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Molecular interactions — Motivation

« Proteins mediate their function in complex interplay with other
molecules through molecular interactions

Enzyme changes shape Products
Substrate slightly as substrate binds

{ )tive site
oV

Enzymes bind substrates to catalyzes biochemical reactions

a and B-hemoglobin chains assemble into
hetero-tetramers for transporting oxygen
from lungs to tissues

Transcription factors bind the DNA to induce transcription
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Protein-protein interactions — Motivation

* Important class of biomolecular interactions are protein-protein
Interactions

» Virtually all cellular mechanisms rely on the physical binding of two or
more proteins to accomplish a particular task:
« Critical role in cellular processes, e.g. signal transduction, gene regulation,
cell cycle control and metabolism

« Alterations in protein interactions perturb natural cellular processes and
contribute to many diseases, such as cancer and AIDS

 ldentifying all physical interactions within an organisms — the
Interactome — essential towards understanding the complex molecular

relationships in living systems
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This Lecture

* Protein-protein interactions
« Characteristics
« Experimental detection methods
« Databases

 Protein-protein interaction networks
 Characteristics

« Applications
* Protein function prediction
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Protein-protein interactions — Characteristics

* Protein interaction defined as physical contact with molecular docking

» Non-covalent contacts between side chains driven by hydrophobic effects,
hydrogen bonds and electrostatic interactions

« Any two proteins can interact — but on what conditions ?

* Important aspect is the biological context:
« Cell type, cell cylce phase and state
« Environmental conditions
« Developmental stage
* Protein modification
« Presence of cofactors and other binding partners
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Protein-protein interactions — Characteristics

« Protein interactions differ in diverse structural and functional
characteristics, e.g. composition, affinity and life time of the association

« Strength depicts whether an interaction is permanent or transient

« Specificity refers to the selective binding of interaction partners

« Type of interacting subunits specifies
whether an interaction forms hetero-oligomer ?

with several different subunits or homo-
oligomer with only one type of protein
subunit

From The At of MEBoC® £ 1995 Garland Publishing, Inc.

UIf Leser and Samira Jaeger: Bioinformatics, Sommersemester 2011



Experimental detection methods

» Protein-protein interactions have been studied extensively by different
experimental methods

Small-scale techniques

In vivo In vitro
« Large-scale techniques
Identification .
. Kingtics, aftat] * Yeast two-hybrid assays
Y2H, protein arrays (Y2 H)
protein o -
Cellular localization °MPrementation Solids Tandem affinity
id-phase ‘o .
~ detection purification and mass
FRET spectrometry (TAP-MS)
T

Structure and dynamics

FRET
e \Sond_phase D Cell assay

Biological significance smgzg;g:f:u'e detoeil ° IN VIVO VS. In vitro
\/ Moch piens Type of interaction
* binary vs. complex

Piehler, 2005 Current Opinion in Structural Biology @ Type Of CharaCterlzatIOn
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Yeast two-hybrid screens

* Y2H is a molecular genetic tool, in which an interaction reconstitutes a
transcription factor that activates expression of reporter genes

« Transcription factors require two domains: DNA binding domain (BD)
and an activation domain (AD)

Bait protein Prey protein

E » | RNA Polymerase

Expression of fusion
proteins in yeast cell

& RNA Polymerase

. 1 I
| .
Promoter Transgl[iption of reporter
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Yeast two-hybrid screens

* Y2H is a molecular genetic tool, in which an interaction reconstitutes a
transcription factor that activates expression of reporter genes

« Transcription factors require two domains: DNA binding domain (BD)
and an activation domain (AD) A B

Positive Control | Fil ',g

Bait protein Prey protein o
CML42 (DB) + vector (AD) {;

& a CML42 (DB) + KIC (AD) | i i

Expression of fusion -
proteins in yeast cell KIC (DB) + CML42 (AD) | )

CML43 (DB) + KIC (AD) | a1

& RNA Polymerase

. 1 I
| .
Promoter Transg[iption of reporter

CaM (DB) + KIC (AD) |

KIC (DB) + vector (AD) i"

Dobney S et al. J. Biol. Chem.
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Yeast two-hybrid screens

Benefits

e Large-scale analysis

e Sensitive in vivo technique

 ldentification of direct, transient and unstable interactions

» Genetic code of any fusion protein may be introduced into yeast cells
Drawbacks

