer more than one value per partition – examples?

SELECT T.day_id, sum(amount*price)
FROM sales S
GROUP BY T.day_id

Inner query Partition Aggregate HAVING clause

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 28

Implementing GROUP BY

• Proceed like duplicate elimination
• Also keep to-be-aggregated attributes
• Eventually, compute the aggregated columns

– Simple: SUM, COUNT, MIN, MAX, ANY
– More memory required: AVG, Top-5, median

• Pipelining? Same properties as for duplicate elimination

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29

Computing Median

• Option 1: Partition table into k partitions
– Scan table
– Build (hash) table for first k different GROUP BY values
– When reading one of first k, add value to (sorted) list
– When reading other GROUP value, discard
– When scan finished, output median of k groups
– Iterate – next k groups

• Option 2: Sort table on GROUP BY and Median attribute
– Then scan sorted data
– Buffer all values per group
– When next group is reached, output middle value

• What if we cannot buffer all values of a group?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 30

Content of this Lecture

• Overview: Query optimization
• Relational operators
• Implementing (some) relational operators
• Query execution models

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 31

Query Execution

• Typical model: Operator implementations call each other to

pass tuples up the tree
• Iterator concept: Open, next, close

– Each operator implementation needs these three methods

• Produces deep stacks and many push/pops
• Plan generation is simple: Composition of independent blocks

• Two modes: Blocked, Pipelined
• Work mostly done in open (if blocking) or in next (if

pipelined)

• Modern alternative: Compile into function-free program

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 32

Example – Blocked (Sketch

p = projection.open();
while p.next(t)
 output t;
p.close();

class projection {
open() {
 j = join.open();
 while j.next(t)
 tmp[i++]=t.title;
 j.close();
 cnt:=0;
}
next(t) {
 if (cnt<tmp.max)
 t = tmp[cnt++];
 return true;
 else return false;
}
close() {
 discard(tmp);
}
}

πtitle

⋈starName=name

StarsIn MovieStar

class join {
open() {
 l = table.open(starsIn);
 while l.next(tl)
 r = table.open(movieStar)
 while r.next(tr)
 if tl.starname=tr.name
 tmp[i++]=tl⋈tr;
 r.close();
 end while;
 l.close();
 cnt:=0;
}
next(t) {
 if (cnt<tmp.max)
 t = tmp[cnt++];
 return true;
 else return false;
}
close() {
 discard(tmp);

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 33

Example – Pipelined (Sketch)

p = projection.open();
while p.next(t)
 output t;
p.close();

class projection {
open() {
 j = join.open();
}
next(t) {
 if j.next(t)
 return t.title
 else
 return false;
}
close() {
 j.close();
}
}

class join {
open() {
 l = table.open(starsIn);
 r = table.open(movieStar);
 l.next(tl);
}
next(t) {
 if r.next(tr)
 if tl.starname=tr.name
 t=tl⋈tr;
 return true;
 else
 if l.next(tl)
 r.close();
 r = table.open(movieStar);
 return next(t);
 else
 return false;
}
close() {
 l.close();
 r.close();

πtitle

⋈starName=name

StarsIn MovieStar

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34

Example – Compiled (Sketch)

πtitle

⋈starName=name

StarsIn MovieStar

l = table.open(starsIn);
r = table.open(movieStar);
go = l.next(tl);
while go do
 if r.next(tr)
 if tl.starname=tr.name
 t=tl⋈tr;
 output t.title;
 else
 if l.next(tl)
 r.close();
 r = table.open(movieStar);
 else
 l.close();
 r.close();
 go = false;
}

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 35

Pipelined versus Blocked

• Pipelining is in general advantageous
– Very little demand for buffer space

• When intermediate results are large, buffers need to be stored on disk

– Operations can be assigned to different threads or CPUs
• Overlapping execution

– Results come early and continuously

• Pipeline breaker
– Some operations cannot be pipelined
– Sorting: next() can be executed only after

entire table was read
• Exception: When input is sorted

– Grouping and aggregation
• Depending on implementation

– Minus, intersection
R S

...

...

...

T

...

...

...

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 36

Pipelined versus Blocked

• Projection with duplicate elimination
– Need not be a pipeline breaker
– Recall implementation without sorting
– next() can return early
– But we need to keep track of all values already returned – requires

large buffer

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 37

Bag and Set Semantic

• Relational algebra has SET semantic

– All relations are duplicate-free
– Result of each query is duplicate-free
– Result of each intermediate result is duplicate-free

• SQL databases use BAG semantic
– More practical in applications
– PKs are used to prevent existence of “real” duplicates

• But: Duplicate elimination remains an important task
– Explicit DISTINCT clause
– EXIST
– ..

	Foliennummer 1
	Content of this Lecture
	5 Layer Architecture
	Query Optimization
	Steps (Sketch)
	Overview Optimization
	Overview Optimization
	Adaptive Optimization
	Example SQL query
	Parse Tree
	Relational Algebra / Logical Query Plan
	Improved Logical Query Plan
	Physical Plan
	Content of this Lecture
	Relational Operations: One Table
	Relational Operations: One Table cont’d
	Relational Operations: Two Tables
	Relational Operations: Two Queries
	Content of this Lecture
	Select versus Update
	Implementing Operations
	Scanning a Table
	Scanning a Table 2
	Duplicate Elimination
	Duplicate Elimination
	Performance
	Grouping and Aggregation
	Implementing GROUP BY
	Computing Median
	Content of this Lecture
	Query Execution
	Example – Blocked (Sketch
	Example – Pipelined (Sketch)
	Example – Compiled (Sketch)
	Pipelined versus Blocked
	Pipelined versus Blocked
	Bag and Set Semantic

