
Ulf Leser

Datenbanksysteme II:
Multidimensional Index Structures 1

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 2

Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees
• R Trees

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 3

Multidimensional Indexing

• Access methods so far support access on attribute(s) for
– Point query: Attribute = const (Hashing and B+ Tree)
– Range query: const1 ≤ Attribute ≤ const2 (B+ Tree)

• What about more complex queries?
– Point query on more than one attribute

• Combined through AND (intersection) or OR (union)

– Range query on more than one attribute
– Queries for objects with size

• “Sale” is a point in a multidimensional space
– Time, location, product, …

• Geometric objects have size: rectangle, cubes, polygons, …

– Similarity queries: Most similar object, closest object, …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4

Example: Geometric Objects

• Geographic information systems (GIS) store rectangles
RECT (X1, Y1, X2, Y2); x1<x2, y1<y2

• Typical GIS queries
– Box query: All rectangles contained in query box (a1,b1)-(a2,b2)

SELECT * FROM RECT
WHERE a1 ≤ x1 and b1 ≤ y1 and
 a2 ≥ x2 and b2 ≥ y2
• Results in a range query

– Partial match query: Rectangles containing points with X=3
SELECT * FROM RECT
WHERE X1 ≤ 3 and X2 ≥ 3

– All rectangles with non-empty intersection with rectangle Q

• Also other shapes: Lines, polygons, 3D, …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5

Example: 2D objects

10

10

Point X Y

P1 2 2

P2 2,5 2

P3 4,5 7

P4 4,7 6,5

P5 8 6

P6 8 9

P7 8,3 3

• Objects are points in a 2D space
• Queries

– Exact: All objects with coordinates (X1, Y1)
– Box: Find all points in a given rectangle
– Partial: All points with X (Y) coordinate between …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6

Option 1: Composite Index

10

10

Point X Y

P1 2 2

P2 2,5 2

P3 4,5 7

P4 4,7 6,5

P5 8 6

P6 8 9

P7 8,3 3

CREATE INDEX
ON tab(x,y)

• Exact queries: Efficiently supported
• Box queries: Efficiently supported
• Partial match query

– All points with X coordinate between …: Efficiently supported
– All points with Y coordinate between …: Not efficiently supported

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7

Composite Index

1|2 1|4 6|3 6|4 6|8

• Usage
– Prefix of attribute list in index must be present in query
– The longer the prefix, the more efficient the evaluation

• Alternatives
– Also build index tab(Y, X) – all permutations

• Combinatorial explosion for more than two attributes

– Use independent indexes on each attribute

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8

Option 2: Independent Indexes

• Exact query: Not really efficient
– Compute TID lists for each attribute
– Intersect

• Box query: Not really efficient (compute ranges, intersect)
• Partial match query on one attribute: Efficiently supported

Index on X Index on Y
1 1 6 6 6 2 3 4 4 8

CREATE INDEX
ON tab(x)

CREATE INDEX
ON tab(y)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 9

Example – Independent versus Composite Index

• Data
– 3 dimensions of range 1,...,100
– 1.000.000 points, randomly distributed
– Index blocks holding 50 keys or records

• Assume three independent indexes
• Range query: Points with 40≤x≤50, 40≤y≤50, 40≤z≤50

– Each of the three B+-indexes has height 4
– Using x-index, we generate TID-list |X|~100.000
– Using y-index, we generate TID-list |Y|~100.000
– Using z-index, we generate TID-list |Z|~100.000
– For each index, we have 4+100.000/50=2004 IO
– Hopefully, we can keep the three lists in main memory
– Intersection yields app. 1.000 points, together 6012 IO

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10

Intuition

Source: T. Grust, 2010

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11

Composite Index

Index on X

Indexes

on Y

Indexes

on Y

Indexes

on Y

Indexes

on Y

Indexes on Z

Indexes on Z

Indexes on Z

Indexes on Z …
…

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12

Using composite index (X,Y,Z)

• Key length increases – assume k=30 (or 10 / more dims)
• Index is higher: Height ~ 5 (6)

– Worst case – index blocks only 50% filled

• We descend in 5 IO to leaves, read 10 points (1 IO),
ascend to Y-axis (2 IO – but cached), descend to leaves (2
IO), read 10 points (1 IO) …

• We do this 10*10 times
• Altogether

– k=30 => app. 3+100*(2+1) ~ 303 IO
• Compared to 6012 for independent indexes!

