Algorithmische Bioinformatik

Ukkonen's Algorithmus: Konstruktion von Suffixbäumen in linearer Zeit

Ulf Leser

Wissensmanagement in der Bioinformatik

Inhalt dieser Vorlesung

Linearzeit-Konstruktion von Suffixbäumen

- Weiner: "Linear pattern matching algorithms", IEEE Symposium on Switching and Automata Theory, 1973
- McCreight: "A space-economical suffix tree construction algorithm", Journal of the ACM, 1976
- Ukkonen: "Online construction of suffix trees", Algorithmica, 1995

Ukkonen's Algorithmus

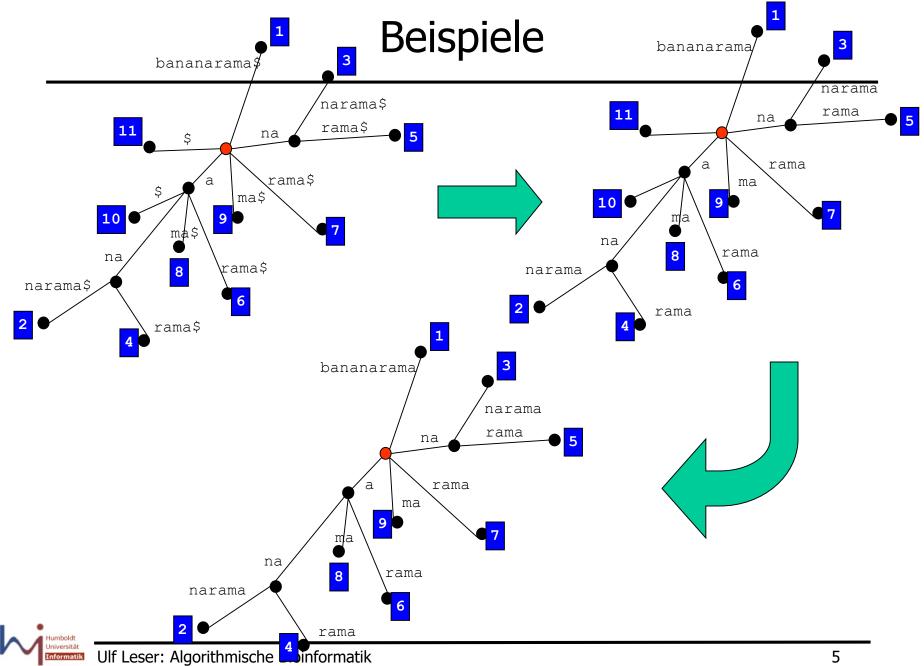
- Einer der komplizierteren der Vorlesung
- Ziel ist das Verständnis der Schritte und der resultierenden Komplexitätsgrenze
- Einige Details werden ausgelassen (insb. Datenstrukturen)
- Kein vollständiger Pseudocode

Überblick

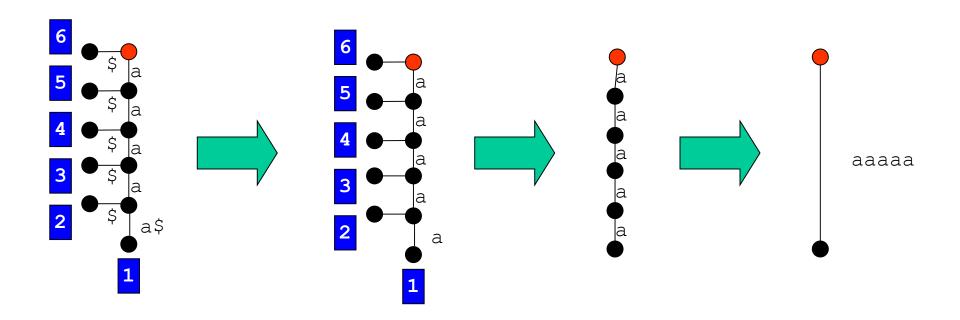
- High-Level: Phasen und Extensionen
- Verbesserungen
 - Suffix-Links
 - Skip/Count Trick
 - Noch zwei Tricks
- Gesamtkomplexität
- Beispiel

Voraussetzungen

- Definition
 Sei T ein Suffixbaum für S. Der implizite Suffixbaum T' entsteht aus T durch
 - Entferne alle Vorkommen von "\$" aus allen Labels
 - Entferne alle Kanten ohne Label
 - Die Enden von Suffixen, die Präfix eines anderen Suffix sind
 - Entferne alle inneren Knoten mit weniger als 2 Kindern;
 konkateniere die Label der eingehenden und der ausgehenden
 Kante zu dem der neuen (durchgehenden) Kante
- Das ist die Definition; wir werden anders vorgehen



Beispiel



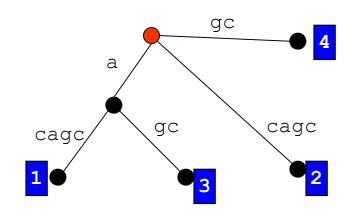
- Implizite Suffixbäume kodieren immer noch alle Suffixe
 - Jedes Suffix matched entlang eines Pfads
 - Aber man kann die Enden der Suffixe nicht mehr erkennen
 - Nicht für alle Suffixe gibt es eine Markierung an einem Blatt