« Poor reliability
— High false positive rate up to 50% (!)
— High false negative rate

« Analysis of proteins in nucleus rather than in their native
compartement

« Stable expression of fusion protein might be a problem

« Essential post-translational modification of non-yeast proteins may
not be carried out
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Tandem affinity purification and mass spectrometry

TAP-MS involves biochemical isolation of protein complexes and
subsequent identification of their constituting proteins using mass

spectrometry

Bait
8 IgG column
Purification of protein

> complexes by affinity
chromotography

Q Q KFEEGIFSDLR |
SEUMRT £

‘ ‘ J o \”?‘."J‘I’T -
B . mf/msfragmentation pa-ttern Purlfled prOteIn Calmodulln
Identification of associated proteins complexes column

by mass spectrometry

Intensity
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Matrix and spoke model

« Direct interactions can not be distinguished from interactions mediated
by other proteins in a complex

« How many interactions are detected from a TAP-MS purification ?

Matrix model: infers interactions between all proteins of
a purified complex — (N*N -1)/2

Spokes model: infers only interactions between the bait
and the co-purified proteins - N -1

A -
““““
.
“““
. D

# Proteins Matrix Spoke
4 6 3
10 45 9
80 3540 79
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Tandem affinity purification and mass spectrometry

Benefits

« Large-scale analysis

« Detection of protein complexes/interactions in correct cellular
enviroment and detect several members of a complex

Drawbacks

« No direct translatation into binary interactions
* Protein complexes not present under given conditions are missed

« Loosely associated proteins of a complex might be washed of
during purification

* Protein targeting might interfere with complex formation
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Protein-protein interaction databases

Database Species Proteins Interactions
IntAct No restriction 53.276 271.764 7
BioGrid No restriction 30.712 131.638
DIP No restriction 23.201 71.276 Experimentally
(372) | verified protein
MINT No restriction 31.797 90.505 Interactions
HPRD Human only 30.047 39.194
MMPPI Mammals
STRING No r(eess;g;:tion 2.590.259 ] Experimentally
_ | 5550 500475 _ verified and
UniHI Human only 307 A7 predicted protein
OPID Human only J interactions
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This Lecture

* Protein-protein interactions
» Characteristics
» Experimental detection methods
« Databases

» Protein-protein interaction networks
* Characteristics

« Applications
* Protein function prediction
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Protein-protein interaction networks

1’ , ‘,
- Binary interaction data can be assembled to R T
protein-protein interaction networks VU R
* Networks are represented as graphs :
- Definition of a graph: G = (V,E)
« Vis the set of nodes (proteins) ‘
« E is the set of edges (interactions) '
« Computational representation of graphs: Z | )
A B )
I \ l Adjacency matrix
C—D
A B C D
Adjacency lists: A 0 0 1 1
(ordered) pairs of nodes B 0 0 0 1
{(A,C), (A,D), (B,D), (C,A), C 10 0 1
(C,D) (D,B), (D,C), (D,A) } b t 1 169
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Graph-theoretic concepts

 Agraphis defined by G = (V,E), where V is the set of nodes and E is
the set of edges connecting pairs of nodes

» The distance between two nodes is the number of edges on the
shortest path between them

« Diameter is the maximum distance between any two node

« The neighborhood of node is the set of nodes connected to it
* n-neighborhood of a node is the set of nodes with distance n

« Aclique is a fully connected subgraph, a subgraph in which every two
nodes are connected by an edge

« Kk-core is a subgraph where each node has at least k interactions

* The density is the fraction of edges a graph has given all possible pairs

of nodes D - 2| E|
o=
IV I(VI]-1)
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Protein-protein interaction networks

« Why study protein interaction networks ?

» Elucidate the relationship between network
structure and biological function

» Discover novel protein function

 ldentify functional modules and conserved
interaction patterns

» Associate proteins with phenotypes or disease

« Study pharmacological drug-target relationships
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Topological network properties

« Topology of a network reveals its organization on different levels

» Local and global characteristics provide insights in network
evolution, stability and dynamics

« Common properties of biological networks
« Small world property
« Clustering coefficient
« Degree distribution
* Network centrality

* Modular network organization
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Network centrality

« Network centrality analysis identifies interesting elements/proteins
within a network

« Quantitative measure to determine a proteins relative position in a
network

« Example — Degree centrality:
» Degree of a node = number of edges to other nodes
deg(v)
Cp(v)= V-1
» High centrality in interaction networks correlates with:
« Gene essentiality
« Evolutionary importance

