Datenbanksysteme |I1I:
Query Execution

UIf Leser

Content of this Lecture

e Overview: Query optimization

e Relational operators

 Implementing (some) relational operators
e Query execution models

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

5 Layer Architecture

Data Model

A

A 4

We are here Logical Access

A

A

Data Structures

A

\ 4

Buffer Management

\ 4

Operating System

|

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Query Optimization

e \We have

Structured Query Language SQL
Relational algebra
How to access tuples in many ways (scan, index, ...)

e Now

Given a SQL query

Find a fast way and order of accessing tuples from different tables
such that the answer to the query is computed

Usually, we won’t find the best way, but avoid the worst

Use knowledge about value distributions, access paths, query
operators, 10 cost, ...

Compile a declarative query in an “optimal” executable program

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4

Steps (Sketch)

e Translate query in a logical query execution plan (QEP)
— Structured representation of a relational algebra expression

e Logical optimization: QEPs are rewritten in other,
semantically equivalent and hopefully faster QEPs
— E.g., selection is commutative: c,(cg(expr)) = og(o(expr))

e Physical optimization: For each (relational) operator in the
guery, we have multiple possible implementations
— Table access: scan, indexes, sorted access through index, ...
— Joins: Nested loop, sort-merge, hash, ...

e Query execution: Execute the best query plan found

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5

Overview Optimization

SQL query

\

@rse

\

Parse tree

{8)

\

4
4

\

Logical QEP

N\

/
/

\

Result

N

N

Best plan

N

N

Many equivalent QEPs

Annotated QEP

N

\m physical

Rewriting

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Overview Optimization

SQL query
Result
\ 4 =
v Up(.jate executD
statistics =

Parse tree

¥ Best plan
Logical QEP -

\ 4

@electivities
\ 4 -)
Annotated QEP > LOQ';ZI{IV/ri%?])éSIcaI

Many equivalent QEPs

N

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Adaptive Optimization

\ 4

(iig%se

\

Parse tree

N\

4
i

execute

\

\

: Best plan
/

\

\

\

4
A4 .)
Annotated QEP Logical / physical
Rewriting

/
Logical QEP _

SQL query Update selectivities

Result

Annotated QEP

\

y

Plan adaptation

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Example SQL query

SELECT title

FROM starslin

WHERE starName IN (

SELECT name

FROM movieStar

WHERE birthdate LIKE “%1960~

):

(Find all movies with stars born in 1960)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

SELECT title

FROM starsin Parse Tree

WHERE starName IN (

SELECT name
FROM movieStar <Query>
WHERE birthdate LIKE “%1960” |

L ==
SELECT <SelList> FROM <FromList> WHERE <Condition>

| / /

<Attribute> <RelName> <Tuple> IN <Query>

title Starsin <Attrib\ute> (<Query>)
starName <SFW>

M |

SELECT <SelList> FROM <FromList> WHERE <Condition>

/ / _—/

<Attribute> <RelName> <Attribute> LIKE <Pattern>

| | | |

name MovieStar birthDate ‘001960’

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10

Relational Algebra / Logical Query Plan

SELECT title
FROM starslin .

WHERE starName IN (I Ltitle
SELECT name ‘
FROM movieStar

WHERE birthdate LIKE “%1960~ GstarName:name

) —
Htitle (GstarNamezname(StarSIn) X 0-birthdate(mOVieStar)) X
starsin I Iname

O birthdate LIKE ‘%1960’

movieStar

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11

Improved Logical Query Plan

[Ttitte I Titie Question:
‘ Push projection to
e} ‘ Starsin?
starName=name N

‘ starName=name

P /N

Starsin Hname Starsin Hname

O birthdate LIKE ‘%1960’ O virthdate LIKE ‘%1960’

MovieStar MovieStar

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12

Physical Plan

. Parameters: Join order,
Hash join selectivity, memory size,

\ size of attributes, ...

: , Parameters: Selectivity,
sequential scan Index scan| fragmentation of data file,

‘ size of tuples, ,...

Starsin MovieStar

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 13

Content of this Lecture

e Overview: Query optimization

e Relational operators

 Implementing (some) relational operators
e Query execution models

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

14

Relational Operations: One Table

e |In the following: Table means table or intermediate result

e Selection o: WHERE clause
— Read table and filter tuples based on condition
— Possibility: Use index to access only the qualifying tuples
— Selection never increases table length (selectivity)
— Conjunctions, disjunction, equality, negation, ...
e Projection n: SELECT clause
— Read table and manipulate columns

— In SET semantic, also duplicates must be filtered

— Projection usually decreases breadth of table
e When not?