Grundaufbau Ukkonen's Algorithmus

- Konstruktion impliziter SBe für wachsende Präfixe von S
 - Wir konstruieren alle T_i, d.h., implizite Suffixbäume für S[1..i]
 - Startpunkt T₁: Wurzel und ein Knoten mit Kantenlabel S[1]
 - Phasen: Konstruktion von T_{i+1} aus T_i
 - Abschluss: Transformation von T_m in den "echten" Suffixbaum T
- Jede der m-1 Phasen besteht aus Extensionsschritten
 - Phase i hat i Extensionsschritte
 - Jeder Schritt verlängert ein Suffix von S[1..i] um S[i+1]
 - Letzter Schritt verlängert das leere Suffix (Einfügen von S[i+1])
 - Reihenfolge der Schritte: von links nach rechts (S[1..i], S[2..i], ...)
- Drei Extensionsregeln

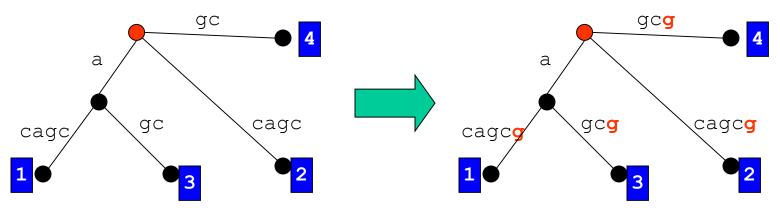
Extensionsregeln

- In Extensionsschritt j in Phase i+1 verlängern wir S[j..i] um das Zeichen S[i+1]
- Sei b=S[j..i]
- Matche b in T_{i+1} (im Entstehen)
 - 3 mögliche Situationen können entstehen
- Beispiel
 - S=,,acagcg "
 - Wir haben T₅ und bauen T₆
 - Also: Alle Suffixe von "acagc" um S[6]="g" erweitern



Extensionsregel 1

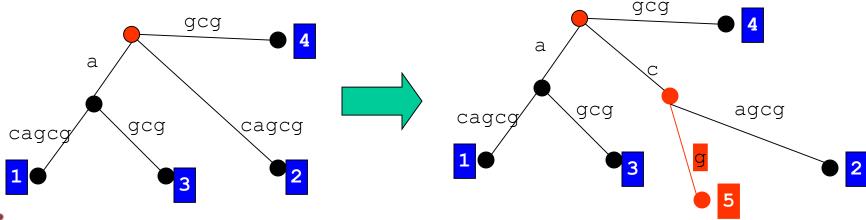
- Matche b in T_{i+1}. Das geht bis ...
 - Regel 1: b endet in einem Blatt
 - Erweitere das Label der letzten Kante um S[i+1]
- Beispiel (wir hängen "g" an Suffixe von "acagc")
 - Erweiterung von "acagc", "cagc", "agc", "gc"
 - [es bleiben Schritt 6 ," und Schritt 5 ,,c"]



Extensionsregel 2

- Matche b in T_{i+1}. Das geht bis ...
 - Regel 2: b endet an einem inneren Knoten oder in einer Kante, und kein weiterer Pfad beginnt mit S[i+1]
 - ➤ Innerer Knoten: Neues Blatt unterhalb dieses Knotens mit Kantenlabel S[i+1]; markiere Blatt mit "j"
 - ➤ In einer Kante: Neuer innerer Knoten, der diese Kante teilt; neues Blatt wie oben

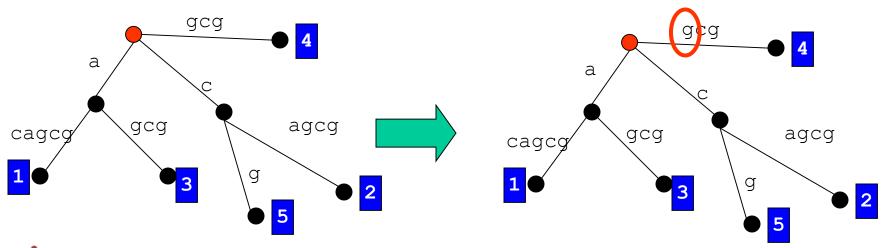
Beispiel: Schritt 5, altes Suffix "c" (S="acagcg")



Ulf Leser: Algorithmische Bioinformatik

Extensionsregel 3

- Matche b in T_{i+1}. Das geht bis ...
 - Regel 3: b endet an einem inneren Knoten oder in einer Kante, und einer der weiteren Pfade beginnt mit S[i+1]
 - > Tue gar nichts
- Beispiel: Schritt 6, altes Suffix "" (S="acagcg ")



Ulf Leser: Algorithmische Bioinformatik

Komplettes Beispiel

Konstruiere implizite Suffixbäume T₁...T₆ für "gtcgtg"

• ...

Algorithmus und Komplexität

Komplexität?

