
Vorlesungsskript

Kryptologie 2
Sommersemester 2006

Prof. Dr. Johannes Köbler
Humboldt-Universität zu Berlin

Lehrstuhl Komplexität und Kryptografie

21. 07. 2006

Inhaltsverzeichnis

1 Kryptografische Hashverfahren 1
1.1 Einführung . 1

1.1.1 Klassifikation von Hashverfahren 2
1.1.2 Schlüssellose Hashfunktionen . 3

1

1 Kryptografische Hashverfahren

1.1 Einführung

Durch kryptographische Verfahren lassen sich unter anderem die folgenden Schutzziele
realisieren.
• Vertraulichkeit

– Geheimhaltung
– Anonymität (z.B. Mobiltelefon)
– Unbeobachtbarkeit (von Transaktionen)

• Integrität
– von Nachrichten und Daten

• Zurechenbarkeit
– Authentikation
– Unabstreitbarkeit
– Identifizierung

• Verfügbarkeit
– von Daten
– von Rechenressourcen
– von Informationsdienstleistungen

Kryptografische Hashverfahren sind ein wirksames Werkzeug zur Sicherstellung der In-
tegrität von Nachrichten oder generell von digitalisierten Daten. In der Tat nehmen
kryptografische Hashverfahren beim Schutz der Datenintegrität eine ähnlich herausragen-
de Stellung ein wie sie Kryptosystemen bei der Wahrung der Vertraulichkeit zukommt.
Daneben finden kryptografische Hashfunktionen aber auch vielfach als Bausteine von
komplexeren Systemen Verwendung. Wie wir noch sehen werden, sind kryptografische
Hashfunktionen etwa bei der Bildung von digitalen Signaturen sehr nützlich. Auf weitere
Anwendungsmöglichkeiten werden wir später eingehen.
Den überaus meisten Anwendungen von kryptografischen Hashfunktionen h liegt die
Idee zugrunde, dass sie zu einem vorgegebenen Text x eine zwar kompakte aber dennoch
repräsentative Darstellung h(x) liefern, die unter praktischen Gesichtspunkten als eine
eindeutige Identifikationsnummer von x fungieren kann. Die Berechnungsvorschrift für
h muss daher gewissermaßen darauf abzielen, „charakteristische Merkmale“ von x in
den Hashwert h(x) einfließen zu lassen. Da der Fingerabdruck eines Menschen ganz
ähnliche Eigenschaften besitzt (was ihn für Kriminalisten bekanntlich so wertvoll macht),
wird der Hashwert h(x) auch oft als ein digitaler Fingerabdruck von x bezeichnet.
Gebräuchlich sind auch die Bezeichnungen kryptografische Prüfsumme oder message
digest (englische Bezeichnung für „Nachrichtenextrakt“).
Typische Schutzziele, die sich mittels Hashfunktionen realisieren lassen, sind die
Nachrichten- und Teilnehmerauthentikation.
• „Nachrichtenauthentikation“ (message authentication)

2 1 Kryptografische Hashverfahren

Kryptografische
Hashverfahren

schlüssellos symmetrisch

MDCs
(Integritätsschutz)

Sonstige
Hashverfahren

MACs
(Authentikation)

Abbildung 1.1: Eine grobe Einteilung von kryptografischen Hashverfahren.

– Wie lässt sich sicherstellen, dass eine Nachricht (oder eine Datei) während einer
(räumlichen oder auch zeitlichen) Übertragung nicht verändert wurde?

– Wie lässt sich der Urheber (oder Absender) einer Nachricht zweifelsfrei feststellen?
• „Teilnehmerauthentikation“ (entity authentication, identification)

– Wie kann sich eine Person (oder ein Gerät) anderen gegenüber zweifelsfrei auswei-
sen?

