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ABSTRACT
Shortest path computation is a fundamental problem in road net-

works. However, in many real-world scenarios, determining solely

the shortest path is not enough. In this paper, we study the prob-

lem of finding k-Dissimilar Paths with Minimum Collective Length

(kDPwML), which aims at computing a set of paths from a source s
to a target t such that all paths are pairwise dissimilar by at least θ
and the sum of the path lengths is minimal. We introduce an exact

algorithm for thekDPwML problem, which iterates over all possible

s−t paths while employing two pruning techniques to reduce the

prohibitively expensive computational cost. To achieve scalability,

we also define the much smaller set of the simple single-via paths,

and we adapt two algorithms for kDPwML queries to iterate over

this set. Our experimental analysis on real road networks shows

that iterating over all s−t paths is impractical, while iterating over

the set of simple single-via paths can lead to scalable solutions with

only a small trade-off in the quality of the results.
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1 INTRODUCTION
Computing the shortest path between two locations in a road net-

work is a fundamental problem that has attracted the attention

of both the research community and the industry. In many real-

world scenarios though, determining solely the shortest path is
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Figure 1: Motivational example.

not enough. Most commercial route planning applications recom-

mend paths that might be longer than the shortest path, but have

other desirable properties, e.g., less traffic congestion. However,

the recommended paths also need to be dissimilar to each other to

be valued as true alternatives by users. Towards this end, various

approaches aim at computing short yet dissimilar alternative paths.

Related work. The kSPwLO problem introduced by Chondrogian-

nis at al. [4, 5], aims at computing dissimilar paths while minimizing

the length of each subsequent result. In practice, the FindKSPD al-

gorithm of Liu et al. also computes the solution to the kSPwLO [4].

A similar approach proposed by Jeong et al. [8], laxly based on

Yen’s algorithm [12], computes paths in an iterative fashion and

aims at minimizing the similarity of each subsequent result till

a path is found that satisfies a user-defined similarity threshold.

Akgun et al. [3] present an algorithm which computes alternatives

by repeatedly running Dijkstra’s algorithm on the road network

while imposing a penalty on edges that lies on some already rec-

ommended path before each iteration. Last, there exist methods

that aim at computing alternatives to the shortest path such as

the Plateaux method [1] which computes paths that computing

paths that cross different highways, the alternative graphs which
have a similar functionality as the plateaus, and a routing method

proposed by Abraham et al. [2] that employs single-via paths. In
contrast to our work though, none of the aforementioned methods

guarantee that the result paths will be dissimilar to each other.

Motivation. Consider the scenario of transportation of human-

itarian aid goods through unsafe regions. The distribution of the

load to several vehicles that follow different routes can increase

the chances that at least some of the goods will be delivered. The

total distance covered by vehicles must also be taken into account

to minimize the overall cost. For example, Figure 1 shows three

different paths from the city of Gaziantep in Turkey to the city of
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Aleppo in Syria. The solid/black line indicates the shortest path, the

dashed/red line the next path in length order, and the dotted/green

line a path that is clearly longer, but also significantly different

from the other two. Choosing the black and the red paths is not the

best option, since the two paths share a large stretch. Among the

other two options, the black-green pair has the minimum collective

length and, hence, it is a better option than the red-green pair.

The aforementioned scenario is formally captured by the k-
Dissimilar Paths with Minimum Collective Length (kDPwML) prob-

lem. Given two locations s and t on a road network, a kDPwML

query computes a set of k paths from s to t , such that: (1) all paths

in the result set are sufficiently dissimilar to each other (w.r.t a

user-defined similarity threshold), and (2) the set exhibits the low-

est collective path length among all sets of k sufficiently dissimilar

paths. kDPwML was originally introduced by Liu et al. as the Top-
k Shortest Paths with Diversity (Top-KSPD) [11], together with a

greedy heuristic method that builds on the K-shortest paths [12].

