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Abstract. Q-gram (or n-gram, k-mer) models are used in many research
areas, e.g. in computational linguistics for statistical natural language
processing, in computer science for approximate string searching, and in
computational biology for sequence analysis and data compression. For a
collection of N strings, one usually creates a separate positional q-gram
index structure for each string, or at least an index structure which needs
roughly N times of storage compared to a single string index structure.
For highly-similar strings, redundancies can be identified, which do not
need to be stored repeatedly; for instance two human genomes have more
than 99 percent similarity.

In this work, we propose QGramProjector, a new way of indexing
many highly-similar strings. In order to remove the redundancies caused
by similarities, our proposal is to 1) create all q-grams for a fixed refer-
ence, 2) referentially compress all strings in the collection with respect
to the reference, and then 3) project all q-grams from the reference to
the compressed strings.

Experiments show that a complete index can be relatively small com-
pared to the collection of highly-similar strings. For a collection of 1092
human genomes (raw data size is 3 TB), a 16-gram index structure, which
can be used for instance as a basis for multi-genome read alignment, only
needs 100.5 GB (compression ratio of 31:1). We think that our work is an
important step towards analysis of large sets of highly-similar genomes
on commodity hardware.

Keywords: positional q-grams, k-mer, large sequences, similarity,
referential compression.

1 Introduction

Indexing and searching large collections of highly-similar strings became a hot
and challenging topic during the last years [14], for instance in order to perform
population-scale genome analysis[1]. If one can identify the similarities between
strings in the collection, then the amount of storage for saving/indexing the
strings can be greatly reduced. In general, indexing and searching strings has a
long history in computer science research [15]. The literature on string search in
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general is vast and cannot be summarized here; we refer the reader to several
excellent surveys [7,13].

Q-grams can be used for indexing large strings following the the seed-and-
extend approach [3,19], e.g. to create a disk-based search index [6]. One well-
known example from bioinformatics for the use of q-grams (there often called
k-mers or seeds) is BLAST[2], which uses q-grams as anchors for finding longer
approximate string matches.

In this work, we introduce QGramProjector, where we focus on finding all
positions of a given (single) q-gram in a collection of highly-similar strings, for
instance, genomes. Two randomly selected human genomes are app. 99% iden-
tical [17]. Instead of indexing all q-grams in all genomes, we propose to only
explicitly store all q-grams of one chosen reference genome. Furthermore, we
propose to compress all other strings in the collection referentially with respect
to the reference genome. An index over the referential compressions is used to
project all q-grams in the reference string into the other strings of the collection.
Since this projection is not complete, because some q-grams do not occur in the
reference, we have an additional (smaller) index keeping track of these deriva-
tions. In addition, we show a way to further reduce the necessary storage for our
q-gram index: We rewrite the reference genome such that longer matches can be
encoded.

The most similar work to ours is an index structure for computation of q-gram
occurrence frequencies over straight line programs [9]1. The index’s purpose is
to retrieve the total occurrence frequencies of all q-grams. For DNA data the
index uses half as much size as the original data, achieving a compression ratio
of 2:1. However, our projection-based index structure allows for compression (on
human genomes) up to 31:1 for q = 16. Another related work, string dictionary
lookup in a compressed string dictionary with edit distance one is discussed
in [4]. Although the authors report nearly optimal complexity results for their
matching algorithm (together with a way to trade-off query answering time for
index space), there is no practical evaluation of the algorithm. Another approach
concerned with searching larger compressed collection of strings is presented
in [10]. However, this work has a focus on theoretical results, with a preliminary
evaluation on a very small dataset; the program is not publicly available for
evaluation on our big datasets.

The remainder of this paper is structured as follows. We introduce the problem
of indexing q-grams and the foundations of referential compression in Section 2.
Section 3 describes the algorithm used in QGramProjector in detail. Our algo-
rithms are evaluated in Section 4, and Section 5 concludes the paper.