- Die zwei Schleifen sind O(m²)
- Matchen der Suffixe b in T_{i+1} ist O(m)
- Extension ist konstant
- Zusammen: O(m³)

Überblick

- High-Level: Phasen und Extensionen
- Verbesserungen
 - Suffix-Links
 - Skip/Count Trick
 - Noch zwei Tricks
- Gesamtkomplexität
- Beispiel

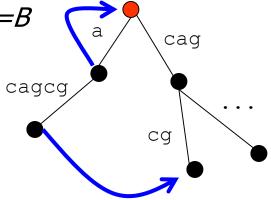
Suffix-Links

- Wir wenden uns dem "innersten" Problem zu immer wieder das Ende von Suffixen zu finden
- Wir reduzieren die Zeit für alle "match S[j..i] …"
 Operationen einer Phase auf zusammen O(m)
- Intuition
 - Für jedes S[j...i] gibt es per Konstruktion irgendwo schon S[j+1..i],
 das wir als nächstes verlängern wollen
 - Wir wollen das nicht suchen, sondern Suffix-Links merken und in jeder Extension direkt springen statt immer b ab Root zu matchen
 - Außerdem: Da S[j..i] und S[j+1..i] bis auf S[j] identisch sind, werden wir von Knoten zu Knoten springen – Skip/Count Trick – statt Zeichen einzeln im Baum zu matchen
 - Zusammen: Komplexität in einer Phase abhängig von Anzahl der Knoten, nicht der Zeichen

Suffix-Links formal

Definition

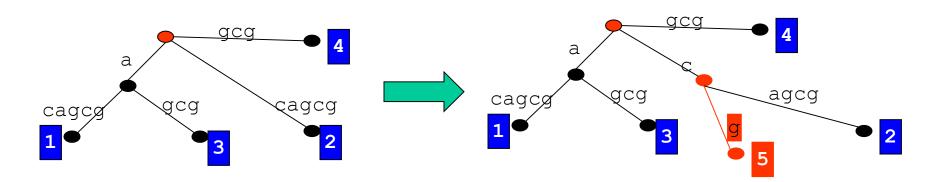
- Sei k ein innerer Knoten des impliziten Suffixbaums T' für S
- Sei label(k)=xB, wobei |x|=1, |B| beliebig (auch 0)
- Sei k' ein innerer Knoten von T' mit label(k')=B
 - Wenn |B|=0: k' = Wurzel
- Der Pointer (k,k') heißt Suffix-Link



- Wir zeigen, dass jeder innere Knoten in T' nach jeder Phase von Ukkonen's Algorithmus ein Suffix-Link-Ziel hat
 - Nicht offensichtlich: B muss zwar existieren, aber nicht in einem Knoten enden
- Wir müssen die Links dann noch bauen
- Entlang dieser Links springen wir in späteren Phasen

Suffix-Links in impliziten Suffixbäumen

- Neue innere Knoten entstehen nur in Regel 2
 - Regel 2: b endet an einem inneren Knoten oder in einer Kante, und kein weiterer Pfad beginnt mit S[i+1]
 - Innerer Knoten: Neues Blatt, ... (hier uninteressant)
 - In einer Kante: Neuer innerer Knoten teilt diese Kante sowie neues Blatt wie oben



Suffix-Links in impliziten Suffixbäumen

Theorem

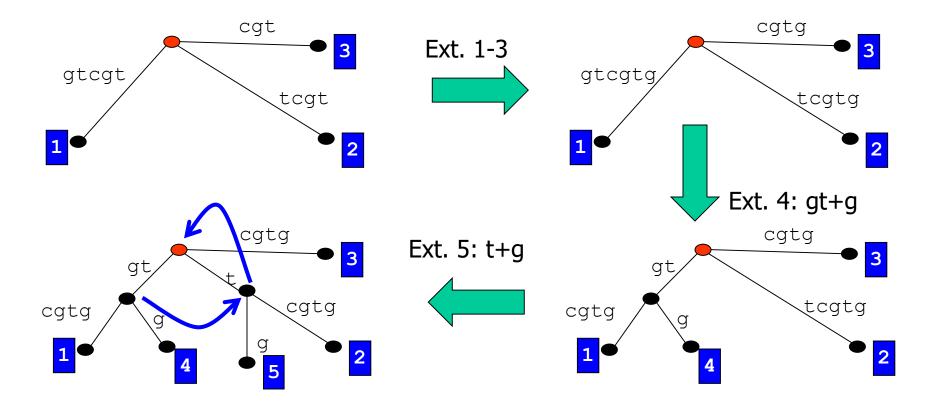
 In Ukkonen's Algorithmus hat jeder innere Knoten spätestens nach dem Ende des nächsten Extensionsschritts ein Suffix-Link-Ziel

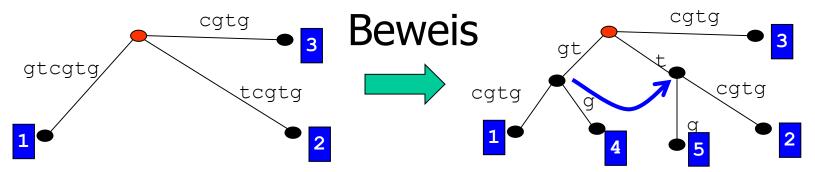
Lemma

- Nach der letzten Extension in einer Phase von Ukkonen's Algorithmus hat jeder innere Knoten ein Suffix-Link-Ziel
- Nach jeder Phase von Ukkonen's Algorithmus hat jeder innere Knoten ein Suffix-Link-Ziel
- Das Lemma ist einfach
 - Denn: In der letzten Extension einer Phase wird S[i+1] eingefügt das kann keine inneren Knoten mehr erzeugen
- Das Theorem nicht (erst ein Beispiel, dann Beweis)