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

15

Relational Operations: One Table cont'd

e Group-by: Grouping and aggregation
— Put all tuples with equal values in all grouping attributes into one
bag; output one tuple per bag by aggregating values

— Implementation by sorting or hashing
e Distinct: Duplicate elimination
— Read table and remove all duplicate tuples
— May also be injected to speed-up EXIST clauses
— Implementation by sorting or hashing
e Order-by: Sorting
— Always last clause in query, but injected often by optimizer
— Pipeline breaker

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16

Relational Operations: Two Tables

e Cartesian product x
— Read two tables and build all pairs of tuples
— Usually avoided — combine product and selection to join
— Products in a plan are hints to wrong queries
— Specified implicitly by FROM clause
e Join X

— All pairs of tuple matching the join condition

— Natural join, theta join, equi join, semi join, outer join
— EXxpensive — favorite target of optimizers

— Possibility: Join-order and join implementation

— Specified implicitly or explicitly in WHERE clause

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

17

Relational Operations: Two Queries

e Union U
— Read two tables and build union of all tuples
— Duplicates are removed (alternative: UNION-ALL)
— Requires tables to have same schema

e [ntersection N
— Read two tables and build intersection of tuples
— Requires tables to have same schema
— Same as join over all attributes

e Minus/

— Subtract tuples of one table from tuples from the other
— Requires tables to have same schema

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

18

Content of this Lecture

e Overview: Query optimization

e Relational operators

 Implementing (some) relational operators
e Query execution models

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

19

Select versus Update

e \We do not discuss update, delete, insert

e Update and delete usually have embedded queries —
“normal” optimization

— But: data tuples must be loaded (and locked and changed and
persistently written if TX not rolled-back)

— Some tricks don’t work any more
e Insert may have query

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

20

Implementing Operations

e Most single table operations are straight-forward
— See book by Garcia-Molina, Ullmann, Widom for detailed discussion

e Joins are more complicated — later

e Sorting, especially for large tables, is important
— External sorting — we have seen Merge-Sort

e We sketch three single table operations
— Scanning a table
— Duplicate elimination
— Group By

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21

Scanning a Table

e At the bottom of each operator tree are relations

e Accessing them implies a table scan
e If table T has b blocks, this costs b 10

e Often better: Combine with next operation in plan
— SELECT t.A, t.B FROM t WHERE A=5

— Selection: If index on T.A available, perform index scan

e Assume |T|=n, |A|=a different values, z=n/a tuples with T.A=a
— Index has height log,(n)
— Scan B+ index and find all matching TIDs
— Accessing z tuples from T costs 1-z 10 (sequential or random)

e Especially effective if A is a key: Only one tuple selected
— Projection: Integrate into table scan

e Read complete tuples, but only pass-on attributes that are needed
— Why not read partial tuples?

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

22

Scanning a Table 2

e Conditions can be complex

SELECT t.A, t.B FROM t
WHERE A=5 AND (B<4 OR B>9) AND C=“muller” ..

e Approach
— Compute conjunctive normal form
— Independent indexes: Find TID lists for each conjunct, then intersect

— With MDIS: Directly find matching TIDs
— Without indexes: Scan table and evaluate condition for each tuple

e For complex conditions and small tables, linear scanning
usually Is faster
— Depends on expected result size
— Cost-based optimization required

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23

Duplicate Elimination

e Option 1: Sorting
e Sort table on DISTINCT columns

— Can be skipped if table is already sorted
e Scan sorted table and output only unique tuples
e Generates output in sorted order (for later reuse)
e Pipeline breaker (see later)
e Memory: Use external sorting, then pipeline

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

24

Duplicate Elimination

e Option 2: Use hashing

e Scan table and build hash table on all unique values
— Needs good hash function, avoid conflicts

e When reading a tuple, check if it has already been seen
— If not: insert tuple and copy it to the output; else: skip tuple
— No pipeline breaker
— Does not sort result (but existing sorting would remain)

 No pipeline breaker
e Memory: Problem; assumes S to fit in memory

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

25

Performance

e Assumptions

— Main memory: m blocks
— Table: b blocks

e Using external sorting
— If table is sorted, we need b 10
— If table not sorted, we need 2*b*ceiling(log,,(b))-b 10

e Using internal data structure

— |If all distinct values fit into m, we need b 10
e Estimate from statistics

— Otherwise ... use two pass algorithms (e.g. hash-join like; later)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

26

Grouping and Aggregation

SELECT T.day i1d, sum(amount*price)
FROM sales S
GROUP BY T.day_ id

e SELECT must contain only GROUP BY attributes and

aggregate functions

e Partition result of inner query by GROUP BY attributes

e For each partition, compute one result tuple: GROUP BY
attributes and aggregate function applied on values of
other attributes in this partition

— Note: Depending on the aggregate function, we might need to
buffer more than one value per partition — examples?

