HUMBOLDT-UNIVERSITÄT ZU BERLIN Einführung in die Theoretische Informatik PROF. Dr. JOHANNES KÖBLER 1. Februar 2012

Übungsblatt 14

Besprechung der mündlichen Aufgaben am 6.–10. 2. 2012 Abgabe der schriftlichen Lösungen bis 11:10 am 15. 2. 2012

Aufgabe 109 mündlich

- (a) Überlegen Sie, wie sich ein gegebener regulärer Ausdruck α in Polynomialzeit in einen äquivalenten NFA M transformieren lässt.
- (b) Klassifizieren Sie folgende Entscheidungsprobleme als effizient lösbar (d. h. in P) bzw. nicht effizient lösbar (d. h. NP-hart oder co-NP-hart). Begründen Sie.
 - LP_{DFA} (das Leerheitsproblem für DFAs),
 - AP_{DFA} (das Ausschöpfungsproblem für DFAs),
 - ÄP_{DFA} (das Äquivalenzproblem für DFAs),
 - SP_{DFA} (das Schnittproblem für DFAs),
 - IP_{DFA} (das Inklusionsproblem für DFAs).
- (c) Welche Klassifikation ergibt sich, wenn die regulären Sprachen nicht durch einen DFA, sondern durch einen (sternfreien) regulären Ausdruck oder durch einen NFA beschrieben werden? Begründen Sie.

Aufgabe 110 5 Punkte

Eine boolesche Formel F heißt **monoton**, falls sie nur mittels \vee und \wedge aus Variablen und Konstanten (0,1) aufgebaut ist.

Klassifizieren Sie folgende Entscheidungsprobleme für boolesche Formeln entsprechend ihrer Komplexität als effizient lösbar (d.h. in P) bzw. nicht effizient lösbar (d.h. NP-hart oder co-NP-hart). Begründen Sie Ihre Antwort.

- (a) $L_1 = \{F \mid F \text{ ist eine erfüllbare monotone Formel}\},$ (mündlich)
- (b) $L_2 = \{F \mid F \text{ ist eine erfullbare Formel der Form } G \to H\},$ (mündlich)
- (c) $L_3 = \{F \mid F \text{ ist eine Tautologie der Form } G \to H\},$ (mündlich)
- (d) $L_4 = \{F \mid F \text{ ist in KNF und es ex. eine Belegung } a \text{ mit } F(a) = 0\}, (mündlich)$
- (e) $L_5 = \{F \mid \text{es gibt eine Belegung } a \text{ mit } F(a) = 0\}.$ (5 Punkte)

Aufgabe 111 5 Punkte

Klassifizieren Sie folgende Probleme als effizient lösbar (d. h. in P) bzw. nicht effizient lösbar (d. h. NP-hart oder co-NP-hart). Begründen Sie.

- (a) Das Subgraph-Isomorphieproblem SubGI: Entscheide für zwei gegebene Graphen G und H, ob G isomorph zu einem Subgraphen von H ist. (mündlich)
- (b) Das 2-Färbbarkeitsproblem 2-Coloring. (mündlich)
- (c) Entscheide für einen Graphen G und eine Zahl k, ob G eine Clique der Größe k hat und G k-färbbar ist. (mündlich)
- (d) Entscheide für einen Graphen G und eine Zahl k, ob G eine Clique der Größe k+1 hat und G k-färbbar ist. (mündlich)
- (e) BOUNDED-PCP: Entscheide für eine PCP-Instanz I und eine gegebene Unärzahl 0^k , ob I eine PCP-Lösung der Länge höchstens k hat. (mündlich, optional)
- (f) Entscheide für einen Graphen G und eine gegebene Clique C in G, ob C die einzige Clique der Größe $\|C\|$ in G ist. (5 Punkte)

Aufgabe 112 Zeigen Sie:

10 Punkte

- (a) Eine Sprache A ist genau dann NP-vollständig, wenn ihr Komplement \bar{A} vollständig für co-NP ist. (2 Punkte)
- (b) SAT liegt genau dann in co-NP, wenn NP = co-NP ist. (2 Punkte)
- (c) Die Sprache UNSAT der unerfüllbaren booleschen Formeln ist co-NP-vollständig (d. h. UNSAT \in co-NPC). (3 Punkte)
- (d) Die Sprache TAUT der aussagenlogischen Tautologien ist ebenfalls vollständig für co-NP. (3 Punkte)

Aufgabe 113 10+15 Punkte

Eine KNF-Formel heißt *fast positiv*, falls negative Literale höchstens in Zweierklauseln vorkommen. Zeigen Sie:

- (a) 3-SAT eingeschränkt auf Formeln, in denen jede Variable höchstens dreimal vorkommt, ist NP-vollständig. (mündlich)
- (b) 3-Sat eingeschränkt auf fast positive Formeln ist NP-vollständig. (10 Punkte)
- *(c) Eine KNF-Formel, in der jede Klausel mindestens $k \geq 1$ (verschiedene) Literale enthält und in der jede Variable höchstens k-mal vorkommt, ist erfüllbar. (Hinweis: Benutzen Sie den Heiratssatz.) (10 Zusatzpunkte)
- (d) Folgern Sie, dass 3-Sat eingeschränkt auf Formeln, in denen jede Variable nicht mehr als zweimal vorkommt, in P entscheidbar ist. (5 Zusatzpunkte)