1.1.1 Klassifikation von Hashverfahren

Kryptografische Hashverfahren lassen sich grob danach klassifizieren, ob der Hashwert
lediglich in Abhängigkeit vom Eingabetext berechnet wird oder zusätzlich von einem
symmetrischen Schlüssel abhängt (siehe Abbildung 1.1).
Kryptografische Hashfunktionen, bei deren Berechnung keine Schlüssel benutzt werden,
dienen vornehmlich der Erkennung von unbefugt vorgenommenen Manipulationen an
Dateien oder Nachrichten. Daher werden sie auch als MDC bezeichnet (Manipulation
Detection Code [englisch] = Code zur Erkennung von Manipulationen). Zuweilen wird
das Kürzel MDC auch als eine Abkürzung für Modification Detection Code verwendet.
Seltener ist dagegen die Bezeichnung MIC (message integrity codes). Abbildung 1.2
zeigt eine typische Anwendung von MDCs.

Um die Integrität eines Datensatzes x sicherzustellen, der über einen ungesicherten
Kanal gesendet (bzw. auf einem vor Manipulationen nicht sicheren Webserver
abgelegt) wird, kann man wie folgt verfahren. Man sendet den MDC-Hashwert
von x über einen authentisierten Kanal und prüft, ob der Datensatz nach der
Übertragung noch denselben Hashwert liefert.

Kryptografische Hashverfahren mit symmetrischen Schlüsseln finden hauptsächlich bei
der Authentifizierung von Nachrichten Verwendung. Diese werden daher auch als MAC
(message authentication code [englisch] = Code zur Nachrichtenauthentifizierung) oder
als Authentikationscode bezeichnet. Daneben gibt es auch Hashverfahren mit asym-
metrischen Schlüsseln. Diese werden jedoch der Rubrik der Signaturverfahren zugeordnet,
da mit ihnen ausschließlich digitale Unterschriften gebildet werden. Wie sich Nachrichten

1.1 Einführung 3

mit einem MAC authentisieren lassen, ist in Abbildung 1.3 dargestellt. Man beachte,
dass nun auch der Hashwert über den unsicheren Kanal gesendet wird.

Möchte Bob eine Nachricht x an Alice übermitteln, so berechnet er den zuge-
hörigen MAC-Hashwert y = hk(x) und fügt diesen der Nachricht x hinzu. Alice
überprüft die Echtheit der empfangenen Nachricht (x′, y′), indem sie ihrerseits
den zu x′ gehörigen Hashwert hk(x′) berechnet und das Ergebnis mit y′ ver-
gleicht. Der geheime Authentikationsschlüssel k muss hierbei genau wie bei einem
symmetrischen Kryptosystem über einen gesicherten Kanal vereinbart werden.

Indem Bob seine Nachricht x um den Hashwert y = hk(x) ergänzt, gibt er Alice nicht
nur die Möglichkeit, anhand von y die empfangene Nachricht auf Manipulationen zu
überprüfen. Die Benutzung des geheimen Schlüssels k erlaubt zudem eine Überprüfung
der Herkunft der Nachricht.

1.1.2 Schlüssellose Hashfunktionen

In diesem Abschnitt betrachten wir verschiedene Sicherheitsanforderungen an einzelne
Hashfunktionen h. Dabei nehmen wir an, dass h öffentlich bekannt ist, d.h. h ist eine
schlüssellose Hashfunktion (MDC).
Sei h : X → Y eine Hashfunktion. Ein Paar (x, y) ∈ X × Y heißt gültig für h, falls
h(x) = y ist. Ein Paar (x, x′) mit h(x) = h(x′) heißt Kollisionspaar für h. Die Anzahl
‖Y ‖ der Hashwerte bezeichnen wir mit m. Ist auch der Textraum X endlich, ‖X‖ = n,
so heißt h eine (n, m)-Hashfunktion. In diesem Fall verlangen wir meist, dass n ≥ 2m
ist, und wir nennen h dann eine Kompressionsfunktion (compression function).
Da h öffentlich bekannt ist, ist es sehr einfach, für einen vorgegebenen Text x ein gültiges
Paar (x, y) zu erzeugen. Für bestimmte kryptografische Anwendungen ist es wichtig, dass
dies nicht möglich ist, falls der Hashwert y vorgegeben wird.
Problem P1: Bestimmung eines Urbilds

Gegeben: Eine Hashfkt. h : X → Y und ein Hashwert y ∈ Y .
Gesucht: Ein Text x ∈ X mit h(x) = y.

