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Abstract—Processing large complex networks like social networks or
web graphs has attracted considerable interest. To do this in parallel, we
need to partition them into pieces of roughly equal size. Unfortunately,
previous parallel graph partitioners originally developed for more regular
mesh-like networks do not work well for complex networks. Here we
address this problem by parallelizing and adapting the label propagation
technique originally developed for graph clustering. By introducing size
constraints, label propagation becomes applicable for both the coarsen-
ing and the refinement phase of multilevel graph partitioning. This way
we exploit the hierarchical cluster structure present in many complex
networks. We obtain very high quality by applying a highly parallel
evolutionary algorithm to the coarsest graph. The resulting system is
both more scalable and achieves higher quality than state-of-the-art
systems like ParMetis or PT-Scotch. For large complex networks the
performance differences are very big. As an example, our algorithm
partitions a web graph with 3.3G edges in 16 seconds using 512 cores
of a high-performance cluster while producing a high quality partition –
none of the competing systems can handle this graph on our system.

1 INTRODUCTION

Graph partitioning (GP) is a key prerequisite for efficient
large-scale parallel graph algorithms. A prominent example
is the PageRank algorithm, which is one of the measures
used by web search engines to rank web pages displayed
to the user. As huge networks become abundant, there
is a need for their parallel analysis, requiring a sensible
distribution of the graphs to the PEs (processing elements).
In many cases, this means to partition a graph into k blocks
of roughly equal size such that the communication between
PEs in the underlying application is minimized. The latter is
often estimated by the number of edges between the blocks
(pieces). In this paper we focus on a version of the problem
that constrains the maximum block size to (1 + ε) times the
average block size and tries to minimize the total cut size,
i.e., the number of edges that run between blocks.

It is well-known that there are more realistic (and more
complicated) objective functions involving also the block
that is worst and the number of its neighboring nodes [2],
but minimizing the cut size has been adopted as a kind of
standard. The graph partitioning problem is NP-complete
[3] and there is no approximation algorithm with a constant
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ratio factor for general graphs [4]. Thus, heuristic algorithms
are used in practice.

A successful heuristic for partitioning large graphs is
the multilevel graph partitioning (MGP) approach depicted in
Figure 1, where the graph is recursively contracted to achieve
smaller graphs which should reflect the same basic structure
as the input graph. After applying an initial partitioning
algorithm to the smallest graph, the contraction is undone
and, at each level, a local search method is used to improve
the partitioning induced by the coarser level.

The main contributions of this paper are a scalable
parallelization of the size-constrained label propagation al-
gorithm and an integration into a multilevel framework that
enables us to partition large complex networks. The par-
allel size-constrained label propagation algorithm is used
to compute a graph clustering. A clustering of this kind
is recursively contracted and recomputed on the coarser
graph until the coarsest graph is small enough. The coarsest
graph is then partitioned by the coarse-grained distributed
evolutionary algorithm KaFFPaE [5]. During uncoarsening
the size-constraint label propagation algorithm is used as a
simple, yet effective, parallel local search algorithm.

The presented scheme speeds up computations and im-
proves solution quality on graphs that have a very irreg-
ular and often also hierarchically clustered structure such
as social networks or web graphs. On these graphs the
strengths of our new algorithm unfold in particular: average
solution quality and running time is much better than what
is observed by using ParMetis. A variant of our algorithm is
able to compute a partition of a web graph with billions of
edges in only a few seconds while producing much better
solutions.

We organize the paper as follows. We begin in Section 2
by introducing basic concepts and outlining related work.
Section 3 reviews the recently proposed cluster contraction
algorithm [6] to partition complex networks, which is paral-
lelized in this work. The main part of the paper is Section 4,
which covers the parallelization of the size-constrained label
propagation algorithm, the parallel contraction and uncon-
traction algorithm, as well as the overall parallel system.
A summary of extensive experiments to evaluate the algo-
rithm’s performance is presented in Section 5. Finally, we
conclude in Section 6.
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Fig. 1. Multilevel graph partitioning. The graph is recursively contracted
to achieve smaller graphs. After the coarsest graph is initially partitioned,
a local search method is used on each level to improve the partitioning
induced by the coarser level.

2 PRELIMINARIES

2.1 Basic concepts
Let G = (V = {0, . . . , n − 1}, E, c, ω) be an undirected
graph with edge weights ω : E → R>0, node weights
c : V → R≥0, n = |V |, and m = |E|. We extend c and ω
to sets, i.e., c(V ′) :=

∑
v∈V ′ c(v) and ω(E′) :=

∑
e∈E′ ω(e).

N(v) := {u : {v, u} ∈ E} denotes the neighbors of v. A
node v ∈ Vi that has a neighbor w ∈ Vj , i 6= j, is a boundary
node. We are looking for blocks of nodes V1,. . . ,Vk that
partition V , i.e., V1 ∪ · · · ∪Vk = V and Vi ∩Vj = ∅ for i 6= j.
The balancing constraint demands that ∀i ∈ {1..k} : c(Vi) ≤
Lmax := (1 + ε)d c(V )

k e for some imbalance parameter ε. The
objective is to minimize the total cut

∑
i<j w(Eij) where

Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. We call a block Vi
underloaded [overloaded] if c(Vi) < Lmax [if c(Vi) > Lmax].

A clustering is also a partition of the nodes. However, k
is usually not given in advance and the balance constraint is
removed. A size-constrained clustering constrains the size
of the blocks of a clustering by a given upper bound U such
that c(Vi) ≤ U . Note that by adjusting the upper bound
one can somewhat control the number of blocks of a feasible
clustering. For example, when using U = 1, the only feasible
size-constrained clustering in an unweighted graph is the
singleton clustering, where each node forms a block on its
own.

An abstract view of the partitioned graph is the so-called
quotient graph, in which nodes represent blocks and edges
are induced by connectivity between blocks. The weighted
version of the quotient graph has node weights which are
set to the weight of the corresponding block and edge
weights which are equal to the total weight of the edges that
run between the respective blocks. By default, our initial
inputs will have unit edge and node weights. However,
even those will be translated into weighted problems in
the course of the multilevel algorithm. In order to avoid
tedious notation,Gwill denote the current state of the graph
before and after a (un)contraction in the multilevel scheme
throughout this paper.

2.2 Related Work
Graph partitioning is a thoroughly studied research prob-
lem, we refer the reader to [7], [8], [9] for a broad overview.
Here, we focus on issues closely related to our main contri-
butions. Most, if not all, general-purpose methods that are
able to obtain good partitions for large real-world graphs
in reasonable time are based on the multilevel principle.

The basic idea can be traced back to multigrid solvers for
solving systems of linear equations [10] but more recent
practical methods are based on mostly graph theoretic
aspects, in particular edge contraction and local search.
There are many ways to create graph hierarchies such as
matching-based schemes [11], [12], [13] or variations thereof
[14] and techniques similar to algebraic multigrid, e.g. [15].
We refer the interested reader to the respective papers for
more details. Well-known software packages based on this
approach include Jostle [11], Metis [12] and Scotch [16].

Most probably the fastest available parallel code is the
parallel version of Metis, ParMetis [17]. This parallelization
has problems maintaining the balance of the partitions since
at any particular time, it is difficult to say how many nodes
are assigned to a particular block. PT-Scotch [16], the parallel
version of Scotch, is based on recursive bipartitioning. This
approach is more difficult to parallelize efficiently compared
to k-partitioning since in the initial bipartition, there is less
parallelism available. The unused processor power is used
by performing several independent attempts in parallel. The
involved communication effort is reduced by considering
only nodes close to the boundary of the current partitioning
(band-refinement). KaPPa [18] is a parallel matching-based
MGP algorithm which is also restricted to the case where
the number of blocks equals the number of processors used.
PDibaP [19] is a multilevel diffusion-based algorithm that is
targeted at small- to medium-scale parallelism with dozens
of processors.