– k=10 => app. 4+100*(3+1) ~ 404 IO

• But: More random IO

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 13

Conclusion

• We want composite indexes: Less IO
– Benefit grows for highly selective queries
– Bit: If selectivity is low, scanning of relation might be faster than

any index (sequential versus random IO)

• For partial match queries, we would need to index all
attribute combinations – not feasible

• Solution: Use multidimensional index structures (MDIS)
– Should have no priority of pre-defined dimensions
– Should adapt to different and changing data distribution
– Essentially, we want nearby points being nearby on disk

• In an ideal world, we would need only 1000/30~33 IO

– Area of intensive research for decades

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 14

Multidimensional Indexes

• Specialized MDIS for objects with or without extend
• Critical issues

– Balancing upon insert/delete: Worst case search complexity
– Size: Amount of occupied space versus number of stored objects
– Locality: Neighbors in space are stored nearby on disk (memory)

• Necessary for range / partial match queries
• Necessary for nearest neighbor queries

– The nearest, all within distance k

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 15

Caveats

• Things get complicated if data is not uniformly distributed
– Dependent attributes (age – weight, income, height, …)
– Clustering of points
– Also called skew – strong deviation from assumed distribution

• Curse of dimensionality: MDIS degrade for many dims
– Trees difficult to balance, bad space usage, excessive management

cost, expensive insertions/deletions, …

• Alternative (partially): Bitmap indexes
– Very small memory footprint, only for discrete attribute values,

range queries become large disjunctions

• In commercial DBMS, high dim data is supported for
– Geometric objects: GIS extensions, spatial extender
– Multimedia data (images, songs, …)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16

Geographic Information Systems

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17

Multimedia Databases

• Map object into feature vector
– Here: Tumor images; shapes derived from math. morphology

• Compute nearest neighborhood queries in feature space
– Common approach: Filter away most objects as fast as possible

• For instance by using shapes at different levels of granularity

– Often, a final check of remaining candidates results is necessary

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18

Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees
• R Trees

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19

Partitioned Hashing

• Let a1 , a2 ,..., ad be the attributes to be indexed
• Define a hash function hi for each ai generating a bitstring
• Definition

– Let hi(ai) map each ai into a bitstring of length bi

– Let b=∑ bi (length of global hash key in bits)

– The global hash function h(v1 , v2 , . . . , vd) → [0, ..., 2b-1]
 is defined as h(v1 , v2 , . . . , vd) = h1(v1) ⊕ h2(v2) ⊕ … ⊕ hk (vd)

• We need B = 2b buckets
– Static address space – dynamic structures later

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20

• Data: (3,6),(6,7),(1,1),(3,1),(5,6),(4,3),(5,0),(6,1),(0,4),(7,2)
• Let h1, h2 be (b1=b2=1)

hi (vi) = 0 if 0 ≤ vi ≤ 3
 1 otherwise

• Four buckets with addresses 00, 01, 10, 11

a2 0

0

1

1

a1
(5,0)

(1,1)

(4,3) (6,1)

(3,1) (0,4)

(7,2)

(3,6)

(5,6) (6,7)

Example

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21

Queries with Partitioned Hashing

• Exact point queries: Direct access to bucket
– All points in bucket are candidates; check identity to query

• Partial match queries
– Only parts of the global hash key are determined
– Use those as filter; scan all buckets passing the filter
– Let c be the number of unspecified bits

• Then 2c buckets must be searched
• These are certainly not ordered on disk– random IO

• Range queries
– Not efficiently supported, if hash function doesn’t preserve order

• Not order preserving: modulo; order preserving: division

– Enumerate all in-between values, blocks will be anywhere

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22

Order Preserving Hash Function

• Example
– Suppose d=3, each dim with range 1..1024 (10 bits)
– Use three highest bits as hash keys in each dimension

• Order preserving; equal to division by 64 (right-shift 7 times)

– Global hash key: 9 bit, hence 29=512 buckets
– Partial range query: points with 200<y<300 and z<600

• hy(200)=0011001000, hy(300)=0100101100, hz(600)=1001011000
• Scan buckets with

– X-coordinate: ?
– Y-coordinate: between 001 and 010 (001, 010)
– Z-coordinate: less than 100… (000, 001, 010, 011,100)

• We need to scan 8 (x) * 2 (y) * 5(z) = 80 buckets

• Vulnerable to not-uniformly distributed data
– Few buckets are extremely full, others empty

Without oph:
Enumerate all

values in DB and
compute hashkeys

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23

Partitioned Hashing: Conclusions

• No balancing, no adaptation to skew

– Long overflow buckets or large directories (see ext/lin hashing)

• Size: Static size of index, no adaptation
– Problem if buckets overflow
– Can be combined with extensible/linear hashing
– Directory in extensible hashing can grow quite large

• Locality: Neighboring points in space not nearby in index
– Usually, hash functions are not order preserving to achieve more

uniform spread
– Bad support for (partial) range queries or nearest neighbor queries

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24

Content of this Lecture

• Introduction to multidimensional indexing
• Partitioned Hashing
• Grid Files
• kdb Trees
• R Trees

