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Content of this Lecture 

 
 

• Introduction 
• Partitioned Hashing 
• Grid Files 
• kdb Trees 
• R Trees 
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Multidimensional Indexing 

• Access methods so far support access on attribute(s)  for 
– Point query: Attribute  = const   (Hashing and B+ Tree) 
– Range query:  const1 ≤  Attribute ≤ const2   (B+ Tree) 

• What about more complex queries? 
– Point query on more than one attribute 

• Combined through AND (intersection) or OR (union) 

– Range query on more than one attribute 
– Queries for objects with size 

• “Sale” is a point in a multidimensional space 
– Time, location, product, … 

• Geometric objects have size: rectangle, cubes, polygons, … 

– Similarity queries: Most similar object, closest object, … 
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Example: Geometric Objects 

• Geographic information systems (GIS) store rectangles 
RECT (X1, Y1, X2, Y2); x1<x2, y1<y2 

• Typical GIS queries 
– Box query: All rectangles contained in query box (a1,b1)-(a2,b2) 

SELECT * FROM RECT 
WHERE a1 ≤ x1 and b1 ≤ y1 and 
 a2 ≥ x2 and b2 ≥ y2 
• Results in a range query 

– Partial match query: Rectangles containing points with X=3 
SELECT * FROM RECT 
WHERE X1 ≤ 3 and X2 ≥ 3 

– All rectangles with non-empty intersection with rectangle Q 

• Also other shapes: Lines, polygons, 3D, … 
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Example: 2D objects 

10 

10 

Point X Y 

P1 2 2 

P2 2,5 2 

P3 4,5 7 

P4 4,7 6,5 

P5 8 6 

P6 8 9 

P7 8,3 3 

• Objects are points in a 2D space 
• Queries 

– Exact: All objects with coordinates (X1, Y1) 
– Box: Find all points in a given rectangle 
– Partial: All points with X (Y) coordinate between … 
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Option 1: Composite Index 

10 

10 

Point X Y 

P1 2 2 

P2 2,5 2 

P3 4,5 7 

P4 4,7 6,5 

P5 8 6 

P6 8 9 

P7 8,3 3 

CREATE INDEX  
ON tab(x,y) 

• Exact queries: Efficiently supported 
• Box queries: Efficiently supported  
• Partial match query 

– All points with X coordinate between …: Efficiently supported 
– All points with Y coordinate between …: Not efficiently supported 
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Composite Index 

1|2 1|4 6|3 6|4 6|8 

• Usage 
– Prefix of attribute list in index must be present in query 
– The longer the prefix, the more efficient the evaluation 

• Alternatives 
– Also build index tab(Y, X) – all permutations 

• Combinatorial explosion for more than two attributes 

– Use independent indexes on each attribute 
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Option 2: Independent Indexes 

• Exact query: Not really efficient 
– Compute TID lists for each attribute 
– Intersect 

• Box query: Not really efficient (compute ranges, intersect) 
• Partial match query on one attribute: Efficiently supported 

 

Index on X Index on Y 
1 1 6 6 6 2 3 4 4 8 

CREATE INDEX  
ON tab(x) 

CREATE INDEX  
ON tab(y) 
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Example – Independent versus Composite Index 

• Data 
– 3 dimensions of range 1,...,100 
– 1.000.000 points, randomly distributed 
– Index blocks holding 50 keys or records 

• Assume three independent indexes 
• Range query: Points with 40≤x≤50, 40≤y≤50, 40≤z≤50 

– Each of the three B+-indexes has height 4  
– Using x-index, we generate TID-list |X|~100.000 
– Using y-index, we generate TID-list |Y|~100.000 
– Using z-index, we generate TID-list |Z|~100.000 
– For each index, we have 4+100.000/50=2004 IO 
– Hopefully, we can keep the three lists in main memory 
– Intersection yields app. 1.000 points, together 6012 IO 
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Intuition 

Source: T. Grust, 2010 
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Composite Index  