As reported by [20], most large-scale graph process-
ing toolkits based on cloud computing use ParMetis or
rather straightforward partitioning strategies such as hash-
based partitioning. While hashing often leads to acceptable
balance, the edge cut obtained for complex networks is
very high. To address this problem, Tian et al. [20] have
recently proposed a partitioning algorithm for their toolkit
Giraph++. The algorithm uses matching-based coarsening
and ParMetis on the coarsest graph. This strategy leads
to better cut values than hashing-based schemes. Yet, it
introduces significant imbalance, so that their results are
incomparable to ours.

Recent work by Kirmani and Raghavan [21] solves a
relaxed version of the graph partitioning problem where no
strict balance constraint is enforced. The blocks only have
to have approximately the same size so that the results are
incomparable. Note that the problem is easier than fulfilling
a strict balance constraint. Their approach attempts to obtain
information on the graph structure by computing an embed-
ding into the coordinate space with multilevel force-directed
graph drawing. Afterwards partitions are computed using
a geometric scheme. Since force-directed graph drawing
usually results in “hairballs” for complex networks [22], this
approach does not seem very promising in our context.

The label propagation clustering algorithm was initially
proposed by Raghavan et al. [23]. A single round of simple
label propagation can be interpreted as the randomized
agglomerative clustering approach proposed by Catalyurek
and Aykanat [24]. Moreover, the label propagation algo-
rithm has been used to partition networks by Uganer and
Backstrom [25]. The authors do not use a multilevel scheme
and rely on a given or random partition which is im-
proved by combining the unconstrained label propagation
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approach with linear programming. The approach does not
yield high quality partitions.

Recently, Slota et al. [26] have used label propagation
for partitioning complex networks as well. Their algorithm,
termed PuLP by its authors, differs in one very important
aspect: It does not use the multilevel approach. Thus, as we
will see in our experimental comparison, the partitioning
quality suffers. Also, it may be difficult to adhere to a tight
node balance constraint such as the typical 3% with PuLP.
On the other hand, PuLP can balance according to edges as
well and consider multiple optimization objectives, proper-
ties our algorithm does not have. As Slota et al. also point
out, state-of-the-art distributed-memory partitioning tools
“adopt a graph distribution scheme, a specific partition-
ing method, and then organize inter-node communication
around these choices.” Here distribution refers to the way
the graph’s sparse adjacency matrix is distributed over the
processors in the parallel partitioner. Previous work [27] has
indicated that for complex networks a 2D distribution (com-
puted on the basis of 1D graph or hypergraph partitioning)
can be advantageous. As Slota et al. and other established
parallel partitioning tools (such as ParMetis or PT-Scotch),
we focus in this paper on the partitioning aspect and use
internally a 1D distribution with natural ordering.

2.3 KaHIP

Within this work, we use the open source multilevel graph
partitioning framework KaHIP [28] (Karlsruhe High Quality
Partitioning). KaHIP implements many different algorithms,
for example flow-based methods and more-localized local
searches within a multilevel framework called KaFFPa, as
well as several coarse-grained parallel and sequential meta-
heuristics. Recently, also specialized methods to partition
social networks and web graphs have been included into the
framework [6]. In the present paper, we parallelize the main
techniques presented therein; they are reviewed in Section 3.

KaFFPaE
We use the evolutionary algorithm KaFFPaE [5] to obtain a
high-quality partition of the coarsest graph in the hierarchy.
KaFFPaE [5] is a coarse-grained evolutionary algorithm, i.e.
each PE has its own population (set of partitions) and a copy
of the graph. After initially creating the local population,
each processor performs combine and mutation operations
on the local population/partitions. The algorithm contains a
general combine operator framework provided by modifica-
tions of the multilevel framework KaFFPa. For more details,
we refer the reader to [5].

3 SIZE-CONSTRAINED LABEL PROPAGATION

We now review the basic idea for contraction and local
search [6] which we chose to parallelize. The approach is
targeted at complex networks such as social networks and
web graphs. Such networks often have a pronounced and
hierarchical cluster structure. Also, they often contain star-
like structures. A matching-based algorithm for coarsening
matches only a single edge in these star-like structures and
hence cannot shrink the graph effectively. Moreover, it may
contract “wrong” edges such as bridges.

In our approach, the size-constrained label propagation
algorithm is used to compute a clustering of the graph. To
compute a graph hierarchy, the clustering is contracted by
replacing each cluster by a single node, and the process is
repeated recursively until the graph is small. This way the
inherent cluster hierarchy of complex networks is detected
and the contraction of important edges in small cuts is
unlikely.

Note that cluster contraction is an aggressive coarsening
strategy. In contrast to most previous approaches, it can
drastically shrink the size of irregular networks. Regarding
complexity, experiments in [6] indicate that already one
contraction step can shrink the graph size by orders of mag-
nitude and that the average degree of the contracted graph
is smaller than the average degree of the input network.

3.1 Label Propagation with Size Constraints
Originally, the label propagation clustering algorithm was
proposed by Raghavan et al. [23] for graph clustering. It is
a very fast, near linear-time algorithm that locally optimizes
the number of edges cut. Initially, each node is in its own
cluster/block, i.e. the initial block ID of a node is set to
its node ID. The algorithm then works in rounds. In each
round, the nodes of the graph are traversed in a random
order. When a node v is visited, it is moved to the block
that has the strongest connection to v, i.e. it is moved to
the cluster Vi that maximizes ω({(v, u) | u ∈ N(v) ∩ Vi}).
Ties are broken randomly. Originally, the process is repeated
until the process has converged. We perform at most `
iterations of the algorithm instead, where ` is a tuning
parameter. One round of the algorithm can be implemented
to run in O(n+m) time. An example is shown in Figure 2.

The computed clustering is contracted to obtain a coarser
graph. Contracting a clustering works as follows: each block
of the clustering is contracted into a single node. The weight
of the node is set to the sum of the weight of all nodes in the
original block. There is an edge between two nodes u and
v in the contracted graph if the two corresponding blocks
in the clustering are adjacent to each other in G, i.e. block u
and block v are connected by at least one edge. The weight
of an edge (A,B) is set to the sum of the weight of edges
that run between block A and block B of the clustering. Due
to the way contraction is defined, a partition of the coarse
graph corresponds to a partition of the finer graph with the
same cut and balance. An example contraction is shown in
Figure 3.
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Fig. 2. An example round of the label propagation graph clustering
algorithm. Initially each node is in its own block. The algorithm scans
all vertices in a random order and moves a node to the block with the
strongest connection in its neighborhood.