 Conservation rate
* Likelihood to cause human disease

i “ﬂ

i - (- |
0 R 10 14 20
Mo, of links

sfrantacks of essantial protains

e
[=

20
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Degree distribution

« Degree distribution P(k): probability that a node has exactly k links
« Count the number of nodes N(k) with k =1, 2, ... links and divide by N

« Allows to distinguish between different network classes

« Common network distributions Random network (Poisson)

—d gk
: e d
* Poisson: P(k) = " % A
. Exponential: P(k) ~ e /¢ L

1 10 100 1,000

Barabasi et al., 2004 k

« Power-law: P(k)~k™”
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Scale-free networks

« Scale-free networks, e.g. protein interaction networks, follow a power
law distribution: P(k) ~ k™7, with degree exponents 2<y<3

« Characterized by a small number of highly connected nodes known as
hubs

« Scale-free topology typical feature of interaction networks
* Most proteins participate in few interactions and few proteins in dozens

* Resistent to random failure, but prone to vulnerable attacks especially
against hubs

1 10 100 1,000
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Scale-free networks

« Evolutionary origin of scale free networks
» Growth: networks emerge through addition of new nodes
» Preferential attachment: new nodes prefer to link to more connected nodes

* Ininteraction networks: scale-free property is thought to originate from
gene duplications

Network before Gene duplication Network after
duplication duplication
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Modular network organization

« Complex cellular function is carried out in a highly modular manner
« Modular organization is reflected in a modular network structure

' Secretion &
vesicle
transport

Chromatin & <
transcription °*

wl)
:{' Cell polarity &
morphogenesis

DNA replication
& repair

Costanzo et al., Nature, 2010
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Clustering coefficient

» Modules (or cluster) are densely connected groups of nodes

- Cluster coefficient C reflects a network’s potential modularity and
characterizes the tendency of nodes to cluster (‘triangle density’)

2E, _ 1
Cv:dv(dv_l — <C> B Z

) VeV
* E, = number of edges between neighbors of %

« d, = number of neighbors of v

d,(d, —
. v(dy > = maximum number of edges between neighbors d,

« Example:

C,=10/10 =1 c,=3/10=03  C,=0/10=0
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Functional modules

« Two types of modules are distinguished in interaction networks

» Protein complexes: proteins that interact with each other at the same time
and place

« Functional modules: proteins that participate in the same process but
interacting at different times and places

* Finding functional modules — find densely connected subgraphs:
» Cliques / k-cores
« Network clustering
* Network alignment

« Decompose networks into subnetworks according to particular topological
properties
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K-cores

 ldentifying cliques in graphs is NP complete

« Approximation: k-cores
 AKk-core of a graph G is defined as maximally connected subgraph of

G in which all vertices have degree at least k

while modify_kcore == true do
modify_kcore = false
for all v eV do
consider deg(v) and the degree of N(v)
if deg(v) <k then
prune v
modify _kcore = true

else
if v has n neighbors with degree <k then
deg(v) = deg(v) - n
if deg(v) <k then
prune v
modify kcore = true

27
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Network Alignment

1) Detection of orthologous proteins

2) ldentification of interologs & assembly to conserved and connected
subgraphs (CCS)

ACGGT_AGATA

_CGGTCAGAT_
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Network Alignment

OrthOIOC]V homologs
e N
el et
. paralogs
\\ 'd A ™ \' ( 1
PN A In-paralogs (,recent’ paralogs)
r's ™~ ~ ~~
frogt  chick® mousetx mouse[ chickB  frog _ ‘
Out-paralogs (,ancient’ paralogs)
N
o.-chain gene [3-chain gene
\ gene duplication /
early globin gene

Interoloqs

Inter9|og = orthologous interaction

r Al

Species 1 H
Species 2 \\H
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Network Alignment

(1) Identification of interologs and (2) assembly to subgraphs

. Modification of algorithm for frequent subgraph discovery

SpecieslH H
\ \ \ \ \ \
specess M A A A

— N —
CXP O 09
\ Caae D — Set of interactions
Caas>  \(ma0D : contained in all
CBa0 (a0 D (Ea0 <> networks
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Network Alignment

(2) Assembly of conserved PPIs to maximally connected subgraphs

2 e = g2
=

— Maximally connected and conserved subgraph — CCS
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Network alignment