2 Referential Compression and Q-Grams

A string s is a finite sequence over an alphabet Σ. The length of a string s is
denoted with |s| and the substring starting at position i with length n is denoted

1 Straight line programs can be seen as a generalization of many dictionary/grammar-
based compression formats[18].
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s(i, n). s(i) is an abbreviation for s(i, 1). All positions in a string are zero-based,
i.e. the first character is accessed by s(0). The concatenation of two strings s
and t is denoted with s ◦ t. A string t is a prefix of a string s, if s = t ◦ u, for
some string u. A q-gram of string s is an string of length q over Σ.

Definition 1. A positional q-gram of a string s is a tuple 〈p, g〉, such that g =
s(p, q). The set of all positional q-grams of s is denoted with PQGq(s). The set of
positions for a q-gram g in a string s is defined as sg = {p | 〈p, g〉 ∈ PQGq(s)}.
Given a set of strings C = {s1, ..., sn}, we define Cg = {< i, p >| si ∈ C ∧
p ∈ si

g}.

Given a string s, there exist several approaches to compute sg. One approach
is to explicitly store a map for all q-grams to positions in s. The size of this
map data structure (in byte) is usually larger than the size of the input. For
instance storing the positions as 4-byte integer values for a string of length n ,
we have to encode n−q+1 positions, which needs 4∗(n−q+1) bytes. Having m
highly-similar strings, the data structure grows roughly by a factor of m, since
we have to encode 4 ∗ (n1 − q+1)+ ...+4 ∗ (nm − q+1) bytes for the positions,
and in addition some kind of ID for each string.

Example 1. Given the two strings s1 = ACGACT and s2 = ACGAAT , we have

PQG2(s1) = {〈0, AC〉, 〈1, CG〉, 〈2, GA〉, 〈3, AC〉, 〈4, CT 〉}
PQG2(s2) = {〈0, AC〉, 〈1, CG〉, 〈2, GA〉, 〈3, AA〉, 〈4, AT 〉}

Storing the q-grams for both strings creates redundancies, since the q-grams for
positions 0 − 2 are the same for s1 and s2. For string s3 = GACGACT , we
obtain PQG2(s3) = {〈0, GA〉, 〈1, AC〉, 〈2, CG〉, 〈3, GA〉, 〈4, AC〉, 〈5, CT 〉}. Al-
though strings s1 and s3 are highly similar as well, there is no obvious redun-
dancy in their positional q-grams. The reason is that all the positional q-grams
are shifted one position right for s3, compared to s1.

The above examples show that it could be beneficial to identify similarities
between strings to reduce the amount of storage for a positional q-gram index
of a collection of strings. In the following, we use referential compression to
identify and encode these similarities. Based on referentially compressed strings,
we devise an index structure to retrieve positional q-grams from a collection
of highly-similar strings. We will show that in some cases our q-gram index
structure is orders of magnitude smaller than a conventional index. First, we
introduce referential compression as it is used in bioinformatics recently [5,11,20].
Referentially compressing a string means to encode the string as a concatenation
of substrings from a given reference string. Since there exists no standard format
to represent referentially compressed strings, we define a very general notion for
encoding referential matches first. The following is taken from [20].

Definition 2. A referential match entry is a triple 〈start, length,mismatch〉,
where start is a number indicating the start of a match within the reference,
length denotes the match length, and mismatch denotes a symbol. The length
of a referential match entry rme, denoted |rme|, is length+ 1.
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Given a reference ref and a to-be-compressed string s, the idea of referential
compression is to find a small set of rme’s of s with respect to ref which is a)
sufficient to reconstruct s and b) as small as possible.

Definition 3. Given strings s and ref , a referential compression of s with re-
spect to ref , is a list of referential match entries,

↓ref (s) = [〈start1, length1,mismatch1〉, ..., 〈startn, lengthn,mismatchn〉],

such that

(ref(start1, length1) ◦mismatch1) ◦ (ref(start2, length2) ◦mismatch2) ◦ ...◦
(ref(startn, lengthn) ◦mismatchn) = s.

Sometimes we use cs instead of ↓ref (s), if s and ref are known from the
context. The offset of a referential match entry rmei in a referential compres-
sion ↓ref (s) = [rme1, ..., rmen], denoted offset(↓ref (s), rmei), is defined as∑

j<i |rmej |. Given a referential match entry 〈start, length,mismatch〉,
we write (start, length,mismatch) ∈↓ref (s), if and only if 〈start, length,
mismatch〉 is an element in the referential compression ↓ref (s).