Beispiel

- "gtcgtg" in Phase 6
 - Beobachtung: "Jeder" innere Knoten hat nach Phase 5 ein Suffix-Link-Ziel (es gibt hier keinen)
 - Wir erweitern in jeder Extension dieser Phase mit S[6]=,g"





- Angenommen, im Extensionsschritt j der Phase i+1 fügen wir einen neuen inneren Knoten ein (der braucht ein SL-Ziel)
 - Der habe Label xB mit |x|=1, |B| beliebig
 - Nach xB gab es nach dem Knoten keine Fortsetzung mit S[i+1]
 - Sonst hätten wir keinen neuen Knoten gebraucht
 - Aber es gab mindestens eine Fortsetzung, z.B. mit z
 - Sonst hätten wir nur das Label eines Blattes verlängert
- Was passiert dann im nächsten Extensionsschritt j+1?
 - Den Pfad Bz muss es schon aus einer früheren Phase geben
 - Der wird nun spätestens wegen S[i+1] nach B geteilt
 - S[i+1] kann es als Fortsetzung nicht geben, sonst hätte es dieselbe Fortsetzung nach xB gegeben, und in der Extension j wäre hier kein neuer Knoten notwendig gewesen Widerspruch
- ➤ Also entsteht ein innerer Knoten mit Label B unser Ziel
 - > (oder es gab schon einen)

Wie bauen wir Suffix-Links?

- Wir wissen, dass es für jeden inneren Knoten spätestens nach der nächsten Extension einen Zielknoten gibt
- Aber wie berechnen wir den Suffix-Link konkret?
 - Wir haben nicht nur nach dem nächsten Schritt ein Suffix-Link Ziel, sondern wir kommen im nächsten Schritt auch daran vorbei
 - Also merken wir uns bei Auftreten von Regel 2 mit neuem inneren Knoten k genau diesen Knoten k
 - Nach jedem Schritt sehen wir nach, ob im letzten Schritt ein neuer Knoten erzeugt wurde (also k) und setzen den Suffix-Link (k,k'), wobei k' der im aktuellen Schritt erzeugte oder als letztes besuchte innere Knoten sein muss

Verwendung der Suffix-Links

- In Phase i sucht man die Enden von S[1..i], S[2..i], etc.
 - Sprich: xyz..., yz..., z... genau das Suffix-Link Szenario
- Wenn wir in Schritt j das Ende von S[j..i] gefunden haben und zu Schritt j+1 übergehen
 - Suche den tiefsten inneren Knoten k über dem Ende von S[j..i]
 - Wenn k Wurzel ist: Matche einen Ast herunter (Wie? später)
 - Sonst ist k ein innerer Knoten
 - Folge dem Suffix-Link von k zu Knoten k'
 - Das Ende von S[j+1..i] muss unter k' liegen
- Anfang jeder Phase
 - Wir merken uns immer einen Zeiger auf Blatt 1
 - Mit dem fängt man in jeder Phase an längstes Suffix

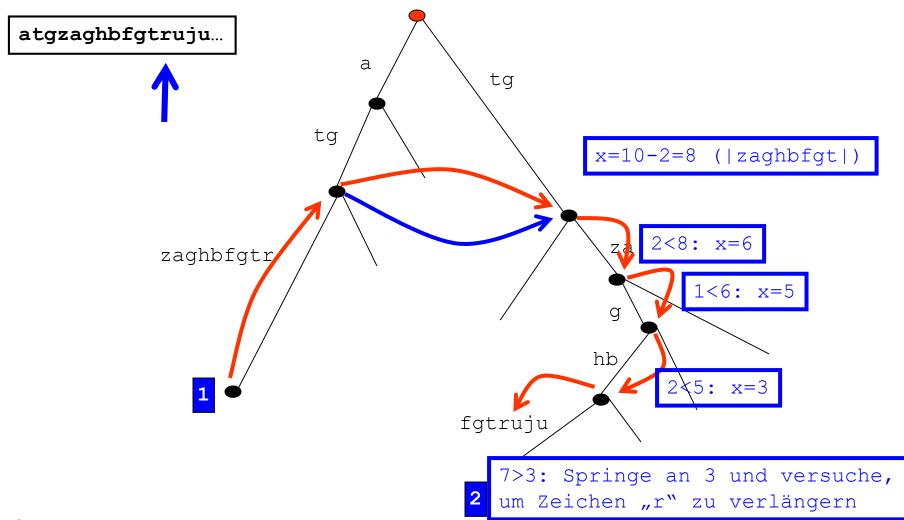
Nutzen bisher?