3



In our previous work [6] we adapted the original label
propagation algorithm [23] in order to ensure that each
block of the cluster fulfills a size constraint. There are two
reasons for this. First, consider a clustering of the graph in
which the weight of a block would exceed (1 + ε)d c(V )

k e.
After contracting this clustering, it would be impossible
to find a partition of the contracted graph that fulfills the
balance constraint. Secondly, it has been shown that using
graph hierarchies with node weights that are more balanced
is usually beneficial when computing high quality graph
partitions [18]. To ensure that blocks of the clustering do not
become too large, an upper boundU := max(maxv c(v),W )
on the size of the blocks is introduced, where W is a
parameter that will be chosen later. When the algorithm
starts to compute a graph clustering on the input graph,
the constraint is fulfilled since each of the blocks contains
exactly one node. A neighboring block V` of a node v is
called eligible if V` will not be overloaded once v is moved to
V`. Now when a node v is visited, it is moved to the eligible
block that has the strongest connection to v. Hence, after
moving a node, the size of each block is still smaller than
or equal to U . Moreover, after contracting the clustering,
the weight of each node is smaller or equal to U . One
round of the modified version of the algorithm can still
run in linear time by using an array of size |V | to store
the block sizes. Note that, when parallelizing the algorithm,
this is something that needs to be adjusted since storing
an array of size |V | on a single processor would cost too
much memory. The parameter W is set to Lmax

f , where f
is a tuning parameter. Note that the constraint is rather soft
during coarsening, i.e. in practice it does no harm if a cluster
contains slightly more nodes than the upper bound. We go
into more detail in the next section.

The process of computing a size-constrained clustering
and contracting it is repeated recursively. As soon as the
graph is small enough, it is initially partitioned. That means
each node of the coarsest graph is assigned to a block.
Afterwards, the solution is transferred to the next finer level.
To do this, a node of the finer graph is assigned to the block
of its coarse representative. Local improvement methods of
KaHIP then try to improve the solution on the current level,
i.e. reducing the number of edges cut.

Recall that the label propagation algorithm traverses the
nodes in a random order and moves a node to a cluster with
the strongest connection in its neighborhood to compute
a clustering. Our previous work [6] has shown that using
the ordering induced by the node degree (increasing order)
improves the overall solution quality and running time on
average. Using this node ordering means that in the first
round of the label propagation algorithm, nodes with small
node degree can change their cluster before nodes with a
large node degree.

By using a different size-constraint – the constraint
W := Lmax of the original partitioning problem – the
label propagation is also used as a simple and fast local
search algorithm to improve a solution on the current level
[6]. Note that in this case the definition of the strongest
connection is similar to the concept of gain that is usually
used in Fiduccia-Mattheyses refinements [29], i.e. when
looking at a node you move it to the block yielding the
strongest reduction in cut size. However, small modifica-
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Fig. 3. Contraction of clusterings. Each cluster of the graph on the left
hand side corresponds to a node in the graph on the right hand side.
Weights of the nodes and the edges are choosen such that a partition of
the coarse graph induces a partition of the fine graph having the same
cut and balance.

tions to handle overloaded blocks have to be made. The
block selection rule is modified when the algorithm is used
as a local search algorithm in case that the current node v
under consideration is from an overloaded block V`. In this
case it is moved to the eligible block that has the strongest
connection to v without considering the block V` that it is
contained in. This way it is ensured that the move improves
the balance of the partition (at the cost of the number of
edges cut).

4 PARALLELIZATION

We now present the main contributions of the paper. We
begin with the distributed memory parallelization of the
size-constrained label propagation algorithm and continue
with the parallel contraction and uncoarsening algorithm.
At the end of this section, we describe the overall parallel
system.

4.1 Parallel Label Propagation
We shortly outline our parallel graph data structure and the
implementation of the methods that handle communication.
First of all, each PE gets a subgraph, i.e. a contiguous range
of nodes a..b, of the whole graph as its input, such that
the subgraphs combined correspond to the input graph.
Each subgraph consists of the nodes with IDs from the
interval I := a..b and the edges incident to the nodes of
those blocks, as well as the end points of edges which
are not in the interval I (so-called ghost or halo nodes).
This implies that each PE may have edges that connect it
to another PE and the number of edges assigned to the
PEs might vary significantly. Conceptually, this corresponds
to a 1D partition of the graph’s (sparse) adjacency matrix.
Actually, the subgraphs are stored using an adjacency array
representation, a standard sparse matrix data structure. This
means that we have one array to store edges and one array
for nodes storing head pointers to the edge array. However,
the node array is divided into two parts. The first part stores
local nodes and the second part stores ghost nodes. The
method used to keep local node IDs and ghost node IDs
consistent is explained in the next paragraph. Additionally,
we store information about the nodes, i.e. its current block
and its weight.

Instead of using the node IDs provided by the input
graph (called global IDs), each PE maps those IDs to the
range 0 .. np−1, where np is the number of distinct nodes of
the subgraph. Note that this number includes the number of
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ghost nodes the PE has. Each global ID i ∈ a .. b is mapped
to a local node ID i − a. The IDs of the ghost nodes are
mapped to the remaining np − (b − a) local IDs in the
order in which they appeared during the construction of the
graph structure. Transforming a local node ID to a global
ID or vice versa, can be done by adding or subtracting a.
We store the global ID of the ghost nodes in an extra array
and use a hash table to transform global IDs of ghost nodes
to their corresponding local IDs. Additionally, we store for
each ghost node the ID of the corresponding PE, using an
array for O(1) lookups.

To parallelize the label propagation algorithm, each PE
performs the algorithm on its part of the graph. Recall, when
we visit a node v, it is moved to the block that has the
strongest eligible connection. Note that the cluster IDs of
a node can be arbitrarily distributed in the range 0 .. n − 1
so that we use a hash map to identify the cluster with the
strongest connection. Since we know that the number of dis-
tinct neighboring cluster IDs is bounded by the maximum
degree in the graph, we use hashing with linear probing. At
this particular point of the algorithm, hashing with linear
probing is much faster than using the hash map of the STL.

During the course of the algorithm, local nodes can
change their block and hence the blocks in which ghost
nodes are contained can change as well. Since communi-
cation is expensive, we do not want to perform communica-
tion each time a node changes its block. We use the follow-
ing scheme to overlap communication and computation. The
scheme is organized in phases. We call a node interface node
if it is adjacent to at least one ghost node. The PE associated
with the ghost node is called adjacent PE. Each PE stores
a separate send buffer for all adjacent PEs. During each
phase, we store the block ID of interface nodes that have
changed into the send buffer of each adjacent PE of this
node. Communication is then implemented asynchronously.
In phase κ, we send the current updates to the adjacent PEs
and receive the updates of the adjacent PEs from round κ−1,
for κ > 1. Note that in case the label propagation algorithm
has converged, i.e. no node changes its block any more, the
communication volume is really small.

The degree-based node ordering approach of the label
propagation algorithm that is used during coarsening is
parallelized by considering only the local nodes for this
ordering. In other words, the ordering in which the nodes
are traversed on a PE is determined by the node degrees
of the local nodes of this PE. During uncoarsening random
node ordering is used.

Note that due to the parallelization it is possible that
oscillations occur. Overlapping computation and commu-
nication reduces this effect. On the other hand, we do not
need an optimal clustering so that we tolerate oscillations,
stop prematurely and still get good quality.

4.2 Balance/Size Constraint

Maintaining the balance of blocks is more difficult in the
parallel case than in the sequential case. We use two dif-
ferent approaches to maintain balance, one for coarsening
and the other one for uncoarsening. The reason for using
two approaches is that during coarsening there is a large
number of blocks and the constraint is rather soft (Lmax

f ),

whereas during uncoarsening the number of blocks is small
and the constraint is tight (Lmax).