 
 
 
 

Index on X 

 
Indexes  

on Y 

 
Indexes  

on Y 

 
Indexes  

on Y 

 
Indexes  

on Y 

 

Indexes on Z 

 

Indexes on Z 

 

Indexes on Z 

 

Indexes on Z … 
… 
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Using composite index (X,Y,Z) 

• Key length increases – assume k=30 (or 10 / more dims) 
• Index is higher: Height ~ 5 (6) 

– Worst case – index blocks only 50% filled 

• We descend in 5 IO to leaves, read 10 points (1 IO), 
ascend to Y-axis (2 IO – but cached), descend to leaves (2 
IO), read 10 points (1 IO) … 

• We do this 10*10 times 
• Altogether  

– k=30 => app. 3+100*(2+1) ~ 303 IO  
• Compared to 6012 for independent indexes! 

– k=10 => app. 4+100*(3+1) ~ 404 IO  

• But: More random IO 
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Conclusion 

• We want composite indexes: Less IO 
– Benefit grows for highly selective queries 
– Bit: If selectivity is low, scanning of relation might be faster than 

any index (sequential versus random IO) 

• For partial match queries, we would need to index all 
attribute combinations – not feasible 

• Solution: Use multidimensional index structures (MDIS) 
– Should have no priority of pre-defined dimensions 
– Should adapt to different and changing data distribution 
– Essentially, we want nearby points being nearby on disk  

• In an ideal world, we would need only 1000/30~33 IO 

– Area of intensive research for decades 
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Multidimensional Indexes 

 
 

• Specialized MDIS for objects with or without extend 
• Critical issues 

– Balancing upon insert/delete: Worst case search complexity 
– Size: Amount of occupied space versus number of stored objects 
– Locality: Neighbors in space are stored nearby on disk (memory) 

• Necessary for range / partial match queries 
• Necessary for nearest neighbor queries  

– The nearest, all within distance k 
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Caveats 

• Things get complicated if data is not uniformly distributed 
– Dependent attributes (age – weight, income, height, …) 
– Clustering of points 
– Also called skew – strong deviation from assumed distribution 

• Curse of dimensionality: MDIS degrade for many dims 
– Trees difficult to balance, bad space usage, excessive management 

cost, expensive insertions/deletions, … 

• Alternative (partially): Bitmap indexes 
– Very small memory footprint, only for discrete attribute values, 

range queries become large disjunctions 

• In commercial DBMS, high dim data is supported for 
– Geometric objects: GIS extensions, spatial extender 
– Multimedia data (images, songs, …) 
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Geographic Information Systems 
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Multimedia Databases 

• Map object into feature vector  
– Here: Tumor images; shapes derived from math. morphology  

• Compute nearest neighborhood queries in feature space 
– Common approach: Filter away most objects as fast as possible 

• For instance by using shapes at different levels of granularity 

– Often, a final check of remaining candidates results is necessary 
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Content of this Lecture 

 
 

• Introduction 
• Partitioned Hashing 
• Grid Files 
• kdb Trees 
• R Trees 
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Partitioned Hashing 

 
• Let a1 , a2 ,...,  ad be the attributes to be indexed 
• Define a hash function hi for each ai generating a bitstring 
• Definition 

– Let hi(ai) map each ai into a bitstring of length bi 

– Let b=∑ bi  (length of global hash key in bits) 

– The global hash function h(v1 , v2 , . . . , vd ) → [0, ..., 2b-1]  
 is defined as h(v1 , v2 , . . . , vd )  = h1(v1) ⊕ h2(v2) ⊕ … ⊕ hk (vd )  

• We need B = 2b  buckets 
– Static address space – dynamic structures later 
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• Data: (3,6),(6,7),(1,1),(3,1),(5,6),(4,3),(5,0),(6,1),(0,4),(7,2) 
• Let h1, h2 be (b1=b2=1) 

hi  (vi)  =  0  if  0 ≤ vi ≤  3 
     1 otherwise 

• Four buckets with addresses 00, 01, 10, 11 

a2 0 

0 

1 

1 

a1 
(5,0) 