- Bzgl. Komplexität noch keiner
 - Unterhalb von k' müssen wir Zeichen für Zeichen matchen
 - Das ist im Worst-Case immer noch O(m) pro Extensionsschritt
- Noch ein Trick: Skip/Count
 - Wir kennen die Länge von S[j+1..i]
 - Wir wissen in O(1), welchen ausgehenden Ast wir vom Zielknoten betreten müssen
 - Wir können uns auch die Länge der Kantenlabel merken
 - In konstanter Zeit während des Aufbaus
 - Wir kennen die Länge des Präfix oberhalb von k' (Tiefe)
 - Wir kennen damit auch die Länge des Suffix unterhalb von k'
 - Damit können wir von Knoten zu Knoten hüpfen

Details

- Für Schritt j+1 seien wir einem Suffix-Link zu k' gefolgt
- Sei x die Länge des Pfades von k' zum Ende von S[j+1..i]
 - S[j+1..i] muss kein Blatt sein, deshalb müssen wir vorsichtig sein
- S[i-x..i] matched auf einem Pfad unter k'
 - Den genauen Pfad kennen wir nicht, Länge und Label schon
- Wir hüpfen von Knoten zu Knoten
 - Wähle die nächste Kante e von k' (ist eindeutig) zu Knoten k"
 - Wenn ||abel(e)|| < x: x = x ||abel(e)||; k' = k''; ||abel(e)||
 - Sonst
 - Springe an Position |label(e)|-x+1 im Label von e
 - Bringe dort S[i+1] unter (Extensionsregel 2 oder 3)

Beispiel



Erste Komplexitätsreduktion

Theorem

 Ukkonen's Algorithmus mit Suffix-Links und Skip/Count braucht pro Phase nur O(m) Laufzeit

Beweis

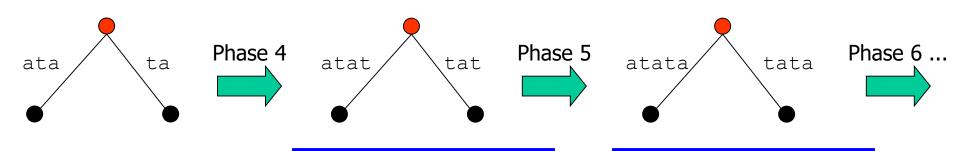
- Formal: Siehe Gusfield, p. 101-103
- Idee: Über die Tiefe der Knoten k, k'. Für eine Extension geht man einen Knoten hoch in O(1), folgt dem Suffix-Link in O(1), und dann 0-n Knoten runter. Man zeigt, dass man dadurch pro Phase jeden Knoten höchstens 3 mal besucht
- Damit sind wir insgesamt bei O(m²)
- Also sind noch ein paar Anstrengungen notwendig

Überblick

- High-Level: Phasen und Extensionen
- Verbesserungen
 - Suffix-Links
 - Skip/Count Trick
 - Noch zwei Tricks
- Gesamtkomplexität
- Beispiel

Extensionsregeln – auf den zweiten Blick

- Was passiert, wenn Regel 3 das 1. Mal in einer Phase greift?
 - Wir verlängern ein Suffix S[j..i] um S[i+1]
 - Regel 3: Tue nichts, denn es gibt das Suffix S[j..i+1] schon im Baum (kam schon in einer früheren Phase vor)
 - Dann gibt es auch S[j+1..i+1], S[j+2..i+1], ...
 - Wir können die Phase beenden in dieser Phase wird nur noch Regel 3 greifen, und die ändert nichts am Baum
- Beispiel: "atatatatatc", Phase …



Stop nach Extension 3

Stop nach Extension 3

Extensionsregel, Abkürzung 2

- Wir unterscheiden
 - Explizite Extension: Schritt mit Anwendung einer Regel
 - Implizite Extension: Schritt nur "gedacht"
- Schritte nach erster Anwendung von Regel 3 sind implizit
- Welche Schritte k\u00f6nnen wir in einer Phase noch sparen?
- Wichtiger und einfacher Trick
 - An eine Kante k zu einem Blatt schreiben wir nicht das Label label(k), sondern Indizes p,q und definieren label(k)=S[p..q]

Extensionsregel, Abkürzung 2

- Beobachtung: Keine Regel kann Blätter in irgendwas umwandeln: Blätter bleiben immer Blätter
- Was passiert in den Schritten
 - Regel 1: Verlängerung des Labels einer Blattkante
 - Regel 2: Neues Blatt oder: neuer Knoten und neues Blatt
 - Regel 3: Nichts, Abbruch der Phase
- In jede Phase greifen also erst Regeln 1 und 2 und dann 3
 - Bei jeder Anwendung von 1 oder 2 wird das Label einer Blattkante verlängert oder Blatt+Kante geschaffen
 - Sei j' die letzte Extension mit Regel 1 oder 2
 - Alle Schritte bis j' sind nach Phase i durch Blätter repräsentiert
 - In Phase i+1 verlängern die Schritte 1...j\ nur Blätter

Extensionsregel, Abkürzung 2

- Diese Schritte können wir uns schenken
 - Extensionen bis j' werden ab Phase i+1 implizit erledigt
 - Wir müssen lediglich Blattkanten anpassen
 - Dazu erhalten Blattkanten statt (p,q) die Beschriftung (p,E)
 - E steht für "Bis zum Ende" (=|S|)
 - Am Ende wird jede Blattkante bis zum Ende von S gehen
- Zusammen: Eine Phase im einzelnen
 - Überspringe alle Schritte bis j' der letzten Phase
 - Führe Extensionen aus, entweder bis i+1 oder bis zur ersten Anwendung von Regel 3
 - Hier werden neue Blätter / innere Knoten geschaffen
 - Kann auch eine Blattkante unterbrechen p in den Labeln anpassen
 - Neues j' merken und nächste Phase starten