We maintain the balance of different blocks during coars-
ening as follows. Roughly speaking, a PE maintains and
updates only the local amount of node weight of the blocks
of its local and ghost nodes. Due to the way the label
propagation algorithm is initialized, each PE knows the
exact weights of the blocks of local nodes and ghost nodes
in the beginning. Label propagation then uses the local in-
formation to bound the block weights. Once a node changes
its block, the local block weight is updated. Note that this
does not involve additional communication. We decided to
use this localized approach since the balance constraint is
not tight during coarsening. More precisely, the bound on
the cluster sizes during coarsening is a tuning parameter
and the overall performance of the system does not directly
depend on the exact choice of the parameter.

During uncoarsening we use a different approach since
the number of blocks is much smaller and it is unlikely
that the previous approach yields a feasible partition in the
end. This approach is similar to the approach that is used
within ParMetis [17]. Initially, the exact block weights of
all k blocks are computed locally. The local block weights
are then aggregated and broadcast to all PEs. Both can be
done using one allreduce operation. Now each PE knows the
global block weights of all k blocks. The label propagation
algorithm then uses this information and locally updates
the weights. For each block, a PE maintains and updates the
total amount of node weight that local nodes contribute to
the block weights. Using this information, one can restore
the exact block weights with one allreduce operation which
is done at the end of each computation phase. This approach
would not be feasible during coarsening as there are n
blocks in the beginning of the algorithm and each PE holds
the block weights of all blocks.

4.3 Parallel Contraction and Uncoarsening

The parallel contraction algorithm works as follows. After the
parallel size-constrained label propagation algorithm has
been performed, each node is assigned to a cluster. Recall
the definition of our general contraction scheme. Each of
the clusters of the graph corresponds to a coarse node in the
coarse graph and the weight of this node is set to the total
weight of the nodes that are in that cluster. Moreover, there
is an edge between two coarse nodes iff there is an edge
between the respective clusters and the weight of this edge
is set to the total weight of the edges that run between these
clusters in the original graph.

In the parallel scheme, the IDs of the clusters on a PE can
be arbitrarily distributed in the interval 0 .. n − 1, where n
is the total number of nodes of the input graph of the
current level. Consequently, we start the parallel contraction
algorithm by finding the number of distinct cluster IDs,
which is also the number of coarse nodes. To do so, a PE p
is assigned to count the number of distinct cluster IDs in
the interval Ip := pd nP e + 1 .. (p + 1)d nP e, where P is the
total number of PEs used. That means each PE p iterates
over its local nodes, collects cluster IDs a that are not local,
i.e. a 6∈ Ip, and then sends the non-local cluster IDs to
the responsible PEs. Afterwards, a PE counts the number
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of distinct local cluster IDs so that the number of global
distinct cluster IDs can be derived easily by using a reduce
operation.

Let n′ be the global number of distinct cluster IDs.
Recall that this is also the number of coarse nodes after
the contraction has been performed. The next step in the
parallel contraction algorithm is to compute a mapping
q : 0 .. n−1→ 0 .. n′−1 which maps the current cluster IDs
to a contiguous interval over all PEs. This mapping can be
easily computed in parallel by computing a prefix sum over
the number of distinct local cluster IDs a PE has. Once this
is done, we compute the mapping C : 0 .. n− 1→ 0 .. n′− 1
which maps a node ID of G to its coarse representative.
Note that, if a node v is in cluster V` after the label prop-
agation algorithm has converged, then C(v) = q(`). After
computing this information locally, we also propagate the
necessary parts of the mapping to neighboring PEs so that
we also know the coarse representative of each ghost node.
When the contraction algorithm is fully completed, PE pwill
be responsible for the subgraph pdn

′

P e+1 .. (p+1)dn
′

P e of the
coarse graph. To construct the final coarse graph, we first
construct the weighted quotient graph of the local subgraph
of G using hashing. Afterwards, each PE sends an edge
(u, v) of the local quotient graph, including its weight and
the weight of its source node, to the responsible PE. After all
edges are received, a PE can construct its coarse subgraph
locally.

The implementation of the parallel uncoarsening algo-
rithm is simple. Each PE knows the coarse node for all its
nodes in its subgraph (through the mapping C). Hence, a
PE requests the block ID of a coarse representative of a fine
node from the PE that holds the respective coarse node.

4.4 Iterated Multilevel Schemes

A common approach to obtain high quality partitions is to
use a multilevel algorithm multiple times using different
random seeds and use the best partition that has been found.
However, one can do better by transferring the solution
of the previous multilevel iteration down the hierarchy. In
the graph partitioning context, the notion of V-cycles was
introduced by Walshaw [30]. More recent work augmented
them to more complex cycles [31]. These previous works
use matching-based coarsening with cut edges not being
matched (and hence cut edges are not contracted). Thus, an
input partition on the finest level is used as partition of the
coarsest graph – having the same balance and cut as the
partition of the finest graph.

Iterated V-cycles are also used within clustering-based
coarsening in our previous work [6]. To adapt the iterated
multilevel technique for this coarsening scheme, it has to
be ensured that cut edges are not contracted after the first
multilevel V-cycle. This is done by modifying the label prop-
agation algorithm such that each cluster of the computed
clustering is a subset of a block of the input partition. In
other words, each cluster only contains nodes of one unique
block of the input partition. Hence, when contracting the
clustering, every cut edge of the input partition will remain.
Recall that the label propagation algorithm initially puts
each node in its own block so that in the beginning of
the algorithm each cluster is a subset of one unique block
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Fig. 4. The overall parallel system. It uses the parallel cluster coars-
ening algorithm, the coarse-grained distributed evolutionary algorithm
KaFFPaE to partition the coarsest graph and parallel uncoarsening/local
search. After the first iteration of the multilevel scheme the input partition
is used as a partition of the coarsest graph and used as a starting point
by the evolutionary algorithm.

of the input partition. This property is kept during the
course of the label propagation algorithm by restricting the
movements of the label propagation algorithm, i.e. we move
a node to an eligible cluster with the strongest connection
in its neighborhood that is in the same block of the input
partition as the node itself. We do the same in our parallel
approach to realize V-cycles.

4.5 The Overall Parallel System

The overall parallel system works as follows. We use `
iterations of the parallel size-constrained label propagation
algorithm to compute graph clusterings and contract them
in parallel. We do this recursively until the remaining graph
has less than 20 000 nodes left. The distributed coarse graph
is then collected on each PE, i.e. each PE has a copy of
the complete coarsest graph. We use this graph as input
to the coarse-grained distributed evolutionary algorithm
KaFFPaE, to obtain a high quality k-partition of it. We have
modified KaFFPaE to use combine operations that also use
the clustering-based coarsening scheme from above. The
best solution of the evolutionary algorithm is then broadcast
to all PEs which transfer the solution to their local part
of the distributed coarse graph. Afterwards, we use the
parallel uncoarsening algorithm to transfer the solution of
the current level to the next finer level and apply r itera-
tions of the parallel label propagation algorithm with the
size constraints of the original partitioning problem (setting
W = (1 + ε)d |V |k e) to improve the solution on the current
level. We do this on each level of the hierachy and obtain a
good partition of the input network in the end. If we use iter-
ated V-cycles, we use the given partition of the coarse graph
as input to the evolutionary algorithm. More precisely, one
individual of the population is the input partition on each
PE. This way it is ensured that the evolutionary algorithm
computes a partition that is at least as good as the given
partition. Note that our initial partitioner is usually able to
compute partitions that fulfill the desired balance constraint
on the coarsest level. Hence, to ensure that the final partition
of our parallel algorithm is balanced, we do not perform any
parallel local search during the last V-cycle. A sketch of the
overall system is shown in Figure 4.
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5 EXPERIMENTS

5.1 Methodology

We have implemented the algorithm described above using
C++ and MPI. Overall, our parallel program consists of
about 7000 lines of code (not including the source of KaHIP
0.61). We compiled it using g++ 4.8.2 and OpenMPI 1.6.5.
For the following comparisons we use ParMetis 4.0.3. All
programs have been compiled using 64 bit index data types.
We also ran PT-Scotch 6.0.0, but the results have been
consistently worse in terms of solution quality and running
time compared to the results computed by ParMetis, so
that we do not present detailed data for PT-Scotch. A few
additional comparisons, in particular to PuLP, are shown at
the end of this section.