Falls es einen immensen Aufwand erfordert, für einen vorgegebenen Hashwert y einen Text
x mit h(x) = y zu finden, so heißt h Einweg-Hashfunktion (one-way hash function bzw.
preimage resistant hash function). Diese Eigenschaft wird beispielsweise benötigt, wenn

x x′

y y
?= h(x′)

h h

echt

falsch

Ungesicherter Kanal

Authentisierter Kanal

Abbildung 1.2: Einsatz eines MDC h zur Überprüfung der Integrität eines Datensatzes
x.

4 1 Kryptografische Hashverfahren

x x′

y hk(x′) ?= y′

hk hk

echt

falsch

Ungesicherter

Kanal

Gesicherter Kanal

Bob Alicek

k: Symmetrischer Authentikationsschlüssel
y = hk(x): MAC-Hashwert für x unter k

Abbildung 1.3: Verwendung eines MAC zur Nachrichtenauthentikation.

die Hashwerte der Benutzerpasswörter in einer öffentlich zugänglichen Datei abgespeichert
werden, wie es bei manchen Unix-Systemen der Fall ist.

Problem P2: Bestimmung eines zweiten Urbilds
Gegeben: Eine Hashfkt. h : X → Y und ein Text x ∈ X.
Gesucht: Ein Text x′ ∈ X \ {x} mit h(x′) = h(x).

Falls sich für einen vorgegebenen Text x nur mit großem Aufwand ein weiterer Text x′ 6= x
mit dem gleichen Hashwert h(x′) = h(x) finden lässt, heißt h schwach kollisionsre-
sistent (weakly collision resistant bzw. second preimage resistant). Diese Eigenschaft
wird in der durch Abbildung 1.2 skizzierten Anwendung benötigt. Beim Versuch, eine
digitale Signatur zu fälschen (siehe unten), sieht sich der Gegner dagegen mit folgender
Problemstellung konfrontiert.

Problem P3: Bestimmung einer Kollision
Gegeben: Eine Hashfkt. h : X → Y .
Gesucht: Texte x 6= x′ ∈ X mit h(x′) = h(x).

Falls sich dieses Problem nur mit einem immensen Aufwand lösen lässt, heißt h (stark)
kollisionsresistent (collision resistant).
Obwohl die schwache Kollisionsresistenz eine gewisse Ähnlichkeit mit der Einweg-
Eigenschaft aufweist, sind die beiden Eigenschaften im allgemeinen unvergleichbar. So
muss eine schwach kollisionsresistente Funktion nicht notwendigerweise eine Einweg-
funktion sein, da die Bestimmung eines Urbildes gerade für diejenigen Funktionswerte
einfach sein kann, die nur ein einziges Urbild besitzen. Umgekehrt impliziert die Einweg-
Eigenschaft auch nicht die schwache Kollisionsresistenz, da die Kenntnis eines Urbildes
das Auffinden weiterer Urbilder sehr stark erleichtern kann.

1.1 Einführung 5

Prozedur FindPreimage(h, y, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X
2 for each xi ∈ X0 do
3 if h(xi) = y then return(xi) else return(?)