Contributions. In this paper, we present an in-depth analysis of

the kDPwML problem. First, we conduct a theoretical analysis to

prove that kDPwML is strongly NP-hard. Second, we investigate
the exact computation of kDPwML queries, which was not covered

by Liu et al. [11]. We present an algorithm that, similar to the

approach of Liu et al., builds on the computation of the K-shortest
paths [12], along with a pair of pruning techniques. Since such

approaches require a prohibitively high number K of paths to be

examined, we introduce the much smaller set of simple single-via

paths, which extends the concept of single-via paths [2]. Then, we

present two algorithms that iterate over this set of paths to compute

kDPwML queries. Our experiments show that algorithms which

iterate over all possible s−t paths cannot scale. Instead, iterating
over the set of simple single-via paths can lead to scalable solutions

with a very small trade-off in the quality of the results. Last, an

extended version [6] of this paper is available that contains our

full theoretical analysis, detailed description of our algorithms and

additional experiments.

2 NOTATION AND PROBLEM DEFINITION
Let G = (N ,E) be a directed weighted graph representing a road

network with a set of nodes N and a set of edges E ⊆ N × N .
1

Each edge (ni ,nj ) ∈ E is assigned a positive weightw(ni ,nj ), which
captures the cost of moving from node ni to node nj . A (simple)

path p(s→t) from a source node s to a target node t is a connected
and cycle-free sequence of edges ⟨(s,ni ), . . . , (nj , t)⟩. The length
ℓ(p) of a path p is the sum of the weights of all contained edges

and the collective path length L(P) of set of paths P as the sum of

the lengths of the paths in the set. The shortest path psp (s→t) is
the path with the lowest length among all paths that connect s to
t . Last, the similarity of two paths p, p′ from s to t is denoted by

Sim(p,p′). Given a similarity threshold θ , paths p, p′ are sufficiently
dissimilar if Sim(p,p′)<θ . Also, a path p is sufficiently dissimilar to

a set of paths P , if p is sufficiently dissimilar to every path in P . As
determining the best similarity measure is out of the scope of our

work, without loss of generality, we use the Jaccard coefficient.

1
For ease of presentation, we draw a road network as an undirected graph in our

examples. However, our proposed methods directly work on directed graphs as well.
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Figure 2: Running example.

We now formally restate the Top-KSPD problem [11] as the k-
Dissimilar Paths with Minimum (Collective) Length (kDPwML).

Problem 1 (kDPwML). Given a road networkG=(N ,E), a source
s∈N , a target t∈N , a number of requested paths k , and a similarity
threshold θ , the PkDPwML is the set of paths from s to t , such that:
(A) all paths in PkDPwML are pairwise sufficiently dissimilar,
(B) |PkDPwML | ≤ k and PkDPwML has the maximum possible cardi-

nality among every set of paths PA that satisfy Condition (A),
(C) PkDPwML has the lowest collective path length among every set

of paths PAB that satisfy both Conditions (A) and (B),

Consider the road network in Figure 2 along with paths psp =
⟨(s,n3),(n3,n5),(n5, t)⟩, p2 = ⟨(s,n3),(n3,n5),(n5,n4),(n4, t)⟩, p3 =
⟨(s,n3),(n3,n4),(n4, t)⟩, and p4 = ⟨(s,n2),(n2,n3),(n3,n5),(n5, t)⟩.
Let P1 = {p1,p2,p3}, P2 = {p1,p3,p4}, and P3 = {p2,p3,p4} be
three sets of paths with L(P1) = 27, L(P2) = 29, and L(P3) = 30.

Consider the query kDPwML(s, t , 3, 0.5). While set P1 has the low-
est collective length, it cannot be the result set as p1 and p2 are

not sufficiently dissimilar, i.e., Sim(p1,p2) = 6/11 = 0.545 > θ .
On the other hand, both P2 and P3 contain sufficiently dissimilar

paths, but P2 is preferred as L(P2) < L(P3). In fact, P2 is the set
with the lowest collective length among all sets that contain three

sufficiently dissimilar paths. Hence, P2 is the result of the query.
Next, elaborate on the complexity of the kDPwML problem. Liu

et al. proved in [11] (cf. Lemma 1) the NP-hardness of kDPwML.