Our default value for the allowed imbalance is 3% –
this is one of the values used in [32] and the default value
in Metis. By default we perform ten repetitions for each
configuration of our algorithm and ParMetis using different
random seeds for initialization and report the arithmetic
average of computed cut size, running time and the best
cut found. When further averaging over multiple instances,
we use the geometric mean in order to give every instance
a comparable influence on the final score. Unless otherwise
stated, we use the following factor f of the size constraint
(see Section 4.2 for the definition): during the first V-cycle
the factor f is set to 14 on complex networks and to
20 000 on mesh type networks. In later V-cycles we use a
random value f ∈rnd [10, 25] to increase the diversification
of the algorithms. Our experiments mainly focus on the
cases k ∈ {2, 8, 32} to save running time and to keep the
experimental evaluation simple. However, we also briefly
present results for larger values of k. Moreover, we use
k = 16 for the number of blocks when performing the weak
scalability experiments in Section 5.2.

Algorithm Configurations
Any multilevel algorithm has a considerable number of
choices between algorithmic components and tuning pa-
rameters. For the tuning parameters that we set here, we get
the predictable effect that more work yields better solutions
albeit at a decreasing return on investment. We define two
“good” choices: the fast setting aims at a low execution time
that still gives good partitioning quality and the eco setting
targets even better partitioning quality without investing an
excessive amount of time. When not otherwise mentioned,
we use the parameter set of the fast configuration.

The fast configuration of our algorithm uses three label
propagation iterations during coarsening and six during re-
finement. We also tried larger amounts of label propagation
iterations during coarsening, but did not observe a signifi-
cant impact on solution quality. This configuration gives the
evolutionary algorithm only enough time to compute the
initial population and performs two V-cycles.

The eco configuration of our algorithm also uses three
label propagation iterations during coarsening and six label
propagation iterations during refinement, but performs five
V-cycles. Time spent during initial partitioning is dependent
on the number of processors used. To be more precise, when
we use one PE, the evolutionary algorithm has t1 = 211

seconds to compute a partition of the coarsest graph during

TABLE 1
Basic properties of the benchmark set with a rough type classification.

C stands for complex networks, M is used for mesh type networks.

graph n m Type Ref.
amazon ≈407K ≈2.3M C [33]
eu-2005 ≈862K ≈16.1M C [34]
youtube ≈1.1M ≈2.9M C [33]
in-2004 ≈1.3M ≈13.6M C [34]
packing ≈2.1M ≈17.4M M [34]
enwiki ≈4.2M ≈91.9M C [35]
channel ≈4.8M ≈42.6M M [34]
hugebubble-10 ≈18.3M ≈27.5M M [34]
nlpkkt240 ≈27.9M ≈373M M [36]
uk-2002 ≈18.5M ≈262M C [35]
del26 ≈67.1M ≈201M M [18]
rgg26 ≈67.1M ≈575M M [18]
rhg1G 100.0M ≈1G C [37]
rhg2G 100.0M ≈2G C [37]
arabic-2005 ≈22.7M ≈553M C [35]
sk-2005 ≈50.6M ≈1.8G C [35]
uk-2007 ≈105.8M ≈3.3G C [35]
rhg6G 300.0M ≈6G C [37]

Graph Families
delX [219, . . . , 231] ≈1.5M–6.4G M [18]
rggX [219, . . . , 231] ≈3.3M–21.9G M [18]

the first V-cycle. When we use p PEs, then it gets time tp =
t1/p to compute a partition of an instance.

There is also a minimal variant of the algorithm, which
is similar to the fast configuration but only performs one
V-cycle. We use this variant of the algorithm only in one
scenario – to create a partition of the largest web graph uk-
2007 on machine B (described below).

Systems
We use two different systems for our experimental eval-
uation. System A is mainly used for the evaluation of the
solution quality of the different algorithms in Table 2. It is
equipped with four Intel Xeon E5-4640 Octa-Core processors
(Sandy Bridge) running at a clock speed of 2.4 GHz. The
machine has 512 GB main memory, 20 MB L3-Cache and
8x256 KB L2-Cache. System B is a cluster where each node is
equipped with two Intel Xeon E5-2670 Octa-Core processors
(Sandy Bridge) which run at a clock speed of 2.6 GHz.
Each node has 64 GB local memory, 20 MB L3-Cache and
8x256 KB L2-Cache. All nodes have local disks and are
connected by an InfiniBand 4X QDR interconnect, which is
characterized by its very low latency of about 1 microsecond
and a point to point bandwidth between two nodes of more
than 3700 MB/s – 2K cores of that machine can be allocated
by users. We use machine B for the scalability experiments.

Instances
We evaluate our algorithms on graphs that we mostly
collected from [34], [36], [38], [33], [37], [39]. Table 1 sum-
marizes the main properties of the benchmark set. Our
benchmark set includes a number of graphs from numeric
simulations as well as complex networks (for the latter with
a focus on social networks and web graphs).

The graphs rhg* are complex networks generated with
NetworKit [37] according to the random hyperbolic graph
model [40]. In this model nodes are represented as points
in the hyperbolic plane; nodes are connected by an edge if
their hyperbolic distance is below a threshold. Moreover, we
use the two graph families rgg and del for
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TABLE 2
Average performance (cut and running time) and best result achieved by different partitioning algorithms. Results are for k = 2 (top), k = 8

(middle) and for k = 32 (bottom). All tools used 32 PEs of machine A. Results indicated by a * mean that the amount of memory needed by the
partitioner exceeded the amount of memory available on that machine when 32 PEs are used (512GB RAM). The ParMetis result on arabic have

been obtained using 15 PEs (the largest number of PEs so that ParMetis could solve the instance).

k = 2 ParMetis Fast Eco
graph avg. cut best cut t[s] avg. cut best cut t[s] avg. cut best cut t[s]
amazon 48 104 47 010 0.49 46 641 45 872 1.85 44 703 44 279 71.04
eu-2005 33 789 24 336 30.60 20 898 18 404 1.63 18 565 18 347 70.04
youtube 181 885 171 857 6.10 174 911 171 549 8.74 167 874 164 095 105.87
in-2004 7 016 5 276 3.43 3 172 3 110 1.38 3 027 2 968 69.19
packing 11 991 11 476 0.24 10 185 9 925 1.84 9 634 9 351 68.69
enwiki 9 578 551 9 553 051 326.92 9 622 745 9 565 648 157.32 9 559 782 9 536 520 264.64
channel 48 798 47 776 0.55 56 982 55 959 2.71 52 101 50 210 71.95
hugebubbles 1 922 1 854 4.66 1 918 1 857 38.00 1 678 1 620 216.91
nlpkkt240 1 178 988 1 152 935 15.97 1 241 950 1 228 086 35.06 1 193 016 1 181 214 192.78
uk-2002 787 391 697 767 128.71 434 227 390 182 19.62 415 120 381 464 146.77
del26 18 086 17 609 23.74 17 002 16 703 165.02 15 826 15 690 697.43
rgg26 44 747 42 739 8.37 38 371 37 676 55.91 34 530 34 022 263.81
rhg1G 1 442 725 26.51 522 522 65.15 518 518 290.10
rhg2G 8 017 3 492 54.42 1 952 1 950 106.46 1 952 1 950 417.55
arabic-2005 *1 078 415 *968 871 *1 245.57 551 778 471 141 33.45 511 316 475 140 184.01
sk-2005 * * * 3 775 369 3 204 125 471.16 3 265 412 2 904 521 1 688.63
uk-2007 * * * 1 053 973 1 032 000 169.96 1 010 908 981 654 723.42