Modules comprise proteins that
work together to achieve a
specific function

Protein transport

Translation Pathway
in cancer MA.P K/ \{.EGF/ Erb
B signaling Proteasome subunits
pathway — Protein degradation
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Network-based protein function prediction

« Knowing a protein's function is essential for understanding biological
processes, cellular mechanisms, evolutionary changes and the onset
of diseases

« Protein interactions reflect the biological role of proteins within the cells

* Neighboring proteins in a network are likely to share function (guilt-by-
association)

* Function might be inferred:

1. By transferring known functions from directly or indirectly
Interacting proteins.

2. Based on the protein complexes a protein belongs to.
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Network-based protein function prediction

______________________________

Direct annotation scheme Module-assisted annotation

scheme

» Study the set of
neighbors

» Consider position of
the protein within its

neighborhood, :
+ Consider position of !

the protein in the
entire interaction
network
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Direct annotation scheme

* Correlation between network and functional distance: the closer two
proteins are in the network, the more similar are their functional

annotation

o o
kS o ® -
L L

GO semantic similarity
o o

Network distance

« Majority-rule based on most common function(s) annotated to the
direct interaction partners of a protein — proteins are associated with
the most frequent functions of its direct neighbors

—
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Module-assisted annotation scheme

« Based on hypothesis: cellular function is organized in a highly modular
manner

« Module-based function assignment:
1. First compute clusters (or modules) within the protein network.

2. Proteins in a cluster are associated with annotations that are
enriched within the module

. Common functional annotations shared by the majority of the module's
proteins

. Over-represented function that are enriched in a cluster according to the
hypergeometric distribution

—
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Direct vs. Module-based methods

« Direct methods * Module-based methods
+ Accurate predictions + More robust to missing or false
+ Provide high coverage Interactions
— More sensitive to high level + Performance improves in networks
of false positives with less functional coverage

— Predict function only in dense
network regions — reduced
coverage

— Less accurate than simple direct
methods

— Both methods work within a species, which disregards functional information
available in evolutionary related other species

!

Combining modularity, conservation, and direct interactions in one method
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Combine modularity, conservation, and direct interactions

« Assumption: structural conservation in networks correlates with
functional conservation in networks which can be exploited for
predicting protein functions

@Prediction along
interactions

_| UniProt
N~

—
e

— EntrezGene

Bg PP| database

(2) Prediction along;

Spéc’ies 2

O \\‘{ :l'/

FlyBase
N~

~/

a) Data Integration

4;,*39

KSpemes 3

W,

orthology
relationships

b) Network Comparison
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Network Comparison
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CCS-based function prediction

« Analyze proteins within CCS that are defined by evolutionary
conserved processes

/> Evolutionary conserved CCS = Functionally coherent?

« Combine comparative cross-species genomics and functional linkage
within species-specific networks, predict function from

» Orthology relationships
» Direct interaction partners
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CCS-based function prediction

1) Exploiting Orthology Relationships across multiple species

Species 1

.| same
/ >function

Speciés 2
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CCS-based function prediction

2) Exploiting Protein Neighbours — Based on functional similarity

between proteins

GO_Sim(x,y) >t

GO_Sim(y,z) > t

GO_Sim(a,x) >t
GO_Sim(a,y) >t
GO_Sim(a,z) >t

common GO

annotations

I

Candidate GO terms = {GO,, GO,, ..., GO_}

protein | GO Sim | GO,
candidate a ? Vv
training X 0.7 v
y 0.75
z 0.71 v
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CCS-based function prediction

Combining modularity, conservation and interaction
Predict along interactions

Species 1
bih + Increased coverage
VN \_ - Disregarding power of
\‘ comparative genomics
-\‘ - False positive PPIs
/ o
X L
|\\ .[ !
\ /

Predict by orthology relationships

X

SpeCieS 2 +  More robust to missing or (-i- Exploit knowledge of well- )
false interactions studied species
+ Good performance in +  High precision
networks with less functional e
coverage - leltgd coverage '
- Restricted to proteins with
K characterized orthologs j
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Summary

« Analysis of protein interaction data and protein interaction network

facilitates the understanding of cellular organization, function and
processes

« Public databases provide large repositories of interaction data of
varying quality and quantity

» Sucessfully used to infer novel function and disease associations from
Interaction partners
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