Despite the correctness of their finding, the authors’ approach on

the proof is incorrect as they polynomially reduced kDPwML to a
hard problem, i.e., the Maximum Independent Set problem, instead

of providing a polynomial reduction from a hard problem. In view

of this, we hereby prove the following theorem.

Theorem 2.1. The kDPwML problem is strongly NP-hard.

Proof. We prove the lemma by polynomial reduction from

the two edge-disjoint path problem (2-DP), which is known to

be strongly NP-complete [7]. Given a directed graph G=(N ,E)
with |N |=n and two source-target pairs (s1, t1) and (s2, t2), 2-DP
asks whether G contains edge-disjoint si−ti paths for i = 1, 2. For

polynomially reducing 2-DP to the kDPwML problem, we define a

road networkG ′=(N ′,E ′) with N ′=N ∪ {s, t ,a,b, c,d} and E ′=E ∪
{(s,a), (s, c), (a,b), (c,d), (b, s1), (d, s2), (t2,a), (t1, c), (b, t), (d, t)}.
We set k=4, θ=(2n+ 1)/(4n2 + 5),w(e)=4n for all e ∈ E, andw(e)=1
for all e ∈ E ′ \ E. Then there are edge-disjoint si−ti paths inG just

in case the result of a 4-DPwML query againstG ′ has cardinality 4.

The proof for this claim is available in the extended version of our

paper [6]. Hence, unless P = NP , there can be no polynomial or

pseudo-polynomial algorithm for answering kDPwML queries. □
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3 AN EXACT APPROACH
A naïve approach for an exact solution to kDPwML would first

identify all paths from a source node s to a target node t and examine

all possible sets of at most k paths to determine the set that satisfies

the conditions of Problem 1. Such an approach is clearly impractical.

In view of this, we present a pair of pruning techniques along with

an exact algorithm that employs these techniques to reduce the

search space during kDPwML query processing.

Our first pruning technique employs a lower bound on the col-

lective path length, which limits the total number of paths to be

constructed. Let Pall be the set of all possible paths from node

s to t , p∗i be the i-shortest path in Pall , and P∗k−1 the set of the

k − 1 shortest paths in Pall . For every path p ∈ Pall , the collective
path length of every P ⊆ Pall of k paths that contains p is lower

bounded by the sum ℓ(p) + L(P∗k−1); by definition, L(P∗k−1 ∪ {p})
has the lowest collective path length among all subsets of k paths

that include p. Hence, during the processing of a kDPwML query,

by examining paths in length order we can terminate the exami-

nation if a constructed path p violates the aforementioned lower

bound. Our second pruning technique prevents the construction

of path sets that do not exclusively contain sufficiently dissimilar

paths. For this purpose, we employ a dynamic programming scheme

named "filling a rucksack" or Algorithm F for simplicity [10], which

generates path sets by reusing already generated smaller subsets.

Consequently, when computing a kDPwML query, it suffices to in-

crementally generate new subsets of paths and early prune subsets

that contain at least one pair of not sufficiently dissimilar paths.

Algorithm 1 illustrates the pseudocode of our exact KSP-DML

algorithm, which employs the two aforementioned pruning tech-

niques. All generated shortest paths are stored in set Psp . In Line 2,

we set p as the first shortest path from s to t . From Line 3 to 11,

KSP-DML iterates over the next shortest path starting from the

first one. In Line 4, current path p is stored in Psp . In Lines 5–6,

the collective length Lk−1 of the first k−1 shortest paths is com-

puted to be used for the lower bound in Line 3. Next, Algorithm

F [10] is called in Line 7 to determine all (≤ k)-subsets P of Psp
that contain p. For each subset P , Line 8 checks whether all paths
in P are sufficiently dissimilar to each other (Condition (A) of Prob-

lem 1). Subsequently, Line 9 checks whether P contains more paths

than PkDPwML
(Condition (B) of Problem 1), or P contains as many

paths as PkDPwML
and P has a lower collective length than current

PkDPwML
(Condition (B) and (C) of Problem 1). If either case holds,

KSP-DML updates the PkDPwML
result in Line 10. The examination

of each next shortest path (and KSP-DML overall) terminates when

either all possible paths from s to t have been generated or the

termination condition of Line 3 is met.

