

Datenbanksysteme II: Multidimensional Index Structures 1

Ulf Leser

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees

Multidimensional Indexing

- Access methods so far support access on attribute(s) for
 - Point query: Attribute = const (Hashing and B+ Tree)
 - Range query: const₁ ≤ Attribute ≤ const₂ (B+ Tree)
- What about more complex queries?
 - Point query on more than one attribute
 - Combined through AND (intersection) or OR (union)
 - Range query on more than one attribute
 - Queries for objects with size
 - "Sale" is a point in a multidimensional space
 - Time, location, product, ...
 - Geometric objects have size: rectangle, cubes, polygons, ...
 - Similarity queries: Most similar object, closest object, ...

Example: Geometric Objects

Geographic information systems (GIS) store rectangles

```
RECT (X1, Y1, X2, Y2); x1<x2, y1<y2
```

- Typical GIS queries
 - Box query: All rectangles contained in query box (a1,b1)-(a2,b2)

```
SELECT * FROM RECT WHERE a1 \leq x1 and b1 \leq y1 and a2 \geq x2 and b2 \geq y2
```

- Results in a range query
- Partial match query: Rectangles containing points with X=3

```
SELECT * FROM RECT WHERE X1 \le 3 and X2 \ge 3
```

- All rectangles with non-empty intersection with rectangle Q
- Also other shapes: Lines, polygons, 3D, ...

Example: 2D objects

Point	Х	Y
P1	2	2
P2	2,5	2
Р3	4,5	7
P4	4,7	6,5
P5	8	6
Р6	8	9
P7	8,3	3

- Objects are points in a 2D space
- Queries
 - Exact: All objects with coordinates (X1, Y1)
 - Box: Find all points in a given rectangle
 - Partial: All points with X (Y) coordinate between ...

Option 1: Composite Index

Point	X	Y
P1	2	2
P2	2,5	2
Р3	4,5	7
P4	4,7	6,5
P5	8	6
Р6	8	9
P7	8,3	3

- Exact queries: Efficiently supported
- Box queries: Efficiently supported
- Partial match query
 - All points with X coordinate between ...: Efficiently supported
 - All points with Y coordinate between ...: Not efficiently supported

Composite Index

Usage

- Prefix of attribute list in index must be present in query
- The longer the prefix, the more efficient the evaluation

Alternatives

- Also build index tab(Y, X) all permutations
 - Combinatorial explosion for more than two attributes
- Use independent indexes on each attribute

Option 2: Independent Indexes

- Exact query: Not really efficient
 - Compute TID lists for each attribute
 - Intersect
- Box query: Not really efficient (compute ranges, intersect)
- Partial match query on one attribute: Efficiently supported

Example – Independent versus Composite Index

Data

- 3 dimensions of range 1,...,100
- 1.000.000 points, randomly distributed
- Index blocks holding 50 keys or records
- Assume three independent indexes
- Range query: Points with 40≤x≤50, 40≤y≤50, 40≤z≤50
 - Each of the three B+-indexes has height 4
 - Using x-index, we generate TID-list |X|~100.000
 - Using y-index, we generate TID-list |Y|~100.000
 - Using z-index, we generate TID-list |Z|~100.000
 - For each index, we have 4+100.000/50=2004 IO
 - Hopefully, we can keep the three lists in main memory
 - Intersection yields app. 1.000 points, together 6012 IO

Intuition

Source: T. Grust, 2010

Composite Index

Using composite index (X,Y,Z)

- Key length increases assume k=30 (or 10 / more dims)
- Index is higher: Height ~ 5 (6)
 - Worst case index blocks only 50% filled
- We descend in 5 IO to leaves, read 10 points (1 IO), ascend to Y-axis (2 IO – but cached), descend to leaves (2 IO), read 10 points (1 IO) ...
- We do this 10*10 times
- Altogether
 - $k=30 = app. 3+100*(2+1) \sim 303 IO$
 - Compared to 6012 for independent indexes!
 - $k=10 = app. 4+100*(3+1) \sim 404 IO$
- But: More random IO