Abbildung 1.4: Bestimmung eines Urbilds für einen Hashwert

Das Zufallsorakelmodell (ZOM)

Das ZOM dient dazu, die Effizienz verschiedener Angriffe auf eine Hashfunktion h : X → Y
nach oben abzuschätzen. Sind X und Y vorgegeben, so können wir eine Hashfunktion
h : X → Y dadurch „konstruieren“, dass wir für jedes x ∈ X zufällig ein y ∈ Y wählen
und h(x) auf y setzen. Äquivalent hierzu ist, für h eine zufällige Funktion aus der
Klasse F (X, Y) aller nm Funktionen von X nach Y zu wählen. Dieses Verfahren ist auf
Grund des hohen Aufwands zwar nicht mehr praktikabel, wenn n = ‖X‖ eine bestimmte
Größe übersteigt. Es liefert uns aber ein theoretisches Modell für eine Hashfunktion
mit „idealen“ kryptografischen Eigenschaften. Offensichtlich besteht für den Gegner die
einzige Möglichkeit, Informationen über h zu erhalten, darin, sich für eine Reihe von
Texten die zugehörigen Hashwerte zu besorgen (was der Befragung eines funktionalen
Zufallsorakels entspricht).
Dass eine Zufallsfunktion h gute kryptografische Eigenschaften aufweist, rührt daher,
dass der Hashwert h(x) für einen neuen Text x auch dann noch schwer vorhersagbar ist,
wenn der Gegner bereits die Hashwerte einer beliebigen Zahl von Texten kennt.

Proposition 1. Sei X0 = {x1, . . . , xk} eine beliebige Menge von k verschiedenen Texten
aus X und seien y1, . . . , yk ∈ Y . Dann gilt für eine zufällig aus F (X, Y) gewählte Funktion
h und für jedes Paar (x, y) ∈ (X −X0)× Y ,

Pr[h(x) = y |h(xi) = yi für i = 1, . . . , k] = 1/m.

Um eine obere Komplexitätsschranke für das Urbildproblem im ZOM zu erhalten, be-
trachten wir den in Abbildung 1.4 dargestellten Algorithmus. Hier (und bei den beiden
folgenden Algorithmen) gibt der Parameter q die Anzahl der Hashwertberechnungen (also
die Anzahl der gestellten Orakelfragen an das Zufallsorakel h) wider. Der Zeitaufwand
der Berechnung ist dabei proportional zu q.

Satz 2. FindPreimage(h, y, q) gibt mit Wahrscheinlichkeit ε = 1 − (1 − 1/m)q ein
Urbild von y aus (unabhängig von der Wahl der Menge X0).

Beweis. Sei y ∈ Y fest und sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das
Ereignis “h(xi) = y”. Nach Proposition 1 sind diese Ereignisse stochastisch unabhängig
und ihre Wahrscheinlichkeit ist Pr[Ei] = 1/m (i = 1, . . . , q). Also folgt

Pr[E1 ∪ . . . ∪ Eq] = 1− Pr[E1 ∩ . . . ∩ Eq] = 1− (1− 1/m)q.
�

Der in Abbildung 1.5 dargestellte Algorithmus liefert uns eine obere Schranke für die
Komplexität des Problems, ein zweites Urbild für h(x) zu bestimmen. Die Erfolgswahr-
scheinlichkeit lässt sich vollkommen analog zum vorherigen Satz bestimmen.

6 1 Kryptografische Hashverfahren

Prozedur FindSecondPreimage(h, x, q)
1 y := h(x)
2 wähle eine beliebige Menge X0 = {x1, . . . , xq−1} ⊆ X − {x}
3 for each xi ∈ X0 do
4 if h(xi) = y then return(xi)
5 return(?)

Abbildung 1.5: Bestimmung eines 2. Urbilds für einen Hashwert

Satz 3. FindSecondPreimage(h, x, q) gibt mit Wahrscheinlichkeit ε = 1−(1−1/m)q−1

ein zweites Urbild x0 6= x von y = h(x) aus.
Ist q vergleichsweise klein, so ist bei beiden bisher betrachteten Angriffen ε ≈ q/m. Um
also auf eine Erfolgswahrscheinlichkeit von 1/2 zu kommen, ist q ≈ m/2 zu wählen.
Geht es lediglich darum, irgendein Kollisionspaar (x, x′) aufzuspüren, so bietet sich ein
sogenannter Geburtstagsangriff an. Dieser ist deutlich zeiteffizienter zu realisieren.
Wie der Name schon andeutet, basiert dieser Angriff auf dem sogenannten Geburtstagspa-
radoxon, welches in seiner einfachsten Form folgendes besagt.
Geburtstagsparadoxon: Bereits in einer Schulklasse mit 23 Schulkindern haben mit einer

Wahrscheinlichkeit größer 1/2 mindestens zwei Kinder am gleichen Tag Geburtstag
(dies erscheint zwar verblüffend, wird aber durch die Praxis mehr als bestätigt).