The offset of a referential match entry in a referential compression corresponds to
the position of the entry in the uncompressed string. The inverse of a referential
compression is the decompression of a referential compression with respect to
the reference, such that we obtain the original input string. We assume that the
reference sequence contains each symbol from Σ, if it does not, then we just add
all symbold of Σ to the end of the reference sequence.

Example 2. An example compression for CGGACAAACTGACGTTCGACG
with respect to the preselected reference GACGATCGACGACGGACAAACA
is as folows. The input is compressed into three referential match entries. The
first referential match entry is 〈12, 9, T 〉, which describes a match for the string
CGGACAAACT at position 12 of the reference. The mismatch character is T
(in the reference an A is found instead of a T ). The second referential match
entry compresses the string GACGT . A referential match entry for the string
GACG in the reference at position 10 is introduced, together with a mismatch
for symbol T . The last referential match entry compresses the string TCGACG.
Although the string can be completely found in the reference, we only encode
the first five symbols as a link to the reference and add G as a mismatch symbol.
The offset of referential match entry 〈5, 5, G〉 is |〈12, 9, T 〉|+ |〈10, 4, T 〉| = 15.

Clearly, we require the less rme’s, the longer the matches, i.e., the shared sub-
strings, are. Therein it does not matter, at which position of the reference these
matches lie; in particular, matches need not be in any particular order. To create
a referential compression of input string s with respect to ref , our algorithm (Al-
gorithm 1) matches prefixes of s with substrings of ref using a compressed suffix
tree on ref . The longest such prefix is removed from s, encoded as a rme and
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Algorithm 1. Referential Compression Algorithm

Input: to-be-compressed string s and reference string ref
Output: referential compression ↓ref (s) of s with respect to ref

1: Let ↓ref (s) be an empty list
2: while |s| 	= 0 do
3: Let pre be the longest prefix of s occurring in ref , and let i be a position

of an occurrence of pre in ref
4: if s 	= pre then
5: Add 〈i, |pre|, s(|pre|)〉 to the end of ↓ref (s)
6: Remove the first |pre|+ 1 symbols from s
7: else
8: Add 〈i, |pre| − 1, s(|pre| − 1)〉 to the end of ↓ref (s)
9: Remove the prefix pre from s

10: end if
11: end while

added to ↓ref (s). The algorithm terminates once s contains no more symbols.
Note that a referential compression of a string with respect to a reference is not
unique. A simple example for a non-unique referential compression with respect
to the reference ref = ATA is ↓ref (AA) = [〈0, 1, A〉] and ↓ref (AA) = [〈2, 1, A〉].

Note that a naive storage of rme’s does not yield high compression ratios.
We store the parsing in a form of delta-encoding, where the position of a rme is
stored as a difference to the most recent rme’s plus the length of the most recent
rme. In addition, we serialize the length value with huffman encoding (the code
tree is obtained by precomputation over sequences from different species).

3 Retrieval of Positional Q-Grams

In the following, we first describe a naive way to retrieve all positions of a q-gram
in a compressed string ↓ref (s). Second, we propose an index structure over a col-
lection of compressed strings. The index structure allows more efficient retrieval
of q-gram positions than the naive application (see Section 4). In either case, we
do not discuss how to compute refg, we assume that can be precomputed in an
arbitrary way.