Conclusion

- We want composite indexes: Less IO
 - Benefit grows for highly selective queries
 - Bit: If selectivity is low, scanning of relation might be faster than any index (sequential versus random IO)
- For partial match queries, we would need to index all attribute combinations – not feasible
- Solution: Use multidimensional index structures (MDIS)
 - Should have no priority of pre-defined dimensions
 - Should adapt to different and changing data distribution
 - Essentially, we want nearby points being nearby on disk
 - In an ideal world, we would need only 1000/30~33 IO
 - Area of intensive research for decades

Multidimensional Indexes

- Specialized MDIS for objects with or without extend
- Critical issues
 - Balancing upon insert/delete: Worst case search complexity
 - Size: Amount of occupied space versus number of stored objects
 - Locality: Neighbors in space are stored nearby on disk (memory)
 - Necessary for range / partial match queries
 - Necessary for nearest neighbor queries
 - The nearest, all within distance k

Caveats

- Things get complicated if data is not uniformly distributed
 - Dependent attributes (age weight, income, height, ...)
 - Clustering of points
 - Also called skew strong deviation from assumed distribution
- Curse of dimensionality: MDIS degrade for many dims
 - Trees difficult to balance, bad space usage, excessive management cost, expensive insertions/deletions, ...
- Alternative (partially): Bitmap indexes
 - Very small memory footprint, only for discrete attribute values, range queries become large disjunctions
- In commercial DBMS, high dim data is supported for
 - Geometric objects: GIS extensions, spatial extender
 - Multimedia data (images, songs, ...)

Geographic Information Systems

Multimedia Databases

- Map object into feature vector
 - Here: Tumor images; shapes derived from math. morphology
- Compute nearest neighborhood queries in feature space
 - Common approach: Filter away most objects as fast as possible
 - For instance by using shapes at different levels of granularity
 - Often, a final check of remaining candidates results is necessary

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees

Partitioned Hashing

- Let a₁, a₂,..., a_d be the attributes to be indexed
- Define a hash function h_i for each a_i generating a bitstring
- Definition
 - Let h_i(a_i) map each a_i into a bitstring of length b_i
 - Let $b = \sum b_i$ (length of global hash key in bits)
 - The global hash function $h(v_1, v_2, \dots, v_d) \rightarrow [0, \dots, 2^b-1]$ is defined as $h(v_1, v_2, \dots, v_d) = h_1(v_1) \oplus h_2(v_2) \oplus \dots \oplus h_k(v_d)$
- We need B = 2^b buckets
 - Static address space dynamic structures later

Example

- Data: (3,6),(6,7),(1,1),(3,1),(5,6),(4,3),(5,0),(6,1),(0,4),(7,2)
- Let h_1 , h_2 be $(b_1=b_2=1)$ h_i $(v_i) = 0$ if $0 \le v_i \le 3$ 1 otherwise
- Four buckets with addresses 00, 01, 10, 11

Queries with Partitioned Hashing

- Exact point queries: Direct access to bucket
 - All points in bucket are candidates; check identity to query
- Partial match queries
 - Only parts of the global hash key are determined
 - Use those as filter; scan all buckets passing the filter
 - Let c be the number of unspecified bits
 - Then 2^c buckets must be searched
 - These are certainly not ordered on disk– random IO
- Range queries
 - Not efficiently supported, if hash function doesn't preserve order
 - Not order preserving: modulo; order preserving: division
 - Enumerate all in-between values, blocks will be anywhere