Tatsächlich zeigt der nächste Satz, dass bei q-maligem Ziehen (mit Zurücklegen) aus
einer Urne mit m Kugeln mit einer Wahrscheinlichkeit von

1− (m− 1)(m− 2) · · · (m− q + 1)/mq−1

eine Kugel zweimal gezogen wird. Für m = 365 und q = 23 ergibt dies einen Wert von
ungefähr 0, 507.
Zur Kollisionsbestimmung verwenden wir den in Abbildung 1.6 dargestellten Algorithmus.
Bei einer naiven Implementierung würde zwar der Zeitaufwand für die Auswertung der if-
Bedingung quadratisch von q abhängen. Trägt man aber jeden Text x unter dem Suchwort
h(x) in eine (herkömmliche) Hashtabelle der Größe q ein, so wird der Zeitaufwand für
die Bearbeitung jedes einzelnen Textes x im wesentlichen durch die Berechnung von h(x)
bestimmt.

Satz 4. Collision(h, q) gibt mit Erfolgswahrscheinlichkeit

ε = 1− (m− 1)(m− 2) · · · (m− q + 1)
mq−1

ein Kollisionspaar (x, x′) für h aus.

Prozedur Collision(h, q)
1 wähle eine beliebige Menge X0 = {x1, . . . , xq} ⊆ X − {x}
2 for each xi ∈ X0 do yi := h(xi)
3 if ∃i 6= j : yi = yj then return(xi, xj) else return(?)

Abbildung 1.6: Bestimmung eines Kollisionspaares

1.1 Einführung 7

1 wähle zufällig x ∈ X
2 x′ := A(x)
3 if x′ 6= ? then return(x, x′) else return(?)

Abbildung 1.7: Reduktion des Kollisionsroblems auf das Problem, ein zweites Urbild zu
bestimmen

Beweis. Sei X0 = {x1, . . . , xq}. Für i = 1, . . . , q bezeichne Ei das Ereignis

“h(xi) 6∈ {h(x1, . . . , h(xi−1}.”

Dann beschreibt E1∩. . .∩Eq das Ereignis “Collision(h, q) gibt ? aus” und für i = 1, . . . , q
gilt

Pr[Ei |E1 ∩ . . . ∩ Ei−1] = m− i + 1
m

.

Dies führt auf die Erfolgswahrscheinlichkeit

ε = 1− Pr[E1 ∩ . . . ∩ Eq]
= 1− Pr[E1]Pr[E2 |E1] · · ·Pr[Eq |E1 ∩ . . . ∩ Eq−1]

= 1−
(

m− 1
m

)(
m− 2

m

)
· · ·

(
m− q + 1

m

)
.

�

Mit 1− x ≈ e−x folgt

ε = 1−
q−1∏
i=1

(
1− i

m

)
≈ 1−

q−1∏
i=1

e
−i
m = 1− e−

1
m

∑q−1
i=1 i = 1− e−

q(q−1)
2m ≈ q2/2m.

Somit erhalten wir die Abschätzung

q ≈ cε

√
m

mit cε =
√

2ε. Für ε = 1/2 ergibt sich also q ≈
√

m. Besitzt also eine binäre Hashfunktion
h : {0, 1}n → {0, 1}m die Hashwertlänge m = 128 Bit, so müssen im ZOM q ≈ ·264 Texte
gehasht werden, um mit einer Wahrscheinlichkeit von 1/2 eine Kollision zu finden. Um
einem Geburtstagsangriff widerstehen zu können, sollte eine Hashfunktion mindestens
eine Hashwertlänge von 128 oder besser 160 Bit haben.