Algorithmus

```
construct T<sub>1</sub>;
\dot{j} := 0;
                                // Points to next ext. in next phase
for i=1 to m-1 do
                                // m-1 phases
    for j=j \+1 to i+1 do
        find end of S[j..i]; // Using Suffix-Links
        apply rules;
        if (rule 3 applied) // The show stopper rule
            j := j-1;
            break:
                                // End phase
        end if;
    end for;
    j\ := j;
                                // Next start point
end for:
```


Überblick

- High-Level: Phasen und Extensionen
- Verbesserungen
 - Suffix-Links
 - Skip/Count Trick
 - Noch zwei Tricks
- Gesamtkomplexität
- Beispiel

Komplexität

Theorem

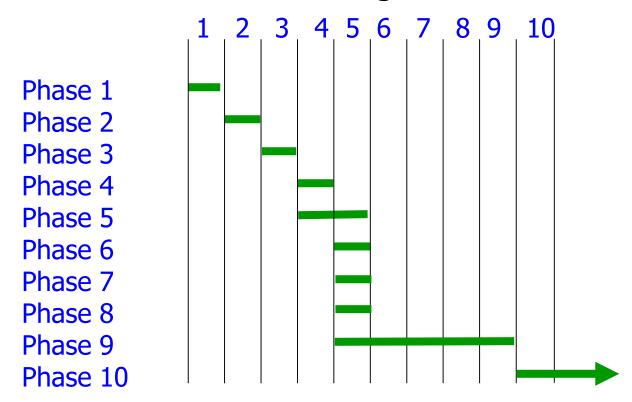
- Ukkonen's Algorithmus benötigt O(m) zur Konstruktion von T_m

Beweisidee

- Jede Phase führt explizit höchstens einen Extensionsschritt aus, der schon in einer früheren Phase ausgeführt wurde
 - Das war der erste Schritt mit Regel 3 aus der letzen Phase
- Danach kommt in der Phase entweder
 - ein weiterer expliziter Schritt
 - Der ist keine Wiederholung und wird auch nicht wieder wiederholt
 - oder es greift Extensionsregel 3 und die Phase ist beendet
- Es gibt m Phasen
- Alle Phasen zusammen führen also höchstens 2m explizite Extensionsschritte aus
- Außerdem werden insgesamt nur O(m) Knotensprünge ausgeführt
 - Was wir hier nicht zeigen

Komplexität

Welche Schritte haben wir ausgeführt?



- Schritte markieren einen Pfad von links oben nach rechts unten
- Das können zusammen höchstens 2*m Schritte sein

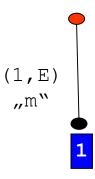
Was bleibt

- Wie gewinnen wir T aus T_m?
 - Führe eine weitere Phase aus mit S[m+1]=\$
 - Das markiert alle Suffixe von S
 - Kein Suffix kann mehr Präfix eines anderen Suffix sein
 - Außerdem die Label von Blattkanten (p,E) mit echtem Label ersetzen
 - Alle Blattkanten in O(m) finden

Ein komplettes Beispiel

12345678901 mississippi

Phase 1 j_1 '=1



Blatt "1" wird nie wieder angefasst Blattkantenlabel werden im Algorithmus ignoriert (hier nur zur Verdeutlichung weitergeführt)

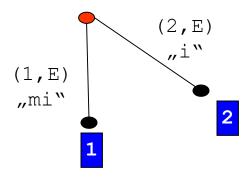
12345678901 mississippi

Phase 2 (=i+1)