Order Preserving Hash Function

Example

- Suppose d=3, each dim with range 1..1024 (10 bits)
- Use three highest bits as hash keys in each dimension
 - Order preserving; equal to division by 64 (right-shift 7 times)
- Global hash key: 9 bit, hence 29=512 buckets
- Partial range query: points with 200<y<300 and z<600
 - $h_y(200)=0011001000$, $h_y(300)=0100101100$, $h_z(600)=1001011000$
 - Scan buckets with
 - X-coordinate: ?
 - Y-coordinate: between 001 and 010 (001, 010)
 - Z-coordinate: less than 100... (000, 001, 010, 011,100)
 - We need to scan 8 (x) * 2 (y) * 5(z) = 80 buckets
- Vulnerable to not-uniformly distributed data
 - Few buckets are extremely full, others empty

Without oph: Enumerate all values in DB and compute hashkeys

Partitioned Hashing: Conclusions

- No balancing, no adaptation to skew
 - Long overflow buckets or large directories (see ext/lin hashing)
- Size: Static size of index, no adaptation
 - Problem if buckets overflow
 - Can be combined with extensible/linear hashing
 - Directory in extensible hashing can grow quite large
- Locality: Neighboring points in space not nearby in index
 - Usually, hash functions are not order preserving to achieve more uniform spread
 - Bad support for (partial) range queries or nearest neighbor queries

Content of this Lecture

- Introduction to multidimensional indexing
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees

Grid File

- Classical multidimensional index structure
 - Nievergelt, J., Hinterberger, H. and Sevcik, K. C. (1984). "The Grid File: An Adaptable, Symmetric Multikey File Structure." ACM TODS
 - Conceptually simple
 - Can be seen as extensible version of partitioned hashing
 - Good for uniformly distributed data, bad for skewed data
 - Numerous variations, we only look at the basic method
- Design goals
 - Support exact, partial match, and neighbor queries
 - Guarantee "two IO" access to each point
 - Under certain assumptions
 - Adapt dynamically to the number of points

Principle

- Partition each dimension into disjoint intervals (scales)
 - EXCESS: Uniform scales; less adaptive, no scale management
- Intersection of all intervals defines grid cells
 - d-dimensional hypercubes
- Grid cells are addressed from the grid directory (GD)

Principle

- Partition each dimension into disjoint intervals (scales)
- Intersection of all intervals defines grid cells
- Grid cells are addressed from the grid directory (GD)
- Cells are grouped in regions; region = bucket = block
 - When multi-cell region overflows split into cells
 - When single-cell region overflows new scale, change GD
- Buckets hold coordinates + TID

Exact Point Search

- Assumption: GD in main memory
 - Size: $|S_1|^*|S_2|^*...|S_d|$, when S_i is the set of scales for dimension I
 - Cannot work for really high dimensional data
- 1. Compute grid cell
 - Look-up coordinates in scales to obtain GD coordinates
 - Cell in GD contains bucket address on disk
 - Bucket contains all data points in this grid cell (maybe more)
- 2. Load bucket and find point(s): 1st IO
 - As usual, we do not look at how to search inside bucket
- 3. Access record following TID: 2nd IO

Other Queries

- Range query
 - Compute all matching scales
 - Access all corresponding cells in GD
 - Load and search all buckets (random IO)
- Partial match query
 - Compute partial GD coordinates
 - All GD cells with these coordinates may contain points (random IO)

Nearest Neighbor Queries

- Find bucket containing query point
- Search points in this region and choose closest
 - Can we finish if closest point was found?

Nearest Neighbor Queries

- Find bucket containing query point
- Check points in this region
 - Can we finish with the closest point in this region?
 - Usually not
 - Check distances to all borders
 - If point found is closer than any border, we are done
 - Otherwise, we need to search neighboring regions
 - Do it iteratively and always adapt radius to current closest point