(1,1) 

(4,3) (6,1) 

(3,1) (0,4) 

(7,2) 

(3,6) 

(5,6) (6,7) 

Example 
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Queries with Partitioned Hashing 

• Exact point queries: Direct access to bucket 
– All points in bucket are candidates; check identity to query 

• Partial match queries 
– Only parts of the global hash key are determined 
– Use those as filter; scan all buckets passing the filter 
– Let c be the number of unspecified bits 

• Then 2c buckets must be searched 
• These are certainly not ordered on disk– random IO 

• Range queries 
– Not efficiently supported, if hash function doesn’t preserve order 

• Not order preserving: modulo; order preserving: division 

– Enumerate all in-between values, blocks will be anywhere 
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Order Preserving Hash Function 

• Example 
– Suppose d=3, each dim with range 1..1024 (10 bits) 
– Use three highest bits as hash keys in each dimension 

• Order preserving; equal to division by 64 (right-shift 7 times) 

– Global hash key: 9 bit, hence 29=512 buckets 
– Partial range query: points with 200<y<300 and z<600 

• hy(200)=0011001000, hy(300)=0100101100, hz(600)=1001011000 
• Scan buckets with 

– X-coordinate: ? 
– Y-coordinate: between 001 and 010 (001, 010) 
– Z-coordinate: less than 100… (000, 001, 010, 011,100) 

• We need to scan 8 (x) * 2 (y) * 5(z) = 80 buckets 

• Vulnerable to not-uniformly distributed data 
– Few buckets are extremely full, others empty 

Without oph: 
Enumerate all 

values in DB and 
compute hashkeys 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23 

Partitioned Hashing: Conclusions 

 
• No balancing, no adaptation to skew 

– Long overflow buckets or large directories (see ext/lin hashing) 

• Size: Static size of index, no adaptation 
– Problem if buckets overflow 
– Can be combined with extensible/linear hashing 
– Directory in extensible hashing can grow quite large 

• Locality: Neighboring points in space not nearby in index  
– Usually, hash functions are not order preserving to achieve more 

uniform spread 
– Bad support for (partial) range queries or nearest neighbor queries 
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Content of this Lecture 

 
 

• Introduction to multidimensional indexing 
• Partitioned Hashing 
• Grid Files 
• kdb Trees 
• R Trees 
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Grid File 

• Classical multidimensional index structure 
– Nievergelt, J., Hinterberger, H. and Sevcik, K. C. (1984). "The Grid 

File: An Adaptable, Symmetric Multikey File Structure." ACM TODS 
– Conceptually simple 
– Can be seen as extensible version of partitioned hashing 
– Good for uniformly distributed data, bad for skewed data 
– Numerous variations, we only look at the basic method 

• Design goals 
– Support exact, partial match, and neighbor queries 
– Guarantee “two IO” access to each point 

• Under certain assumptions 

– Adapt dynamically to the number of points 
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Principle 

• Partition each dimension into disjoint intervals (scales) 
– EXCESS: Uniform scales; less adaptive, no scale management 

• Intersection of all intervals defines grid cells 
– d-dimensional hypercubes 

• Grid cells are addressed from the grid directory (GD) 
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Principle 

• Partition each dimension into disjoint intervals (scales) 
• Intersection of all intervals defines grid cells 
• Grid cells are addressed from the grid directory (GD) 
• Cells are grouped in regions; region = bucket = block 

– When multi-cell region overflows – split into cells 
– When single-cell region overflows – new scale, change GD 

• Buckets hold coordinates + TID 
B1 B2 

B3 

B4 
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Exact Point Search 

• Assumption: GD in main memory 
– Size: |S1|*|S2|*…|Sd|, when Si is the set of scales for dimension I 
– Cannot work for really high dimensional data 