3.1 Retrieving Q-Grams in One String

In Algorithm 2, we describe a simple algorithm to compute the set of positions
of a given q-gram in a string s, which is referentially compressed with respect to
ref . We call this approach projection. Initially, the set result is empty (Line 1).
The compressed representation of string s, ↓ref (s), is traversed from left to right
(Line 2-3). For each position of g in the reference string it is checked, whether the
match is subsumed by the current referential match entry; if yes, a relative match
is added to the result (Line 4-7). For each q-gram which overlaps the mismatch
character, the algorithm checks whether the q-gram is equal to g (Line 8-9). If it
is, then a relative match with respect to the referential match entry is added to



QGramProjector: Q-Gram Projection for Indexing Highly-Similar Strings 265

Algorithm 2. Projecting q-grams in compressed strings

Input: q-gram g, string s, reference string ref , refg

Output: sg stored in result
1: Let result = ∅
2: Let curpos = 0
3: for all 〈start, length,mismatch〉 ∈↓ref (s) do
4: Let refmatches = {p | p ∈ refg∧(p ≥ start)∧(p+ |g| ≤ start+ length)}
5: for all p ∈ refmatches do
6: result = result ∪ {curpos+ (p− start)}
7: end for
8: Let t = s[curpos + length− (|g| − 1), 2 ∗ |g| − 1]
9: for all p ∈ tg do

10: result = result ∪ {curpos+ length− (|g| − 1) + p)}
11: end for
12: curpos = curpos + |〈start, length,mismatch〉|
13: end for
14: return result

the result (Line 10). At the end of the loop, the current position is set to the the
beginning of the next referential match entry (Line 12). For Algorithm 2, refg

can be precomputed (and stored), but tg is computed at runtime.

Example 3. Let the reference be ref = ACGACTAT , s1 = GACGACTAC. We
obtain ↓ref (s1) = {〈2, 3, G〉, 〈2, 4, C〉}. Given g = AC, we have refg = {0, 3}.
The for loop (Line 3-13) of Algorithm 2 iterates two times. In the first iteration
for referential match entry 〈2, 3, G〉, we have refmatches = {3} and add {0 +
(3−2)} to result. We have t = CGA and tg = ∅, and thus no additional matches
are being added in the first iteration. In the second iteration for referential match
entry 〈2, 4, C〉, we have refmatches = {3} again and add {4+(3−2)} to result.
We have t = AC and tg = {0}. Thus, {4 + 4 − (2 − 1) + 0)} is added to result
in Line 10. After the execution of Algorithm 2 we obtain result = {1, 5, 7}.

Algorithm 2 has three starting points for optimization, if a collection of com-
pressed strings is to be searched. First, the whole referentially compressed string
needs to be traversed in order to find all q-grams. Second, we need to keep a
copy of the uncompressed string (Line 8), or at least decompress parts of the
string during the search for each q-gram. Third, we have to run Algorithm 2 on
each compressed sequence separately. Partial decompression and repeated inter-
val containment checks make this algorithm not scalable for a large number of
strings in the to-be-searched collection. Both issues can be addressed by using
appropriate index structures on referential match entries. We introduce these
index structures in the following subsection.

3.2 Index Structure for Q-Gram Projection

We use two index structures for improving scalability of q-gram projection in
collections of highly-similar referentially compressed strings. First, we devise an
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index structure for managing all the referential match entries. Second, we develop
an index structure for the q-grams overlapping mismatch characters, to avoid
partial decompression during search.

Projection of Reference Q-Grams. Given a q-gram g, a reference string ref ,
all positions of g in ref , refg, and a set of referentially compressed strings C =
{cs1, ..., csn}, we want to find each 〈start, length,mismatch〉 in each compressed
string csi ∈ C, such that there exists a p ∈ refg with (p ≥ start) and (p+ |g| ≤
start + length) (Line 4-7 of Algorithm 2). Since all referential match entries
can be understood as intervals over the whole reference string, we use interval
trees [12] for efficiently querying referential match entries. An interval tree for n
intervals uses O(n) storage and can be used to answer containment queries, i.e.
find all intervals containing a given query point/interval, in time O(k + logn),
where k is the number of matching intervals.

Definition 4. A reference interval for ref is a tuple 〈start, length〉, such that
0 ≤ start, 0 ≤ length, and start + length < |ref |. A occurrence annotation is
a tuple of the form 〈id, pos〉, where id and pos are natural numbers. We use id
to store the identifier of a sequence inside the collection. Given a set of referen-
tially compressed strings C = {cs1, ..., csn} with respect to ref , the annotated

reference interval set for a reference ref and C, denoted ARISref
C , is a tuple

〈intervals, T , annotations〉, such that intervals is a set of reference intervals
for ref , T is a interval tree over these intervals, and annotations is a function
from intervals to a set of occurrence annotations, such that

< id, pos >∈ annotations(〈start, length〉) ⇐⇒
csid ∈ C ∧ ∃m.〈start, length,m〉 ∈ csid ∧ offset(csid, 〈start, length,m〉) = pos).