Vergleich von Sicherheitsanforderungen

In diesem Abschnitt zeigen wir, dass stark kollisionsresistente Hashfunktionen sowohl
schwach kollisionsresistent als auch Einweghashfunktionen sein müssen.

Satz 5. Sei h : X → Y eine (n, m)-Hashfunktion. Dann ist das Problem P3, ein Kol-
lisionspaar für h zu bestimmen, auf das Problem P2, ein zweites Urbild zu bestimmen,
reduzierbar. Folglich sind stark kollisionsresistente Hashfunktionen auch schwach kollisi-
onsresistent.

Beweis. Sei A ein Las-Vegas Algorithmus, der für ein zufällig aus X gewähltes x mit
Erfolgswahrscheinlichkeit ε ein zweites Urbild x′ für h liefert. Dann ist klar, dass der in
Abbildung 1.7 dargestellte Las-Vegas Algorithmus mit Wahrscheinlichkeit ε ein Kollisi-
onspaar ausgibt. �

8 1 Kryptografische Hashverfahren

1 wähle zufällig x ∈ X
2 y := h(x)
3 x′ := A(y)
4 if x 6= x′ then return(x, x′) else return(?)

Abbildung 1.8: Reduktion des Kollisionsproblems auf das Urbildproblem

Als nächstes zeigen wir, wie sich das Kollisionsproblem auf das Urbildproblem reduzieren
lässt.

Satz 6. Sei h : X → Y eine (n, m)-Hashfunktion mit n ≥ 2m. Dann ist das Problem P3,
ein Kollisionspaar für h zu bestimmen, auf das Problem P1, ein Urbild zu bestimmen,
reduzierbar.

Beweis. Sei A ein Invertierungsalgorithmus für h, d.h. A berechnet für jeden Hashwert y
in W (h) = {h(x) | x ∈ X} ein Urbild x mit h(x) = y. Betrachte den in Abbildung 1.8
dargestellten Las-Vegas Algorithmus B.
Sei C = {h−1(y) | y ∈ Y }. Dann hat B eine Erfolgswahrscheinlichkeit von

∑
C∈C

‖C‖
‖X‖

· ‖C‖ − 1
‖C‖

= 1
n

∑
C∈C

(‖C‖ − 1) = (n−m)/n ≥ 1
2 .

�

Iterierte Hashfunktionen

In diesem Abschnitt beschäftigen wir uns mit der Frage, wie sich aus einer kollisionsresis-
tenten Kompressionsfunktion

h : {0, 1}m+t → {0, 1}m

eine kollisionsresistente Hashfunktion

ĥ : {0, 1}∗ → {0, 1}l

konstruieren lässt. Hierzu betrachten wir folgende kanonische Konstruktionsmethode.
Preprocessing: Transformiere x ∈ {0, 1}∗ mittels einer Funktion

y : {0, 1}∗ →
⋃
r≥1
{0, 1}rt

zu einem String y(x) mit der Eigenschaft |y(x)| ≡t 0.
Processing: Sei IV ∈ {0, 1}m ein öffentlich bekannter Initialisierungsvektor und sei

y(x) = y1 · · · yr mit |yi| = t für i = 1, . . . , r. Berechne eine Folge z0, . . . , zr von Strings
zi ∈ {0, 1}m wie folgt:

zi =

IV, i = 0,

h(zi−1yi), i = 1, . . . , r.

Optionale Ausgabetransformation: Berechne den Hashwert ĥ(x) = g(zr), wobei
g : {0, 1}m → {0, 1}l eine öffentlich bekannte Funktion ist. (Meist wird für g die
Identität verwendet.)

	1 Kryptografische Hashverfahren
	1.1 Einführung
	1.1.1 Klassifikation von Hashverfahren
	1.1.2 Schlüssellose Hashfunktionen