k = 8 ParMetis Fast Eco
graph avg. cut best cut t[s] avg. cut best cut t[s] avg. cut best cut t[s]
amazon 149 493 144 251 0.60 137 834 135 090 2.41 131 295 129 627 73.37
eu-2005 217 902 204 967 31.68 253 738 193 032 2.44 187 859 163 405 73.04
youtube 530 822 523 733 9.90 605 005 545 126 7.29 535 842 511 966 97.44
in-2004 21 293 20 073 4.85 14 838 14 114 1.81 13 391 12 460 70.50
packing 126 389 123 160 0.31 130 223 129 058 6.41 116 659 115 620 73.38
enwiki 22 346 150 22 223 189 349.78 22 555 856 22 120 305 237.79 22 223 882 21 883 882 313.21
channel 410 942 397 888 0.77 408 086 406 027 7.78 362 985 360 114 78.38
hugebubbles 11 032 10 688 6.10 10 661 10 561 43.68 9 377 9 243 189.18
nlpkkt240 3 413 423 3 364 277 19.11 3 710 051 3 686 347 43.97 3 497 526 3 457 692 186.92
uk-2002 2 021 162 1 962 461 435.12 1 273 662 1 244 025 22.39 1 220 789 1 204 064 144.95
del26 67 401 65 263 22.61 61 899 61 156 121.85 56 908 56 597 436.34
rgg26 170 608 165 753 9.28 142 380 140 843 51.12 127 034 125 780 239.45
rhg1G 7 344 6 686 27.80 2 700 2 624 66.10 2 484 2 453 288.43
rhg2G 39 813 31 992 54.68 12 182 11 583 103.32 11 395 11 108 428.38
arabic-2005 *2 842 365 *2 740 020 *1 482.36 1 914 633 1 515 775 32.94 1 333 028 1 231 026 183.33
sk-2005 * * * 17 780 585 13 572 997 619.93 13 295 857 11 424 463 2 649.67
uk-2007 * * * 3 298 092 3 147 335 166.73 3 128 609 3 035 653 648.81

k = 32 ParMetis Fast Eco
graph avg. cut best cut t[s] avg. cut best cut t[s] avg. cut best cut t[s]
amazon 253 568 249 071 0.62 235 614 231 169 3.20 224 550 222 450 81.83
eu-2005 974 279 951 537 33.28 1 218 484 1 154 916 3.30 1 089 613 1 010 128 79.87
youtube 918 520 916 657 10.41 951 591 936 333 13.86 905 330 889 941 137.61
in-2004 34 445 32 711 4.76 26 618 25 819 1.97 23 795 22 371 73.22
packing 349 000 343 611 0.28 338 458 335 732 24.65 318 242 315 684 92.55
enwiki 32 539 098 32 279 759 364.88 33 464 700 33 256 794 787.41 33 358 352 32 579 351 989.20
channel 934 264 919 975 0.63 989 570 983 211 26.23 932 175 927 128 100.86
hugebubbles 28 844 28 443 4.98 27 832 27 607 117.72 25 358 25 102 342.75
nlpkkt240 7 296 962 7 217 145 17.09 8 048 555 7 987 330 104.96 7 770 995 7 726 512 274.67
uk-2002 2 636 838 2 603 610 193.48 1 710 106 1 677 872 33.44 1 635 757 1 610 979 218.27
del26 167 208 165 361 23.04 153 835 152 889 274.75 145 902 145 191 859.33
rgg26 423 643 419 911 8.14 356 589 352 749 125.07 326 743 323 997 376.27
rhg1G 32 105 29 268 27.86 12 090 11 806 70.07 11 413 10 963 289.44
rhg2G 155 739 134 854 56.97 56 120 54 278 102.53 54 047 52 795 422.50
arabic-2005 *4 095 660 *3 993 166 *1 414.83 3 309 602 2 648 126 45.40 2 372 631 2 178 837 251.38
sk-2005 * * * 58 107 145 46 972 182 693.91 34 858 430 29 868 523 2 183.10
uk-2007 * * * 5 682 545 5 114 349 223.68 4 952 631 4 779 495 794.87
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comparisons. rggX is a random geometric graph with 2X

nodes where nodes represent random points in the (Eu-
clidean) unit square and edges connect nodes whose Eu-
clidean distance is below 0.55

√
lnn/n. This threshold was

chosen in order to ensure that the graph is almost certainly
connected. The largest graph of this class is rgg31, which
has about 21.9G edges. delX is a Delaunay triangulation of
2X random points in the unit square. Our largest delX is
del31; it has about 6.4G edges.

The largest graphs (with 226 to 231 nodes) of these
families have been generated using modified code from [18].
We make these graphs available on request.

5.2 Main Results and Comparison to ParMetis
In this section we compare variants of our algorithm against
ParMetis in terms of solution quality, running time as well as
scalability. We start with the comparison of solution quality
(average cut, best cut) and average running time on most
of the graphs from Table 1 when 32 PEs of machine A are
used. Table 2 gives detailed results per instance for the cases
k = {2, 8, 32}. To get a visual impression of the solution
quality of the different algorithms, Figure 5 presents perfor-
mance plots using most instances from Table 2. A curve in a
performance plot for algorithm X is obtained as follows: For
each instance, we calculate the ratio between the best cut
obtained by any of the considered algorithms and the cut
for algorithm X. These values are then sorted. The balance
constraint of ε = 3% was fulfilled for our algorithms and for
ParMetis unless mentioned otherwise.

First of all, ParMetis could not solve the large instances
arabic-2005, sk-2005 and uk-2007 when 32 PEs of machine
A are used. This is due to the fact that ParMetis cannot
coarsen the graphs effectively so that the coarsening phase
is stopped too early. Since the smallest graph is replicated on
each of the PEs, the amount of memory needed by ParMetis
is larger than the amount of memory provided by the
machine (512GB RAM). For example, when the coarsening
phase of ParMetis stops on the instance uk-2007, the coarsest
graph still has more than 60M vertices. This is less than a
factor of two reduction in graph order compared to the input
network. The same behavior is observed on machine B,
where even less memory per PE is available. Contrarily, our
algorithm is able to shrink the graph order significantly. For
instance, after the first contraction step, the graph is already
two orders of magnitude smaller and contains a factor of
300 less edges than the input graph uk-2007. We also tried
to use a smaller amount of PEs for ParMetis. It turns out
that ParMetis can partition arabic-2005 when using 15 PEs,
cutting nearly twice as many edges and consuming thirty-
seven times more time than our fast variant. Moreover,
ParMetis could not solve the instances sk-2005 and uk-2007
for any number of PEs.

Overall, Figure 5 indicates that our algorithms find sig-
nificantly smaller cuts than ParMetis. When only consid-
ering the networks that ParMetis could solve in Table 2,
our fast and eco configuration compute cuts that are 29.0%
and 40.4% smaller on average than the cuts computed by
ParMetis, respectively. On average, fast and eco need more
time to compute a partition.