Given ARISref
C , we can project all q-grams from ref into referential match

entries occurring in referentially compressed strings in C.

Searching Q-Grams Overlapping Mismatch Characters. In order to find
all q-grams in compressed strings we need to take into account q-grams over-
lapping mismatch characters as well. We define a map structure which keeps
track of all positions of q-grams overlapping at least one mismatch character in
a compressed string in the collection.

Definition 5. Given a set of referentially compressed strings C = {cs1, ..., csn},
the annotated overlap map for the reference ref and C, denoted AOM ref

C , is
〈grams, annotations〉, such that grams is a subset of Σq and annotations is a
function from grams to a set of occurrence annotations, such that

< id, pos >∈ annotations(w) ⇐⇒ (csid ∈ C ∧ ∃rme, d.rme ∈ csid∧
offset(csid, rme) + |rme| − d = pos) ∧ 1 ≤ d ≤ q∧ ↑ref (csid)(pos, q) = w).
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Algorithm 3. Searching q-grams in compressed strings

Input: ref , referential q-gram index 〈PQGq(ref), 〈i, T , annotation1〉,
〈grams, annotation2〉〉, q-gram g
Output: set of retrieved positions in result

1: Let result = ∅
2: for all p ∈ refg do
3: Use T to identify all intervals in i which contain the interval 〈p, q〉, add

all these intervals to refm
4: for all 〈start, length〉 ∈ refm do
5: for all 〈id, pos〉 ∈ annotation1(〈start, length〉) do
6: result = result ∪ {〈id, pos+ (p− start)〉}
7: end for
8: end for
9: end for

10: result = result ∪ annotation2(g)
11: return result

Referential Q-Gram Index. We combine the positional q-grams of a reference
with an annotated reference interval set and an annotated overlap map to obtain
a combined index structure for referentially compressed strings.

Definition 6. Given a set of referentially compressed strings C = {cs1, ..., csn}
with respect to a reference string ref , a referential q-gram index is defined as
〈PQGq(ref), ARISref

C , AOM ref
C 〉.

We show our algorithm for retrieving all occurrences of a given q-gram in a
referential q-gram index in Algorithm 3. The algorithm iterates over all matches
for g in the reference string (Line 2-9). For each match in the reference, the
reference intervals containing 〈p, q〉, i.e. the to-be-searched q-gram, are collected
in refm (Line 3). For all intervals in refm, the annotation annotation1 is used
to retrieve all projected positions in referentially compressed strings and add
these positions to the result (Line 4-6). Finally, all occurrences of g overlapping
one mismatch character are being added using the annotation map annotations2
(Line 10).

Lemma 1. For a given set of strings S = {s1, ..., sn}, a q-gram g, a reference
string ref , and a set of referential compressions C = {cs1, ..., csn} for S with
respect to ref , we have that after applying Algorithm 3 with referential q-gram
index 〈PQGq(ref), ARISref

C , AOM ref
C 〉, result = Sq.

3.3 Example

We conclude this section with a complete example on retrieving all positions of
a given q-gram from a set of strings.

Example 4. Let S be a collection of strings {s1, s2, s3, s4}, s1 =ATCAGAATCT ,
s2 =CATCGATCAGA, s3 =ATCAGACATCGA, and s4 =AGCCAAAATCT .
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Referentially compressing S with respect to ref = ATCAGCATCG yields
C = {cs1, cs2, cs3, cs4} with

cs1 = {〈0, 5, A〉, 〈6, 3, T )}, cs2 = {〈5, 5, A), 〈1, 4, A)},
cs3 = {〈0, 5, A), 〈5, 5, A)}, cs4 = {〈3, 3, C), 〈0, 1, A), 〈6, 3, T )}

Let q=2, then we obtain the following index structures:

– ARISref
C = 〈i, T , ann1〉, with i = {〈0, 5〉, 〈6, 3〉, 〈1, 4〉, 〈5, 5〉, 〈3, 3〉, 〈0, 1〉}

and

ann1 = {〈0, 5〉 → {〈1, 0〉, 〈3, 0〉}, 〈6, 3〉 → {〈1, 6〉, 〈4, 6〉}, 〈1, 4〉 → {〈2, 6〉},
〈5, 5〉 → {〈2, 0〉, 〈3, 6〉}, 〈3, 3〉 → {〈4, 0〉}, 〈0, 1〉 → {〈4, 4〉}}

– AOM ref
C = 〈grams, ann2〉, with

grams ={GA,AA,CT,AT,AC,CC,CA}
ann2 = {GA → {〈1, 4〉, 〈2, 4〉, 〈2, 9〉, 〈3, 4〉, 〈3, 10〉}

, AA → {〈1, 5〉, 〈4, 5〉, 〈4, 6〉},
CT → {〈1, 8〉, 〈4, 9〉}, AT → {〈2, 5〉},
AC → {〈3, 5〉}, CC → {〈4, 2〉}, CA → {〈4, 4〉}}

Without referential compression we would need to store 40 two-grams for the
four original strings in S. With referential compression only 14 explicit two-
grams in the annotated overlap map plus 9 two-grams for the reference string
(plus the overhead ARISref

C ) are necessary. Although, in this toy example, we
do not save space2, our evaluation in the next section shows that the approach
does save much space in case of many highly-similar strings in practice.

4 Evaluation

In the following section, we evaluate our proposed compression scheme. All ex-
periments have been run on a Acer Aspire 5950G with 16 GB RAM and Intel
Core i7-2670QM, on Fedora 16 (64-Bit, Linux kernel 3.1). All size measures are
in byte, e.g. 1 MB means 1,000,000 bytes. Below, the term compression factor is
used to denote the inverse compression ration, e.g. a compression factor of 100
means a compression ratio of 100:1.

We have evaluated our algorithms for referential compression and q-gram pro-
jection on three biological datasets: a collection of human genomes, a collection
of genomes from Arabidopsis thaliana, and a collection of yeast genomes. The
raw size of the datasets is shown in Figure 1(a).

Our first datasets of human genomes was created from 1092 genomes of the
1000 Genome project[1].We use H-# to represent the set of all 1092 sequences

2 Note that in this example the strings in S are quite short, S is rather small, and the
referential match entries are very short as well.
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Fig. 1. Size of evaluation datasets (left) and initial evaluation with standard
compression algorithms (right)

for human Chromosome #, e.g. H-1 for human Chromosome 1. The union of all
23 human datasets is denoted with H-*. The largest human dataset is H-1 at
272.1 GB, the smallest dataset is H-22 at 55.9 GB, and the size of H-* is 3.3
TB. Our datasets for Arabidopsis thaliana are taken from the 1001 Genomes
project[21] from release GMINordborg2010.3. We have extracted 180 genomes
with each 5 chromosomes. The Arabidopsis thaliana datasets are prefixed with
AT, e.g. AT-1 stands for 180 Chromosome 1 of Arabidopsis thaliana. The union of
all 5 Arabidopsis thaliana datasets is denoted with AT-*. The largest Arabidopsis
thaliana dataset is AT-1 at 5.4 GB, the smallest dataset is AT-4 at 3.3 GB, and
the size of AT-* is 21.4 GB The last dataset, is a collection of yeast genomes4.
In total, we have downloaded 38 yeast strains, each of them was provided in
FASTA format. The yeast dataset is denoted with Y-WG. The size of Y-WG is
0.4 GB.