4 HEURISTIC APPROACHES
Despite the pruning criteria introduced in Section 3, we expect the

number of paths examined by KSP-DML to be significantly larger

than the requested number of results k . In view of this, to reduce

the search space even further, a popular solution is to iterate over

the much smaller set of single-via paths proposed by Abraham et

al. [2]. Given a road network G = (N ,E), a source node s and a

target node t , the single-via path psv (n) of a node n ∈ N \ {s, t} is
defined as psp (s→n) ◦ psp (n→t), i.e., the concatenation of shortest

Algorithm 1: KSP-DML

Input: Road network G = (N , E), source node s , target node t , number of

results k , similarity threshold θ
Output: Set PkDPwML

of at most k paths

1 initialize Pall ← ∅, Lk−1 ← 0, PkDPwML
← ∅, P ← ∅;

2 p ← NextShortestPath(G, s, t ); ▷ Shortest path psp
3 while p,null and ( |PkDPwML |<k or ℓ(p)+Lk−1≤L(PkDPwML)) do
4 Pall ← Pall ∪ {p };
5 if |Pall | < k then
6 Lk−1 ← Lk−1 + ℓ(p);

7 foreach P ⊆ Pall : |P | ≤ k with p ∈ P do ▷ Alg. F [10]
8 if ∀ pi , pj ∈ P with i , j : Sim(pi , pj ) < θ then
9 if |P | > |PkDPwML | or

|P | = |PkDPwML | and L(P ) < L(PkDPwML) then
10 PkDPwML

← P ; ▷ Update result set

11 p ← NextShortestPath(G, s, t );

12 return PkDPwML
;

paths psp (s→n) and psp (n→t). By definition, psv (n) is the shortest
possible path that connects s and t throughn. However, using the set
of single-via paths to processkDPwMLqueries raises two important

issues. First, the single-via path psv (n) of every node n crossed by

the shortest pathpsp (s→t) is identical topsp . Computing the single-

via paths for these particular nodes is unnecessary. Second, there is

no guarantee that a single-via path is simple (i.e., cycle-free), which

make little sense as alternative paths from a user perspective.

Simple Single-via Paths. To address the aforementioned issues,

we introduce the simple single-via paths (SSVP). Given a road net-

work G=(N ,E), a source s and a target t , the SSVP pssv (n) of a
node n ∈ N \ {s, t} is defined only if n does not lie on the shortest

path psp (s→t). If the single-via path psv (n) of node n is simple,

then pssv (n)=psv (n). Otherwise, pssv (n) is the concatenation ei-

ther of psp (s→n) with the shortest path p′(n→t) from n to t that
visits no nodes in psp (s→n), i.e., sp(s→n) ◦ p′(n→t), or the con-
catenation of the shortest path p′(s→n) from s to n that visits no

nodes in psp (n→t) with psp (n→t), i.e., p′(s→n) ◦ psp (n→t). In
this case, the SSVP of n is the concatenated path with the lowest

path length. Note that the shortest path psp (s→t) is a SSVP by

definition. Consider the road network in Figure 2. The single-via

path of n2 is psv (n2) = ⟨(s,n3), (n3,n2), (n2,n3), (n3,n5), (n5, t)⟩,
which is clearly not simple. Hence, the simple single-via path

pssv (n2) is either p = ⟨(s,n2), (n2,n3), (n3,n5), (n5, t)⟩ or p
′ =

⟨(s,nn3), (n3,n2), (n2,n4), (n4, t)⟩. In this particular case, bothp and
p′ have the same length and either can be set as pssv (n2).

To compute all SSVPs it suffices to construct the shortest path

tree Ts→N from s to all nodes n ∈ N , and the shortest path tree

TN→t to t from all nodes n ∈ N . The shortest paths psp (s→n) and
psp (n→t) are retrieved from the shortest path trees, thus forming

the psv (n) = psp (s→n)◦psp (n→t). If psv (n) is not simple, p′(s→n)
and p′(n→t) are computed by running Dijkstra’s algorithm from

s to n and n to t , respectively, while blacklisting nodes that need

to be avoided during each run. Note that for the computation of

a kDPwML query there is no need to construct all SSVPs at once.