Inner quer> Partition >

Aggregate>

HAVING clause>

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

27

Implementing GROUP BY

e Proceed like duplicate elimination
e Also keep to-be-aggregated attributes

e Eventually, compute the aggregated columns
— Simple: SUM, COUNT, MIN, MAX, ANY
— More memory required: AVG, Top-5, median

e Pipelining? Same properties as for duplicate elimination

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

28

Computing Median

e Option 1: Partition table into k partitions
— Scan table
— Build (hash) table for first k different GROUP BY values
— When reading one of first k, add value to (sorted) list
— When reading other GROUP value, discard
— When scan finished, output median of k groups
— lterate — next k groups

e Option 2: Sort table on GROUP BY and Median attribute

— Then scan sorted data
— Buffer all values per group
— When next group is reached, output middle value

e What if we cannot buffer all values of a group?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29

Content of this Lecture

e Overview: Query optimization

e Relational operators

 Implementing (some) relational operators
e Query execution models

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

30

Query Execution

e Typical model: Operator implementations call each other to
pass tuples up the tree

e Iterator concept: Open, next, close
— Each operator implementation needs these three methods

e Produces deep stacks and many push/pops
e Plan generation is simple: Composition of independent blocks

e Two modes: Blocked, Pipelined

e Work mostly done in open (if blocking) or in next (if
pipelined)

e Modern alternative: Compile into function-free program

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 31

Example — Blocked (Sketch

Tliitle

>

starName=name

N

Starsln

MovieStar

p = projection.open();

while p.next(t)

P-

class projection {

output t;
close();

open() {

}

J = Join.open();

while j.next(t)
tmp[i++]=t.title;

j.-close();

cnt:=0;

next(t) {

}

1T (cnt<tmp.max)
t = tmp[cnt++];

return true;

else return false;

close() {

}
}

discard(tmp);

class join {
open() {
I = table.open(starslin);
while I_next(tl)
r = table.open(movieStar)
while r._next(tr)
it tl_starname=tr.name
tmp[i++]=tltr;
r.close();
end while;
1.close();
cnt:=0;
ks
next(t) {
it (cnt<tmp.max)
t = tmp[cnt++];
return true;
else return fTalse;

}

close() {
discard(tmp);

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

32

Example — Pipelined (Sketch)

Tliitle

[X]starName:name

N

Starsin MovieStar

p = projection.open();
while p.next(t)
output t;

p-

class projection {

close();

open() {

}

J = Join.openQ);

next(t) {

}

1T j.next(t)
return t._title

else

return false;

close() {

}
}

j.-close();

class join {
open() {
I = table.open(starsin);
r = table.open(movieStar);
I.next(tl);
ks
next(t) {
1T r.onext(tr)
1T tl_starname=tr.name
t=tlxtr;
return true;
else
it 1.next(tl)
r.close();
r = table.open(movieStar);
return next(t);
else
return false;

ks
close() {

1.close();
r.close();

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

33

Example — Compiled (Sketch)

Tliitle

[X]starName:name

N

Starsin MovieStar

| table.open(starsin);
r table.open(movieStar);
go = l.next(tl);
while go do
1T r.onext(tr)
1T tl_starname=tr._name
t=tlxtr;
output t.title;
else
it 1.next(tl)
r.close();
r = table.open(movieStar);
else
1.close();
r.close();
go = false;

34

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Pipelined versus Blocked

e Pipelining is In general advantageous

— Very little demand for buffer space
 When intermediate results are large, buffers need to be stored on disk

— Operations can be assigned to different threads or CPUs
e Overlapping execution

— Results come early and continuously

e Pipeline breaker
— Some operations cannot be pipelined

— Sorting: next() can be executed only after o® e - .
entire table was read . " J
e Exception: When input is sorted L o ®
— Grouping and aggregation @ Y ‘o
e Depending on implementation R‘ 'S ?

— Minus, intersection

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 35

Pipelined versus Blocked

e Projection with duplicate elimination
— Need not be a pipeline breaker
— Recall implementation without sorting
— next() can return early

— But we need to keep track of all values already returned — requires
large buffer

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 36

Bag and Set Semantic

e Relational algebra has SET semantic
— All relations are duplicate-free
— Result of each query is duplicate-free
— Result of each intermediate result is duplicate-free

e SQL databases use BAG semantic
— More practical in applications
— PKs are used to prevent existence of “real” duplicates
e But: Duplicate elimination remains an important task

— Explicit DISTINCT clause
— EXIST

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

37

	Foliennummer 1
	Content of this Lecture
	5 Layer Architecture
	Query Optimization
	Steps (Sketch)
	Overview Optimization
	Overview Optimization
	Adaptive Optimization
	Example SQL query
	Parse Tree
	Relational Algebra / Logical Query Plan
	Improved Logical Query Plan
	Physical Plan
	Content of this Lecture
	Relational Operations: One Table
	Relational Operations: One Table cont’d
	Relational Operations: Two Tables
	Relational Operations: Two Queries
	Content of this Lecture
	Select versus Update
	Implementing Operations
	Scanning a Table
	Scanning a Table 2
	Duplicate Elimination
	Duplicate Elimination
	Performance
	Grouping and Aggregation
	Implementing GROUP BY
	Computing Median
	Content of this Lecture
	Query Execution
	Example – Blocked (Sketch
	Example – Pipelined (Sketch)
	Example – Compiled (Sketch)
	Pipelined versus Blocked
	Pipelined versus Blocked
	Bag and Set Semantic