• $j_1'=1$

• 2: Rule 2

$$j_2'=2$$



Blatt "2" wird nie wieder angefasst

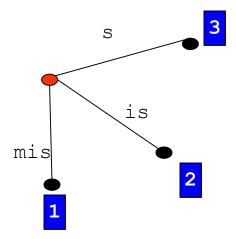
12345678901 mississippi

Phase 3

• $j_2'=2$

• 3: Rule 2

$$j_3$$
'=3



Blatt "3" wird nie wieder angefasst

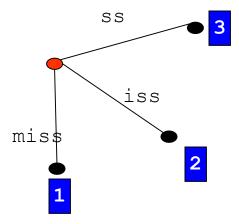
12345678901 mississippi

Phase 4

• j_3 '=3

• 4: Rule 3

$$j_4$$
'=3



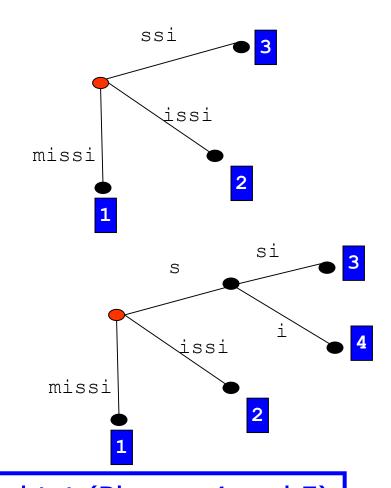
Phasenabbruch nach j=4

12345678901 mississippi

Phase 5

- j_4 '=3
- 4 (s+i): Rule 2
- 5 (,,"+i): Rule 3

$$j_5'=4$$



j=4 wurde zweimal betrachtet (Phasen 4 und 5) Phasenabbruch nach j=5

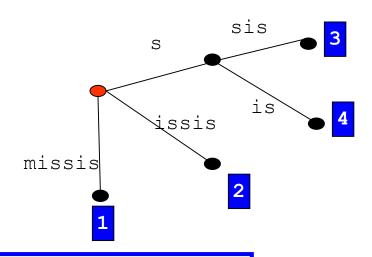
12345678901 mississippi

Phase 6

• $j_5'=4$

• 5 (i+s) : Rule 3

$$j_6'=4$$



j=5 muss zweimal betrachtet werden (5-6) Phasenabbruch nach j=5

Ulf Leser: Algorithmische Bioinformatik

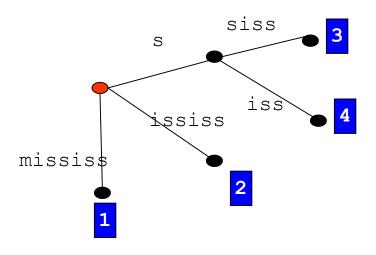
12345678901 mississippi

Phase 7

• j_6 '=4

• 5 (is+s) : Rule 3

$$j_7'=4$$



J=5 muss dreimal betrachtet werden (5-7) Phasenabbruch nach j=5

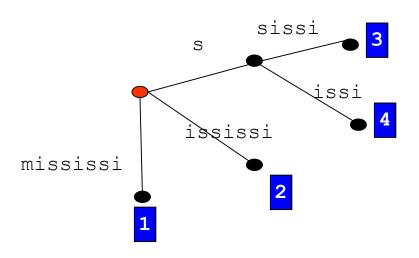
12345678901 mississippi

Phase 8

• j_7 '=4

• 5 (iss+i) : Rule 3

$$j_8$$
'=4



j=5: Phasen 5-8 (Aber bisher alle nur implizit) Phasenabbruch nach j=5

12345678901 mississippi

Phase 9

• j_8 '=4

• 5 (issi+p) : Rule 2

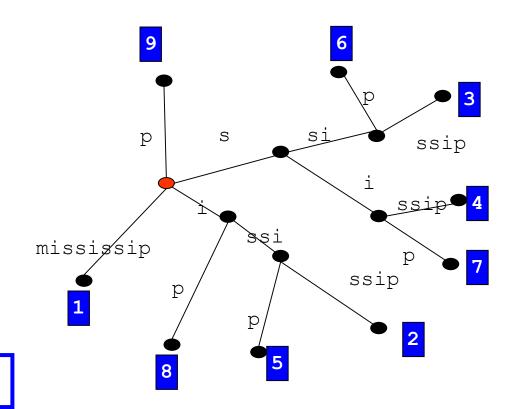
• 6 (ssi+p): Rule 2

• 7 (si+p): Rule 2

• 8 (i+p) : Rule 2

• 9 (,,"+p) : Rule 2

$$j_9$$
'=9



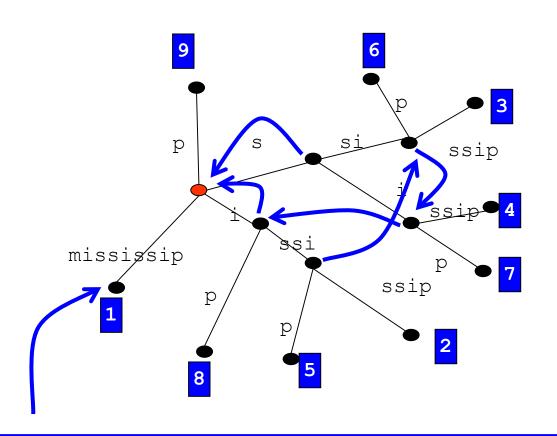
Großer Sprung!

Beispiel 9: Die Suffix-Links

12345678901 mississippi

Phase 9

- $j_8'=4$
- 5 (issi+p) : Rule 2
- 6 (ssi+p): Rule 2
- 7 (si+p): Rule 2
- 8 (i+p) : Rule 2
- 9 (,,"+p) : Rule 2



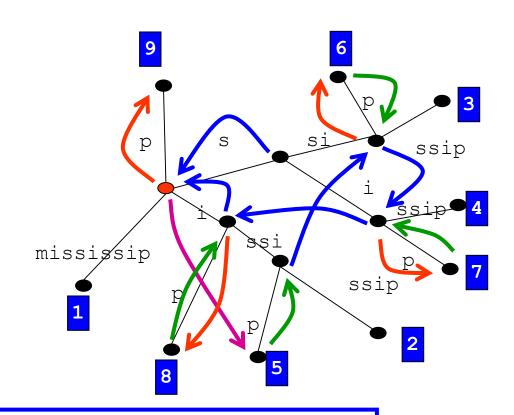
Pointer auf Blatt 1 bleibt immer konstant Dort geht Traversierung in Phase los, die mit Schritt 1 starten Sonst: Erstes Suffix matchen, ausgehend von Root

Beispiel 9: Die Suffix-Links

12345678901 mississippi

Phase 9

- j_8 '=4
- 5 (issi+p) : Rule 2
- 6 (ssi+p): Rule 2
- 7 (si+p): Rule 2
- 8 (i+p): Rule 2
- 9 (,,"+p) : Rule 2