4.1 Existing Standard Compression Algorithms

We have used three standard compression programs to create initial statistics
about self-referential compression: gzip, bzip2, and zip. For each species and
each chromosome, we have randomly selected five sequences and applied each of
the compression algorithms. The results are shown in Figure 1(b). bzip2 is the
best compression program among the three tested programs. The best average
compression ratio is obtained by bzip2 for all three species and bzip2 is the
fastest compression program as well, outperforming the other two programs by
a factor of two in average. Using bzip2, it should be possible to compress H-*
down to 0.7 TB using bzip2, but the run time is expected to be around 126 hours.
AT-* can be compressed down to 5.6 GB in 48 minutes. The compression factor
is relatively stable within species for H-*(min: 3.91 for H-3, max: 5.82 for H-22)
and AT-*(min: 3.74 for AT-2, max: 3.80 for AT-1).

3 http://1001genomes.org/data/GMI/GMINordborg2010/releases/current/
4 http://www.yeastgenome.org/download-data/sequence

http://1001genomes.org/data/GMI/GMINordborg2010/releases/current/
http://www.yeastgenome.org/download-data/sequence
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approach data size (MB) index size (MB) total size (MB) indexing time (h) min max avg
grep 55,932 55,932 427.92357 23,821.69608 8,826.85440

decomp/search 78 78 98.28773 251.16323 218.43293
CST 139,776 139,776 5.16 0.01420 55.69200 31.13650

FMIndex 2 - - - - - - -
SQLite 1,183,370 1,183,370 490.27 0.00963 0.99628 0.64103

QGramProjectionOnline 78 78 75.64537 82.30472 77.45636
QGramProjector 1,800 1,800 0.32 0.00005 0.31250 0.03413

approach data size (MB) index size (MB) total size (MB) indexing time (h) min max avg
grep 5,477 5,477 65.36063 1330.07628 756.92232

decomp/search 48 48 20.73434 36.82837 32.41139
CST 10,373 10,373 0.62 0.00324 4.86677 1.87505

FMIndex 2 1,926 1,926 0.32 0.03300 0.72100 0.03800
SQLite 113,568 113,568 47.33 0.00148 0.01294 0.00530

QGramProjectionOnline 48 48 44.21570 60.90107 54.55710
QGramProjector 1,200 1,200 0.20 0.00005 0.01360 0.00129

approach data size (MB) index size (MB) total size (MB) indexing time (h) min max avg
grep 473 473 3.99718 109.63334 34.42344

decomp/search 6 6 3.04898 3.42124 3.15477
CST 642 642 0.05 0.00046 0.20634 0.09337

FMIndex 2 156 156 0.03 0.01900 0.21200 0.02500
SQLite 9,984 9,984 3.96 0.00014 0.00370 0.00089

QGramProjectionOnline 6 6 9.34890 9.45812 9.36278
QGramProjector 263 263 0.02 0.00005 0.00231 0.00026

H
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2
AT

-1
Y-

W
G

search time (s)

search time (s)

search time (s)

Fig. 2. Comparison of approaches for finding 16-mers

4.2 Indexing Sequences

In order to compare our approach to related work, we have selected the following
competitors:

grep : Unix grep on the uncompressed raw sequences on the hard disk. We have
used grep with options ’-o -b’ to only report positions of matches.

decomp/search : Index-less search with decompression from the hard disk on
the fly.

CST : One compressed suffix tree[16] per sequence.
FMindex 2 : a compressed substring index[8] over all sequences based on the

Burrows-Wheeler transform.
SQLite : A SQLite database with all pre-computed k-mers for each sequence.
QGramProjectionOnline : an online version of our approach, where ARIS

and AOM are created from the compressed files on-the-fly.
QGramProjector : an index-based version with precomputed ARIS and AOM

for all sequences.

We have used 300 queries (16-mers), 100 each of the three species in the dataset.
The results for datasets H-22, AT-1 and Y-WG are shown in Figure 2. For the
other datasets we obtained similar results (within a species and with increasing
sequence length, all tested approach show roughly linear index size and runtime
behaviour). Note that we have used complete datasets now, e.g. 1092 sequences
for the human genomes.