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25

Grid File

• Classical multidimensional index structure
– Nievergelt, J., Hinterberger, H. and Sevcik, K. C. (1984). "The Grid

File: An Adaptable, Symmetric Multikey File Structure." ACM TODS
– Conceptually simple
– Can be seen as extensible version of partitioned hashing
– Good for uniformly distributed data, bad for skewed data
– Numerous variations, we only look at the basic method

• Design goals
– Support exact, partial match, and neighbor queries
– Guarantee “two IO” access to each point

• Under certain assumptions

– Adapt dynamically to the number of points

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26

Principle

• Partition each dimension into disjoint intervals (scales)
– EXCESS: Uniform scales; less adaptive, no scale management

• Intersection of all intervals defines grid cells
– d-dimensional hypercubes

• Grid cells are addressed from the grid directory (GD)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 27

Principle

• Partition each dimension into disjoint intervals (scales)
• Intersection of all intervals defines grid cells
• Grid cells are addressed from the grid directory (GD)
• Cells are grouped in regions; region = bucket = block

– When multi-cell region overflows – split into cells
– When single-cell region overflows – new scale, change GD

• Buckets hold coordinates + TID
B1 B2

B3

B4

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 28

Exact Point Search

• Assumption: GD in main memory
– Size: |S1|*|S2|*…|Sd|, when Si is the set of scales for dimension I
– Cannot work for really high dimensional data

• 1. Compute grid cell
– Look-up coordinates in scales to obtain GD coordinates
– Cell in GD contains bucket address on disk
– Bucket contains all data points in this grid cell (maybe more)

• 2. Load bucket and find point(s): 1st IO
– As usual, we do not look at how to search inside bucket

• 3. Access record following TID: 2nd IO

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29

Other Queries

• Range query
– Compute all matching scales
– Access all corresponding cells in GD
– Load and search all buckets (random IO)

• Partial match query
– Compute partial GD coordinates
– All GD cells with these coordinates may contain points (random IO)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 30

Nearest Neighbor Queries

• Find bucket containing query point
• Search points in this region and choose closest

– Can we finish if closest point was found?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 31

Nearest Neighbor Queries

• Find bucket containing query point
• Check points in this region

– Can we finish with the closest point in this region?
– Usually not

• Check distances to all borders
• If point found is closer than any

border, we are done
• Otherwise, we need to search

neighboring regions
• Do it iteratively and always

adapt radius to current closest
point

– Very fast if neighbor is in same region
• I.e.: dense buckets and point not at border

7

8 9

10 11

12

1

2

3 4

5

6

13

14

15

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 32

Inserting Points

• Search grid cell; if bucket has space: Insert point
• Otherwise (overflow): Split

– Assume we have to split a single-cell region
– Choose a dimension and new scale within region interval
– Split all affected GD cells – cuts through all dimensions

• Consider n dimensions and Si scales in dimension i
• Split in dim i affects d1*…*di-1*di+1*…*dn cells in GD
• Example: d=3, Si=4; |GD|=43=64; any split affects 42 cells

– Split overflown bucket along new scale (new region)
– Do not split other (un-overflown) buckets containing the new scale

• Only copy pointer from GD to bucket

– Choice of dimension and interval is difficult
• Optimally, we would like to split as many rather full blocks as possible
• We also want to consider our future expectation

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 33

Example

• Imagine one block holds 3 points
– [Usually scales are unevenly spaced]

• New point causes overflow
• Vertical split

– Splits 2 (3,4)-point blocks
– Leaves one 3-point block

• Horizontal split
– Splits 2 (3,4)-point blocks
– Leaves one 3-point block

• Note: Most splits will happen only
in the future
– Creating more or less problems

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34

Inserting Points in Multi-Cell Regions

• Overflow in a multi-cell region
• Idea: Split region into smaller regions (or cells)

– Possible split dimensions/axes: Existing scales not yet used for split
in this region

• No local adaptation – decisions from the past have to be obeyed

• Several strategies
– Chose scale which best distributes the points

• Requires considering them all
• Won’t pay off in case of uniformly distributed data

– Circulate through dimensions and chose median scale

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 35

 A

A A

Assume k=6

1

2

3
4

5

6

1 2 3 4 5 6

Grid File Example 1 [J. Gehrke]