- Suffix-Link springen / von Root matchen
- Von Knoten zu Knoten zum Blatt hüpfen
- Zum untersten inneren Knoten zurück
- Nächster Extensionsschritt

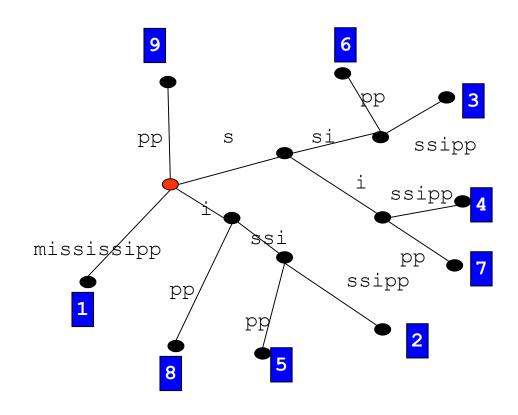
12345678901 mississippi

Phase 10

• j_9 '=9

• 10 (,,"+p): Rule 3

 j_{10} = 9



Nichts passiert (außer implizite Verlängerung der Blattkanten)

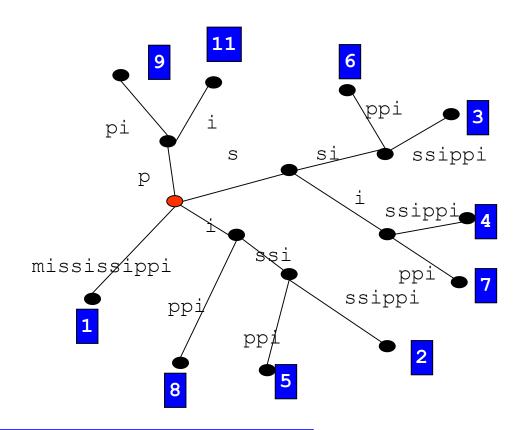
12345678901 mississippi

Phase 11

• j_9 '=9

• 10 (p+i): Rule 2

• 11 (,,"+i): Rule 3



T₁₁ ist fertig Nicht alle Suffixe sind als Blätter vertreten

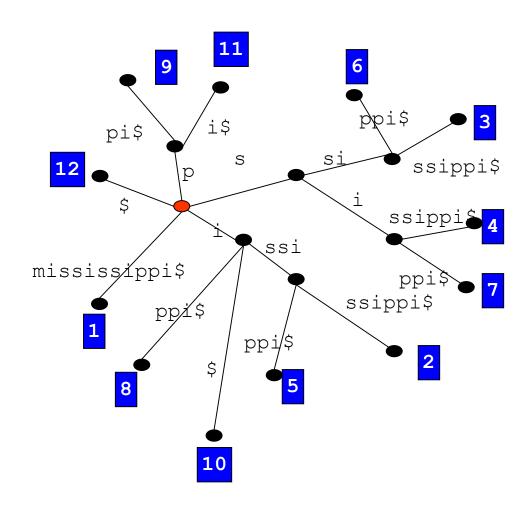
Transformation $T_{11} \rightarrow T$

12345678901 mississippi\$

Neuer Durchlauf

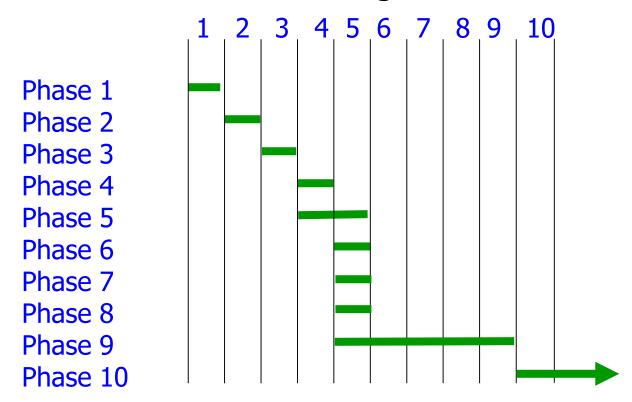
• 1-10: Regel 1

• 11: Regel 2



Komplexität

Welche Schritte haben wir ausgeführt?



- Schritte markieren einen Pfad von links oben nach rechts unten
- Das können zusammen höchstens 2*m Schritte sein

Zusammenfassung

- Algorithmus verläuft konzeptionell in Phasen und Extensionen
- Aber praktisch alle Extensionsschritte k\u00f6nnen implizit ausgef\u00fchrt werden
- Nur linear viele Extensionsschritte führen tatsächlich zu Änderungen in der Baumstruktur
- Navigation wird durch Suffix-Links beschleunigt

Aber ...

- Suffixbäume sind sehr speicherintensiv
 - Viele Pointer, Kantenrepräsentation
 - Beste Implementierungen mit O(1) Branching brauchen ~15
 Byte/Zeichen
- Konstruktion schlecht auf Sekundärspeicher
 - Viel Random Access (durch Suffix-Links)
 - Aber: Hauptspeicher sind heutzutage riesig
- Abhilfe
 - (Enhanced) Suffixarrays deutlich geringerer Speicherverbrauch
 - Methoden, die lineare Laufzeit zugunsten weniger IO aufgeben
 - Mehr Hauptspeicher
- Aber: Auch schlechte Ausnutzung von Cache-Hierarchien