Using grep, the search speed is limited by the throughput of the hard disk.
The hard-disk throughput is no longer a limit with naive search/decompress on
compressed sequences. The average search time is reduced by a factor of 10-40.
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Index size
H-22 AT-1 Y-WG
Number of sequences size (MB) Number of sequesize (MB) Number of seq size (MB)

0 0 0 0 0 0
10 110.3 10 231.1 10 129.7
20 138.4 40 320.1 20 181.6
40 183.6 80 451.6 30 229.3
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Fig. 3. Size of our index structure for different number of sequences

In addition, the amount of storage is clearly reduced, e.g. by a factor of 720:1 for
for H-22. Using compressed suffix trees[16], the search times are three and more
orders of magnitudes shorter than before. If there are many q-gram positions to
be retrieved, then the compressed suffix tree solution slows down recognizably,
e.g. down to 55.7 seconds for H-22. We were unable to run FMIndex 2 on the
human genome datasets. For H-22 and even only one sequence, FMIndex 2 never
returns a after sequences larger than 40 MB (we let it run on one sequence for
several hours without any result). For the other datasets FMIndex 2 worked
well. It is interesting that the index is actually 3-4 times smaller then the input
dataset (as opposed to compressed suffix trees). In average, FMIndex 2 is faster
than CST, which is mainly due to the fact that often occuring k-mers can be
retrieved more efficiently. Our implementation based on SQLite shows very good
average search times. The index structure becomes very large, as expected, since
the position of each k-mer for each sequence has to be stored. For H-22 and AT-1
the indexing size and search times were extrapolated from a smaller set of 50
sample sequences.

QGramProjectionOnline (without precomputed index) has similar search
times like decomp/search. It seems like the overhead of computing the index
structures on the fly for each sequence takes too much time, in general. For
highly-similar sequence, e.g. H-22, there can be small advantages, while for less
similar sequences the projection algorithm doe snot pay off. Finally, QGramPro-
jector has the best min, max, and avg search times in the test for all species. In
average, even 3-4 times faster than using all precomputed k-mers in a SQLite
database. The indexing overhead is in between FMIndex 2 and CST for not so
similar sequences, but clearly outperforms both for highly-similar sequences.

We analyse the size of QGramProjector’s index for a different number of
sequences in Figure 3. The index grows linearly with the number of sequences
for our human genome dataset H-22, as shown in Figure 3(left). This is because
of the high similarity among the sequence. Each sequences adds roughly a similar
amount of new ARIS and AOM entries. For AT-1 and Y-WG, Figure 3(middle
and right), the picture is different: the size of the index grows not as regular
as H-22. The reason is that the sequences are less similar (with respect to the
reference) and each sequence adds a different amount of new annotations to
ARIS and AOM.

In Figure 4, we show that retrieval time for 100.000 randomly created 16-
grams over H-*, which corresponds to 3 TB of data. This test was performed
on a server system with a TB of main memory. Each point corresponds to one
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Fig. 4. Retrieval of 16-grams

q-gram (only q-grams with at least one occurrence in any of the 1000 genomes
are shown). The 16-gram retrieval time is between 0.01 ms and 120 ms (average
0.64 ms; median 0.24 ms). Once a q-gram occurs in many sequences at different
positions, the retrieval time increases linearly with the number of results, which is
mainly caused by the time spent on decompressing the AOM/ARIS-annotations.
We apply a special delta encoding on the sorted positions in occurrence annota-
tions. Without such a compression of the annotations the index structure would
increase by a factor of 2-4.

5 Conclusions

This work is another step towards analysis of a collection of highly-similar strings
based on q-grams. We have shown that our approach allows to manage the q-
grams of 1000 genomes using orders of magnitude less memory than the actual
data size, and thus can be kept in main memory of a commodity hardware.
Clearly, q-gram projection works particularly well for highly-similar sequences
with a small alphabet size and large chunks of repeats across strings. Whether it
can be directly applied to other areas is still to be evaluated. Another direction
for future work is to implement a system for approximate string searching over
large sets of genomes, using the q-gram index and following the seed-and-extend
approach [3]. Finally, improving average retrieval times for q-grams is an impor-
tant issue. The main challenge seems to retrieve q-grams with many occurrences.
Alternatively, it would be interesting to define a notion of important matches.
Since the reference sequence is always searched first, one could try to anticipate
the overall number of matches, before retrieving all results. If the reference con-
tains already more matches than a given threshold, one could limit the retrieval
over the compressed sequences.
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