I.e.: dense buckets and point not at border

Inserting Points

- Search grid cell; if bucket has space: Insert point
- Otherwise (overflow): Split
 - Assume we have to split a single-cell region
 - Choose a dimension and new scale within region interval
 - Split all affected GD cells cuts through all dimensions
 - Consider n dimensions and S_i scales in dimension i
 - Split in dim i affects d₁*...*d_{i-1}*d_{i-1}*...*d_n cells in GD
 - Example: d=3, S_i=4; |GD|=4³=64; any split affects 4² cells
 - Split overflown bucket along new scale (new region)
 - Do not split other (un-overflown) buckets containing the new scale
 - Only copy pointer from GD to bucket
 - Choice of dimension and interval is difficult
 - · Optimally, we would like to split as many rather full blocks as possible
 - We also want to consider our future expectation

Example

- Imagine one block holds 3 points
 - [Usually scales are unevenly spaced]
- New point causes overflow
- Vertical split
 - Splits 2 (3,4)-point blocks
 - Leaves one 3-point block
- Horizontal split
 - Splits 2 (3,4)-point blocks
 - Leaves one 3-point block
- Note: Most splits will happen only in the future
 - Creating more or less problems

Inserting Points in Multi-Cell Regions

- Overflow in a multi-cell region
- Idea: Split region into smaller regions (or cells)
 - Possible split dimensions/axes: Existing scales not yet used for split in this region
 - No local adaptation decisions from the past have to be obeyed
- Several strategies
 - Chose scale which best distributes the points
 - Requires considering them all
 - Won't pay off in case of uniformly distributed data
 - Circulate through dimensions and chose median scale

Grid File Example 1 [J. Gehrke]

Assume k=6

A	В
С	В

A	1	7	8	13	14	15
В	2	4	6	9	11	12
C	3	5	10			

A	D	В
С	C	В

A	1	8	13	16		
В	2	4	6	9	11	12
C	3	5	10			
D	7	14	15			

One Future

We now must perform this split; creates one almost empty and one full bucket; next split will happen soon

A	Н	D	F	В
A	I	D	F	В
A	I	G	F	В
Е	Е	G	F	В
С	С	С	С	В

Deleting Points

- Search point and delete
- If block become "almost empty", try to merge
 - A merge is the removal of a split chose scale to "unmake"
 - Should build larger convex regions
 - This can become very difficult
 - Potentially, more than two regions need to be merged to keep convexity
 - Eventually, also scales may be removed
 - Shrinkage of GD
 - Example: Where can we merge?

A	Н	D	F	В
A	I	D	F	В
A	I	G	F	В
Е	Е	G	F	В
С	С	С	С	В

Convex Regions

A	Н	D	F	В
A	I	D	F	В
A	Ι	G	F	В
Е	Е	G	F	В
C	C	C	C	В

Non-convex regions: Range and neighborhood queries have to scan increasingly many buckets

A		A	F	В
A	V	B	F	В
A	I	G	F	В
Е	Е	G	F	В
С	С	С	С	В

What's in a Bucket?

The tuples

- Not compatible with other database structures (indexes, etc.)
- Long tuples result in few records per data blocks
- Frequent splits, fast growing GD

Only TIDs

- Many records per data block, few splits, small directory
- But queries need to check (load) all tuples referenced in a block to check real coordinates

TIDs and coordinates

- Medium number of records per block, moderate growth of GD
- No access to tuples necessary for checking coordinates

Original 2-IO Guarantee

- Assume GD on disk and buckets containing entire tuples
 - One more IO for loading pointer to bucket
 - One less IO for accessing payload
- But
 - Modern machines have large memories: GD in memory
 - For many dimensions, Grid files are anyway the wrong MDIS
 - More TIDs per bucket creates overall smaller data structure
 - Payload management (growing values etc.) independent of MDIS

Some Observations

- Grid files always split at hyperplanes parallel to the dimension axes
 - This is not always optimal
 - Use other bounding shapes: circles, polygons, etc.
 - More complex— forms might not disjointly fill the space any more
 - Allow overlaps (see R trees)
- There is no guaranteed block-fill degree degeneration
- Choosing a new scale is a local decision with global consequences
 - No local adaptation: GD grows very fast
 - Need not be realized immediately, but restricts later choices in other regions
 - Bad adaptation to skewed data