By examining nodes in length order of their single-via path and

storing SSVPs in a priority queue temporarily, we restrict the total

number of constructed paths.We elaborate more on the incremental

construction of SSVPs in the extended version of this paper [6].
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Figure 3: Response time varying requested paths k (θ=50%)
and similarity threshold θ (k=3).

Algorithms. A straightforward way of employing SSVPs for pro-

cessing kDPwML queries is to alter the exact KSP-DML algorithm

from Section 3 such that the algorithm iterates over the simple

single-via paths in increasing length order. By the definition of

SSVP, the search space will be drastically reduced as at most |N |−1
paths will be examined. In addition, we can still use the pruning

techniques of KSP-DML to terminate the search and avoid generat-

ing candidate path sets that do not contain sufficiently dissimilar

paths. Our first heuristic algorithm, termed SSVP-DML, follows

this approach. Naturally, as the result of kDPwML queries may not

consist exclusively of simple single-via paths, SSVP-DML can only

provide an approximate solution to the kDPwML problem.

Despite reducing the search space compared to KSP-DML, SSVP-

DML still needs to examine a large number of subsets. In fact, we

expect this procedure to dominate the evaluation of the kDPwML

query. In view of this, we devise a second heuristic algorithm,

termed SSVP-D+, which adopts a similar idea to FindKSPD [11] and

to our previous work [5]. The algorithm constructs progressively a

result set that (1) always contains the shortest path, and (2) every

newly added simple single-via path to the set is both sufficiently

dissimilar to the paths currently in the set and as short as possible.

5 EXPERIMENTAL EVALUATION
For our experiments we used the road networks of the city of

Adlershof (349 nodes, 979 edges) extracted from OpenStreetMap,

and the city of Beijing [9] (74,383 nodes, 222,778 edges). Apart

from our algorithms, we include in the evaluation the FindKSPD

algorithm, i.e., the greedy approach of Liu et al. [11]. Due to the

limited space, we present only a part of our results, while our full

results are presented in the extended version of our paper [6].

Figure 3 reports on the response time of the algorithms over

1,000 random queries varying the requested number of paths k
(fixing θ to 0.5) and the similarity threshold θ (fixing k to 3). First,

2 3 4 5
0

5

10

15

20

25

k

D
i
ff
.
w
i
t
h
s
p
(
%
)

KSP-DML FindKSPD SSVP-DML SSVP-D+

(a) Adlershof

2 3 4 5

3

6

9

12

15

k

D
i
ff
.
w
i
t
h
s
p
(
%
)

(b) Beijing

Figure 4: Result quality varying requested paths k (θ=50%).

we observe that the exact algorithmKSP-DML is clearly impractical.

For the road network of Adlershof and the default values of k and θ ,
KSP-DML may provide reasonable response time, but it is at least

one order of magnitude slower than its competitors. Hence, we

present the runtime of KSP-DML only for Adlershof. With regard

to the heuristic algorithms we observe that SSVP-D+ is the fastest

algorithm in all cases. For FindKSPD and SSVP-DML, the runtime

increases with an increasing k and a decreasing θ . For an increasing

k , though, the increase in the runtime of SSVP-DML is much more

abrupt. With regard to θ , we observe that SSVP-DML is faster for

large θ , while FindKSPD is faster for small θ values.

Figure 4 reports on the quality of the computed results. Con-

sidering only queries for which all algorithms returned k paths,

we compare the average length of each result set to the length of

the shortest path. We observe that the exact KSP-DML algorithm

computes the paths with the smallest collective length on average.

FindKSPD produces paths with an average length very close to

KSP-DML. SSVP-DML comes next, while SSVP-D+ recommends

the paths with the highest length on average. However, the differ-

ence between the result sets of KSP-DML and FindKSPD and the

result sets of SSVP-DML and SSVP-D+ is quite small.
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