Moreover, there is a well defined gap between mesh type
networks and complex networks, as described below. The
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Fig. 5. Performance plots (top: average cuts, bottom: best cuts). A value
of one indicates that the corresponding algorithm produces the best
solution.

reason for this discrepancy is that meshes usually do not
have a community structure to be found and contracted
by our algorithm. Complex networks, in turn, often feature
a hierarchical cluster structure that our algorithm exploits.
This is in particular true for social networks and also for web
graphs with their domain-based cluster structure. Random
hyperbolic graph have been shown to have a hierarchical
structure, too [40].

Considering only the complex networks, our fast al-
gorithm is more than a factor two faster on average and
improves the cuts produced by ParMetis by 49.8% (the eco
configuration computes cuts that are 63.3% smaller than
the cuts computed by ParMetis). The largest speedup over
ParMetis in Table 2 was obtained on eu-2005 (k = 2)
where our algorithm is more than 18 times faster than
ParMetis and cuts 61.6% less edges on average. The largest
improvement over ParMetis was obtained for k = 2 on the
largest random hyperbolic graph rhg2G. Here, ParMetis cuts
more than four times as many edges on average as our fast
configuration.

In contrast, on mesh type networks our algorithm does
not have the same advantage as on complex networks. For
example, our fast configuration improves on ParMetis by 3%
while needing more than ten times as much running time.
This is due to the fact that this type of network usually
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has no community structure so that the graph sizes do not
shrink as fast. Still, the eco configuration computes 12.0%
smaller cuts than ParMetis. To obtain a fair comparison
on this type of networks, we also compare the best cut
found by ParMetis against the average cuts found by our
algorithms. While the best cuts on mesh type networks of
ParMetis are comparable to the average results of our fast
configuration, the eco configuration still yields 9.3% smaller
cuts on average. Also note, that ParMetis simplifies the
problem k = 32 by relaxing it: On some instances it does
not respect the balance constraint and computes partitions
with up to 6% imbalance.

Scalability
To evaluate strong scalability, we use a subset of the random
geometric and Delaunay graphs as well as the five complex
networks arabic-2005, uk-2002, sk-2007, uk-2007 and rhg6G.
In all cases we use up to 2048 cores of machine B (except for
del25 and rgg25, for which we only scaled up to 1024 cores).
Again, we focus on the fast configuration of our algorithm
and ParMetis to save running time. Figure 6 summarizes
the results of the experiments. First of all, we observe that
the largest instances del29 and rgg31 experience decent
running time improvements when the number of processors
is increased from 512 or 1024 to 2048. Using all 2048 cores,
we need roughly 6.5 minutes to partition del31 and 73
seconds to partition rgg31. Note that the rgg31 graph has
three times more edges than del31 but the running time
needed to partition del31 is higher. This is due to the fact
that the Delaunay graphs have very bad locality (due to the
graph generator), i.e. when partitioning del31, more than
40% of the edges are ghost edges, whereas we observe less
than 0.5% ghost edges when partitioning the largest random
geometric graph. Although the scaling behavior of ParMetis
is somewhat better on the random geometric graphs rgg25-
29, our algorithm is eventually more than three times faster
on the largest random geometric graph under consideration
when all 2048 cores are used. As a side note, the large
running times of ParMetis for large number of processors
seems to be due to a problem with the matching routine
of ParMetis. Moreover, the quality of the partitions does
not degrade in our strong scaling experiments neither for
ParMetis nor for our algorithm.

As on machine A, ParMetis could not partition the
instances uk-2002, arabic-2005, sk-2007 and uk-2007 – this
is again due to the amount of memory needed arising from
ineffective coarsening. On the smaller graphs, uk-2002 and
arabic-2005, our algorithm scales up to 128 cores obtaining a
35-fold and 32-fold speed-up compared to the case where
our algorithm uses only one PE. On the larger graphs
sk-2007, uk-2007 and rhg6G, we need more memory. The
smallest number of PEs needed to partition sk-2007, uk-2007
and rhg6G on machine B is 256 PE, 512 PEs and 256 PEs
respectively. We observe scalability up to 1K cores on the
graph sk-2007 and rhg6G (although, to be fair, the running
time does not decrease much in that area). On uk-2007 we
do not observe further scaling when switching from 512 to
2048 cores so that it is unclear where the sweet spot is for
this graph. The random hyperbolic graph rhg6G is the only
complex network that ParMetis can partition in this setting.
In this case, our algorithm is a factor 15 (for 256 PEs) to
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Fig. 6. Top: Strong scaling experiments on Delaunay networks. The
largest graph that ParMetis could partition from this graph family was
del27. Middle: Strong scaling experiments on random geometric net-
works. Bottom: Strong scaling experiments on the largest complex
networks from our benchmark set. Plots always start when sufficient
memory is available to partition the input graph. Due to ineffective
coarsening, ParMetis was not able to partition any of these graphs on
machine B. On the graph rhg6G, ParMetis did not finish after one hour
of computation for p ∈ {1K, 2K}. On the largest web graph, uk-2007,
we also used the minimal variant of our algorithm. Note, although our
system is not built for mesh-type networks such as Delaunay and ran-
dom geometric graphs, we can partition larger instances and compute
better solutions than ParMetis.
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22 (for 512 PEs) faster while computing cuts that are more
than a factor three smaller. This is again due to ineffective
coarsening – ParMetis spents almost all its running time in
this part of the multilevel scheme. We have also applied
the minimal configuration on machine B to the largest web
graph uk-2007 in our set. The minimal configuration needs
15.2 seconds to partition the graph when 512 cores are
used. The cut is 18.2% higher compared to the cut of the
fast configuration, which needs ≈ 47 seconds to perform
the partitioning task and cuts ≈ 1.03M edges on average.
This is 57 times faster than partitioning the graph with one
core of machine A (which is faster than machine B). In this
case, our algorithm spends roughly 60% of its total running
time in coarsening, 3% in initial partitioning and 37% in
uncoarsening. However, the running time of uncoarsening
exceeds coarsening time during the first V-cycle. Hence, the
lower contribution of uncoarsing in total running time is
due to the fact that local search starts already from a very
good partition in later V-cycles, and therefore needs much
less time in these cases.

We have also performed weak scalability experiments on
machine B using the graph families rggX and delX , and
use k = 16 for the number of blocks for the partitioning
task. We briefly outline the results. Moreover, we focus
on the fast configuration of our algorithm and ParMetis
to save running time. We expect that the scalability of the
eco configuration of our algorithm is similar. When using
p PEs, the instance with 219p nodes from the corresponding
graph class is used, i.e. when using 2048 cores, all algorithms
partition the graphs del30 and rgg30. Our algorithm shows
weak scalability all the way down to the largest number of
cores used while the running time per edge has a somewhat
stronger descent compared to ParMetis. ParMetis could,
again, not solve some of the largest instances. For example,
the largest Delaunay graph that ParMetis could partition
was del28 using 512 cores. Considering the instances that
ParMetis could solve, our fast configuration improves so-
lution quality by 19.5% on random geometric graphs and
by 11.5% on Delaunay triangulations on average. Since the
running time of the fast configuration is mostly slower on
both graph families, we again compare the best cut results
of ParMetis achieved in ten repetitions against our average
results to obtain a fair comparison (in this case ParMetis
has a slight advantage in terms of running time). Doing so,
our algorithm still yields an improvement of 16.8% on the
random geometric graphs and an improvement of 9.5% on
the Delaunay triangulations. For large number of processors
and the largest instances, ParMetis is slower than the fast
version of our partitioner. On the largest random geometric
graph used during this test, we are about a factor two faster
than ParMetis, while improving the results of ParMetis by
9.5%. In this case our partitioner needs roughly 65 seconds
to compute a 16-partition of the graph. In addition, our
algorithm is a factor five faster on the largest Delaunay
graph that ParMetis could solve and produces a cut that
is 9.5% smaller than the cut produced by ParMetis.