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 36

1 2 3 4 5 6 A

A A A B A B

7

8 9

10 11

12

1 3 5 7 A
2 4 6 B

8

9

10

11 12

1

2

3
4

5

6

Grid File Example 2

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 37

A B A B A B

C

A B

C B

1 3 5 7 8 10 A
2 4 6 9 11 12 B

7

8 9

10 11

12

1

2

3
4

5

6

13

14

15

1 7 8 13 A
2 4 6 9 11 12 B
3 5 10 C

14 15

Grid File Example 3

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 38

A B

C

A B

C B

A D B

C

A D

C C

B

B
7

8 9

10 11

12

1

2

3
4

5

6

13

14

15

1 3 5 7 8 10 A
2 4 6 9 11 12 B

1 7 8 13 A
2 4 6 9 11 12 B
3 5 10 C

14 15

16

1 2 3 4 5 6 A 1 3 5 7 A
2 4 6 B

1 7 8 13 A
2 4 6 9 11 12 B
3 5 10 C

1 8 13 16 A
2 4 6 9 11 12 B
3 5 10 C
7 14 15 D

Grid File Example 4

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 39

A B

C

A B

C B

A D B

C

A D

C C

B

B
7

8 9

10 11

12

1

2

3
4

5

6

13

14

15

1 3 5 7 8 10 A
2 4 6 9 11 12 B

1 7 8 13 A
2 4 6 9 11 12 B
3 5 10 C

14 15

16

1 2 3 4 5 6 A 1 3 5 7 A
2 4 6 B

1 7 8 13 A
2 4 6 9 11 12 B
3 5 10 C

1 8 13 16 A
2 4 6 9 11 12 B
3 5 10 C
7 14 15 D

One Future

We now must perform this split; creates one almost empty and one full
bucket; next split will happen soon

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 40

x1 x2 x3 x4

y4

y2

y1

A B

C

D

E

F

G

H

I y3

A H

A I

D

D

F

F

B

B

A I G F B

E E G F B

C C C C B

Grid File Example 5

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 41

Deleting Points

• Search point and delete
• If block become ”almost empty”, try to merge

– A merge is the removal of a split – chose scale to “unmake”
– Should build larger convex regions
– This can become very difficult

• Potentially, more than two regions
need to be merged to keep convexity

– Eventually, also scales may be removed
• Shrinkage of GD

– Example: Where can we merge?

A H

A I

D

D

F

F

B

B

A I G F B

E E G F B

C C C C B

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 42

Convex Regions

A H

A I

D

D

F

F

B

B

A I G F B

E E G F B

C C C C B

A I

A I

D

D

F

F

B

B

A I G F B

E E G F B

C C C C B

A A

A I

D

D

F

F

B

B

A I G F B

E E G F B

C C C C B

• Non-convex regions: Range and
neighborhood queries have to scan
increasingly many buckets

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 43

What‘s in a Bucket?

• The tuples

– Not compatible with other database structures (indexes, etc.)
– Long tuples result in few records per data blocks
– Frequent splits, fast growing GD

• Only TIDs
– Many records per data block, few splits, small directory
– But queries need to check (load) all tuples referenced in a block to

check real coordinates

• TIDs and coordinates
– Medium number of records per block, moderate growth of GD
– No access to tuples necessary for checking coordinates

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 44

Original 2-IO Guarantee

• Assume GD on disk and buckets containing entire tuples
– One more IO for loading pointer to bucket
– One less IO for accessing payload

• But
– Modern machines have large memories: GD in memory

• For many dimensions, Grid files are anyway the wrong MDIS

– More TIDs per bucket creates overall smaller data structure
– Payload management (growing values etc.) independent of MDIS

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 45

Some Observations

• Grid files always split at hyperplanes parallel to the
dimension axes
– This is not always optimal
– Use other bounding shapes: circles, polygons, etc.
– More complex– forms might not disjointly fill the space any more
– Allow overlaps (see R trees)

• There is no guaranteed block-fill degree – degeneration
• Choosing a new scale is a local decision with global

consequences
– No local adaptation: GD grows very fast
– Need not be realized immediately, but restricts later choices in

other regions
– Bad adaptation to skewed data

	Foliennummer 1
	Content of this Lecture
	Multidimensional Indexing
	Example: Geometric Objects
	Example: 2D objects
	Option 1: Composite Index
	Composite Index
	Option 2: Independent Indexes
	Example – Independent versus Composite Index
	Intuition
	Composite Index
	Using composite index (X,Y,Z)
	Conclusion
	Multidimensional Indexes
	Caveats
	Geographic Information Systems
	Multimedia Databases
	Content of this Lecture
	Partitioned Hashing
	Example
	Queries with Partitioned Hashing
	Order Preserving Hash Function
	Partitioned Hashing: Conclusions
	Content of this Lecture
	Grid File
	Principle
	Principle
	Exact Point Search
	Other Queries
	Nearest Neighbor Queries
	Nearest Neighbor Queries
	Inserting Points
	Example
	Inserting Points in Multi-Cell Regions
	Grid File Example 1 [J. Gehrke]
	Grid File Example 2
	Grid File Example 3
	Grid File Example 4
	One Future
	Grid File Example 5
	Deleting Points
	Convex Regions
	What‘s in a Bucket?
	Original 2-IO Guarantee
	Some Observations