 

• 1. Compute grid cell 
– Look-up coordinates in scales to obtain GD coordinates 
– Cell in GD contains bucket address on disk 
– Bucket contains all data points in this grid cell (maybe more) 

• 2. Load bucket and find point(s): 1st IO 
– As usual, we do not look at how to search inside bucket 

• 3. Access record following TID: 2nd IO 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29 

Other Queries 

 
 

• Range query 
– Compute all matching scales 
– Access all corresponding cells in GD 
– Load and search all buckets (random IO) 

• Partial match query 
– Compute partial GD coordinates  
– All GD cells with these coordinates may contain points (random IO) 
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Nearest Neighbor Queries 

• Find bucket containing query point 
• Search points in this region and choose closest 

– Can we finish if closest point was found? 
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Nearest Neighbor Queries 

• Find bucket containing query point 
• Check points in this region 

– Can we finish with the closest point in this region?  
– Usually not 

• Check distances to all borders 
• If point found is closer than any  

border, we are done 
• Otherwise, we need to search 

neighboring regions 
• Do it iteratively and always 

adapt radius to current closest 
point 

– Very fast if neighbor is in same region 
• I.e.: dense buckets and point not at border 

7 

8 9 

10 11 

12 

1 

2 

3 4 

5 

6 

13 

14 

15 
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Inserting Points 

• Search grid cell; if bucket has space: Insert point 
• Otherwise (overflow): Split 

– Assume we have to split a single-cell region 
– Choose a dimension and new scale within region interval 
– Split all affected GD cells – cuts through all dimensions 

• Consider n dimensions and Si scales in dimension i 
• Split in dim i affects d1*…*di-1*di+1*…*dn cells in GD 
• Example: d=3, Si=4; |GD|=43=64; any split affects 42 cells 

– Split overflown bucket along new scale (new region) 
– Do not split other (un-overflown) buckets containing the new scale 

• Only copy pointer from GD to bucket 

– Choice of dimension and interval is difficult 
• Optimally, we would like to split as many rather full blocks as possible 
• We also want to consider our future expectation 
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Example 

• Imagine one block holds 3 points 
– [Usually scales are unevenly spaced] 

• New point causes overflow 
• Vertical split 

– Splits 2 (3,4)-point blocks 
– Leaves one 3-point block 

• Horizontal split 
– Splits 2 (3,4)-point blocks 
– Leaves one 3-point block 

• Note: Most splits will happen only  
in the future 
– Creating more or less problems 
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Inserting Points in Multi-Cell Regions 

 
• Overflow in a multi-cell region 
• Idea: Split region into smaller regions (or cells) 

– Possible split dimensions/axes: Existing scales not yet used for split 
in this region 

• No local adaptation – decisions from the past have to be obeyed 

• Several strategies 
– Chose scale which best distributes the points  

• Requires considering them all 
• Won’t pay off in case of uniformly distributed data 

– Circulate through dimensions and chose median scale 
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                 A 

A A 

Assume k=6 

1 

2 

3 
4 

5 

6 

1 2 3 4 5 6 

Grid File Example 1 [J. Gehrke] 
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1 2 3 4 5 6 A 

A A A B A B 

7 

8 9 

10 11 

12 

1 3 5 7       A 
2 4 6         B 

8 

9 

10 

11 12 

1 

2 

3 
4 

5 

6 

Grid File Example 2 
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A B A B A B 