5.3 Additional Comparisons

Recall that the software PuLP [26] partitions complex net-
works in a single-level manner. PuLP uses shared-memory
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Fig. 7. Top: Weak scaling experiments for random geometric graph
class rggX and the Delaunay triangulation graph class delX. When using
p PEs, the instance with 219p nodes from the corresponding graph class
was used, i.e. when using 2048 cores all algorithms partition the graphs
del30 and rgg30. The figure shows the time spent per edge. Sixteen
blocks have been used for the partitioning task. Bottom: Performance
plots for average cuts comparing against PuLP. A value of one indicates
that the corresponding algorithm produces the best solution.

parallelism and is able to optimize multiple constraints.
Moreover, it is very fast and has a small memory footprint
as it avoids the multilevel overhead. The latter comes with
a price, though, the solution quality. As shown in Table 3
and Figure 7, which contain results for the twelve largest
graphs in our benchmark set that fit into the memory of
machine A, PuLP often cuts significantly more edges than
our algorithm configurations. While for some instances the
quality is comparable (or in one case even better), many
comparisons favor our algorithm configurations by a high
margin. Our improvement seems particularly high for most
web graphs as well as the synthetic graphs del26, rgg26,
rhg1G and rhg2G. It will depend on the application which
time-quality ratio is preferred by the user.

Furthermore, we briefly compare to other algorithms
based on data presented in the literature. As a matching-
based multilevel algorithm, KaPPa [18] has similar prob-
lems as ParMetis on complex networks. For example, on
coAuthorsDBLP and citationCiteseer used in [18], our new
algorithm cuts 20% and 31% less edges than KaPPa-fast,
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TABLE 3
Average performance (cut and running time) and best result achieved
by PuLP [26]. Results are for the bipartitioning case k = 2 (top), k = 8

(middle) and for k = 32 (bottom). The algorithm used 32 PEs of
machine A. Results marked with a * indicate that some of the computed

partitions did not fullfil the balance constraint.

k = 2 avg. cut best cut avg. t[s]
enwiki 11 048 842 10 193 062 14.92
channel 51 841 47 928 0.72
hugebubbles 4 206 2 405 37.58
nlpkkt240 1 541 633 1 259 553 3.25
uk-2002 1 735 517 1 481 055 4.53
del26* 108 149 70 202 37.91
rgg26 118 444 44 552 26.94
rhg1G 1 268 559 636 519 14.31
rhg2G 924 326 558 614 18.38
arabic-2005 2 660 263 1 912 044 6.75
sk-2005 8 113 117 6 445 828 31.19
uk-2007* 6 696 972 0* 36.55
k = 8 avg. cut best cut avg. t[s]
enwiki 28 614 478 24 829 587 17.87
channel 626 746 468 540 0.19
hugebubbles* 20 730 16 468 0.00
nlpkkt240 4 612 360 4 084 985 1.40
uk-2002 2 788 216 2 398 216 5.61
del26* 264 068 193 484 0.00
rgg26* 554 313 405 153 0.65
rhg1G 3 030 736 1 701 945 21.74
rhg2G 2 577 837 1 960 672 26.44
arabic-2005* 27 577 343 3 488 600 6.80
sk-2005 27 006 839 21 666 581 48.42
uk-2007* 11 148 115 9 592 812 39.15
k = 32 avg. cut best cut avg. t[s]
enwiki 40 491 967 38 048 077 19.90
channel 1 433 171 1 211 712 1.47
hugebubbles 47 707 42 052 43.63
nlpkkt240 9 146 706 8 571 499 6.05
uk-2002 3 506 131 3 352 617 6.85
del26 353 609 304 965 48.81
rgg26* 1 155 233 893 465 69.44
rhg1G 4 413 737 3 724 520 35.30
rhg2G 3 740 828 3 274 015 35.29
arabic-2005 6 338 579 4 920 370 11.81
sk-2005 52 996 595 42 575 940 66.90
uk-2007* 56 924 295 11 516 718 49.25

while being a factor 29 and a factor 48 faster (k = 16).
Note that KaPPa is restricted to the (also) important use
case #p = k. However, it is not very scalable on complex
networks. Due to the large cuts that occur for large values
of k on complex networks, we want to use recursive multi-
partitioning in future work to improve the system presented
in this work for that case. As opposed to multilevel algo-
rithms, the algorithm by Ugander and Backstrom [25] lacks
a global view on the problem. We cut 45% less edges than
their approach on LiveJournal, which is the only publicly
available graph from the paper. Moreover, we are a factor 26
faster (k = 100). The results of Kirmani and Raghavan [21]
are incomparable since a relaxed problem is solved and the
partition imbalance is not reported. As argued in Section 2.2,
we do not expect it to perform well on complex networks.

6 CONCLUSION AND FUTURE WORK

Current state-of-the-art graph partitioners have difficulties
when partitioning massive complex networks, at least par-
tially due to ineffective coarsening. We have demonstrated
that high quality partitions of such networks can be ob-
tained in parallel using hundreds or sometimes thousands

of processors. This was achieved by using a multilevel
scheme based on the contraction of size-constrained cluster-
ings, which can reduce the size of the graph very fast. The
clusterings have been computed by our new parallelization
of the size-constrained label propagation algorithm. As soon
as the graph is small enough, we use a coarse-grained
distributed memory parallel evolutionary algorithm to com-
pute a high quality partitioning of the graph. By using the
size constraint of the graph partitioning problem to solve,
the parallel label propagation algorithm is also used as a
very simple, yet effective, local search algorithm. Moreover,
by integrating techniques like V-cycles and the evolutionary
algorithm on the coarsest level, our system gives the user a
gradual choice to trade solution quality for running time.

The strengths of our new algorithm unfolds in particular
on complex networks such as social networks and web
graphs, where average solution quality and running time is
much better than what is observed by using ParMetis. This
is due to the fact that, unlike matching-based approaches,
our algorithm tends to find the inherent cluster hierarchy
and avoids the contraction of important inter-cluster edges.
Due to the ability to shrink complex networks drastically,
our algorithm is able to compute high quality partitions
of web scale networks in a matter of seconds, whereas
ParMetis quite often fails to compute any partition. Consid-
ering the good results of our algorithm, we want to further
improve and release its implementation.

Despite the progress reported above, we see numerous
remaining challenges. While quality improvement for the
small, mostly mesh-like graphs from the Walshaw bench-
mark [41] have stagnated in recent years, with no or only
single digit percentages of improvement, the significant
improvements we report for large complex networks raise
the question whether we are even close to optimality yet.
We suspect that further significant gains are possible.

Similarly, both ParMetis and our system scale quite well
on large mesh-like graphs whereas even our system cannot
effectively use more than around a 1 000 cores while the
largest supercomputers out there now count millions of
cores. One approach might be to rethink what we mean with
partitioning. At least inside the partitioner itself, we might
want to go away from plain 1D partitioning of the adjacency
matrix in order to remove the bottlenecks introduced by
nodes with very high degree.
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