C 

A B 

C B 

1 3 5 7 8 10 A 
2 4 6 9 11 12 B 

7 

8 9 

10 11 

12 

1 

2 

3 
4 

5 

6 

13 

14 

15 

1 7 8 13       A 
2 4 6 9 11 12 B 
3 5 10        C 

14 15 

Grid File Example 3 
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A B 

C 

A B 

C B 

A D B 

C 

A D 

C C 

B 

B 
7 

8 9 

10 11 

12 

1 

2 

3 
4 

5 

6 

13 

14 

15 

1 3 5 7 8 10 A 
2 4 6 9 11 12 B 

1 7 8 13       A 
2 4 6 9 11 12 B 
3 5 10        C 

14 15 

16 

1 2 3 4 5 6 A 1 3 5 7       A 
2 4 6         B 

1 7 8 13       A 
2 4 6 9 11 12 B 
3 5 10        C 

1 8 13 16       A 
2 4 6 9 11 12 B 
3 5 10       C 
7 14 15       D 

Grid File Example 4 
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A B 

C 

A B 

C B 

A D B 

C 

A D 

C C 

B 

B 
7 

8 9 

10 11 

12 

1 

2 

3 
4 

5 

6 

13 

14 

15 

1 3 5 7 8 10 A 
2 4 6 9 11 12 B 

1 7 8 13       A 
2 4 6 9 11 12 B 
3 5 10        C 

14 15 

16 

1 2 3 4 5 6 A 1 3 5 7       A 
2 4 6         B 

1 7 8 13       A 
2 4 6 9 11 12 B 
3 5 10        C 

1 8 13 16       A 
2 4 6 9 11 12 B 
3 5 10       C 
7 14 15       D 

One Future 

We now must perform this split; creates one almost empty and one full 
bucket; next split will happen soon 
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x1 x2 x3 x4 

y4 

y2 

y1 

A B 

C 

D 

E 

F 

G 

H 

I y3 

A H 

A I 

D 

D 

F 

F 

B 

B 

A I G F B 

E E G F B 

C C C C B 

Grid File Example 5 
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Deleting Points 

• Search point and delete 
• If block become ”almost empty”, try to merge 

– A merge is the removal of a split – chose scale to “unmake” 
– Should build larger convex regions 
– This can become very difficult 

• Potentially, more than two regions  
need to be merged to keep convexity  

– Eventually, also scales may be removed 
• Shrinkage of GD 

– Example: Where can we merge? 

A H 

A I 

D 

D 

F 

F 

B 

B 

A I G F B 

E E G F B 

C C C C B 
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Convex Regions  

A H 

A I 

D 

D 

F 

F 

B 

B 

A I G F B 

E E G F B 

C C C C B 

A I 

A I 

D 

D 

F 

F 

B 

B 

A I G F B 

E E G F B 

C C C C B 

A A 

A I 

D 

D 

F 

F 

B 

B 

A I G F B 

E E G F B 

C C C C B 

• Non-convex regions: Range and  
neighborhood queries have to scan  
increasingly many buckets 
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What‘s in a Bucket? 

 
• The tuples 

– Not compatible with other database structures (indexes, etc.) 
– Long tuples result in few records per data blocks 
– Frequent splits, fast growing GD 

• Only TIDs 
– Many records per data block, few splits, small directory 
– But queries need to check (load) all tuples referenced in a block to 

check real coordinates 

• TIDs and coordinates 
– Medium number of records per block, moderate growth of GD 
– No access to tuples necessary for checking coordinates 
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Original 2-IO Guarantee  

 
 

• Assume GD on disk and buckets containing entire tuples 
– One more IO for loading pointer to bucket 
– One less IO for accessing payload 

• But 
– Modern machines have large memories: GD in memory 

• For many dimensions, Grid files are anyway the wrong MDIS 

– More TIDs per bucket creates overall smaller data structure 
– Payload management (growing values etc.) independent of MDIS 
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Some Observations 

• Grid files always split at hyperplanes parallel to the 
dimension axes 
– This is not always optimal 
– Use other bounding shapes: circles, polygons, etc. 
– More complex– forms might not disjointly fill the space any more 
– Allow overlaps (see R trees) 

• There is no guaranteed block-fill degree – degeneration 
• Choosing a new scale is a local decision with global 

consequences 
– No local adaptation: GD grows very fast 
– Need not be realized immediately, but restricts later choices in 

other regions 
– Bad adaptation to skewed data 
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