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Gene Function 

• A fundamental principle of bioinformatics 
– The function of a protein depends on its physical structure 
– The physical structure depends on the protein sequence 
– The protein sequence depends on the gene sequence 
– If the sequence of two genes is only slightly different, so will be the 

protein sequence 
– If the sequence of two proteins is only slightly different, so will be 

their structure 
• If the structure of two proteins is only moderately different, they 

likely have the same (or at least share some) function 

• Studying the sequence of genes allows the generation of 
hypotheses about their function 
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How Genes Evolve 

• Evolution, sequences, and function 
– Any two species X1, X2 have a common ancestor A 
– Any gene G from A will undergo independent evolution in X1 and 

X2, leading to genes G1 and G2 

– The more similar G1 and G2 are, the more likely do they still have 
the same function (that of G) 

– For any two genes of non-trivial length, the chance that they have 
a very similar sequence by chance is extremely small 

– Corollary: If two genes G1 and G2 today are very similar, they most 
likely derive from the same ancestor and most likely have the same 
function 

– How can we quantify this? 

AGGTTTATAGCTCGA AGCTTGAT_GCCGA 

AGGTTGATAGCCGA G 

G1 

G2 
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Basic Evolutionary Events 

• The simplest model: Single bases can be replaced (R), 
inserted (I), or deleted (D) (or kept (M)) 

• Any changes must be explained by sequences of I, D, R  
– I.e., by singular evolutionary events accumulating over time 
– We call this an edit script 

• Very simple yet quite powerful model 
• One more simplification 

AGGTTTATAGCTCGA AGCTTGAT_GCCGA 

??????????????? 
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Example: Eyeless (ey) 

 
 

• Family of genes identified first in Drosophila 
• When activated in arbitrary cells, non functional eyes start 

to grow at various places of the body 
• ey is a “master gene” – controls a cascade of activations of 

other genes eventually leading to eye development 
• Also inflicted with several other neural developments 
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Eyes 

• Eyes probably are an example of convergent evolution 
• However, genes controlling eye development are highly 

conserved across a wide range of species 

Source: Treisman (2004). 

Red: Only shadow 
Blue: Lenses etc. 
Green: Mirrors 

Oval: Compound eyes 
Rectangle: Single chamber 
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Homologues of “eyeless isoform D” (DM) 

MFTLQPTPTAIGTVVPPWSAGTLIERLPSLEDMAHKDNVIAMRNLPCLGTAGGSGLG
GIAGKPSPTMEAVEASTASHPHSTSSYFATTYYHLTDDECHSGVNQLGGVFVGGRPL
PDSTRQKIVELAHSGARPCDISRILQVSNGCVSKILGRYYETGSIRPRAIGGSKPRVAT
AEVVSKISQYKRECPSIFAWEIRDRLLQENVCTNDNIPSVSSINRVLRNLAAQKEQQST
GSGSSSTSAGNSISAKVSVSIGGNVSNVASGSRGTLSSSTDLMQTATPLNSSESGGAS
NSGEGSEQEAIYEKLRLLNTQHAAGPGPLEPARAAPLVGQSPNHLGTRSSHPQLVHG
NHQALQQHQQQSWPPRHYSGSWYPTSLSEIPISSAPNIASVTAYASGPSLAHSLSPP
NDIESLASIGHQRNCPVATEDIHLKKELDGHQSDETGSGEGENSNGGASNIGNTEDD
QARLILKRKLQRNRTSFTNDQIDSLEKEFERTHYPDVFARERLAGKIGLPEARIQVWFS
NRRAKWRREEKLRNQRRTPNSTGASATSSSTSATASLTDSPNSLSACSSLLSGSAGG
PSVSTINGLSSPSTLSTNVNAPTLGAGIDSSESPTPIPHIRPSCTSDNDNGRQSEDCRR
VCSPCPLGVGGHQNTHHIQSNGHAQGHALVPAISPRLNFNSGSFGAMYSNMHHTAL
SMSDSYGAVTPIPSFNHSAVGPLAPPSPIPQQGDLTPSSLYPCHMTLRPPPMAPAHHH
IVPGDGGRPAGVGLGSGQSANLGASCSGSGYEVLSAYALPPPPMASSSAADSSFSAAS
SASANVTPHHTIAQESCPSPCSSASHFGVAHSSGFSSDPISPAVS… 

• 250 most similar protein 
sequences in UniProt 
– Sequence identities all >50%,  
– All p-Values < 1E-50 



Ulf Leser: Introduction to Bioinformatics        9 

This Lecture 

 
 
 
 

• Approximate String Matching 
• Edit distance and alignment 
• Computing global alignments 
• Local alignment 
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Edit Scripts and Edit Distances 

• Definition 
– Let A, B ∈Σ*  

– An edit script e is a sequence of operations I, D, R, M 
– e is an edit script for A and B iff e(A)=B  

• Slightly underdetermined – which replacement? Which base to insert? 
– The length of an edit script is the number of I,D,R it contains 
– The edit distance between A and B is the length of the shortest edit 

script for A and B 

• Remarks 
– If we know e(A)=B, determining e’ with e’(B)=A is trivial 
– The shortest edit script is not unique, but its length is 
– MIMMMR   IRMMMDI 
A_TGTA   _ATGTA_ 
AGTGTC   AGTGT_C 
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Alignment  

• Edit scripts are intuitive from an evolutionary point-of-view, but 
somewhat clumsy from a computational point-of-view 

• Definition 
– A (global) alignment of strings A, B is an arrangement of A and B, enriched 

with „_“ at arbitrary positions, under each other such that no column 
contains two „_“ 

– The score of an alignment is the number of “_” plus the number of 
mismatching columns it contains 

– The alignment distance between A and B is the minimal score of any 
alignment of A and B 

• Edit distance and alignment distance are essentially identical 
• Examples 

– A_TGT_A  A_T_GTA _AGAGAG AGAGAG_ 
AGTGTC_  _AGTGTC GAGAGA_ _GAGAGA 

 Score:          3                         5                     2                       2 
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A Visual Approach: Dotplots 

• A dotplot of two strings A, B is a matrix M with 
– The i‘th character in A is represented by the i’th column 
– The j‘th character in B is represented by the j’th row 
– M[i,j]=1 (blue) iff A[i] = B[j] 

A T G C G G T G C A A T G 

A 

T 

G 

G 

T 

G 

C 

A 

T 
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Dotplot and Identical Substrings 

• How do identical substrings look like in a dotplot? 

A T G C G G T G C A A T G 

A 

T 

G 

G 

T 

G 

C 

A 

T 

• Diagonals from up-left to down-right 
• Longest diagonal is the longest common substring 

G 

C 

A 

G 

G 

T 

T G G C A A C G G T 

T 

T 

A 

G T A 
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A T G C G G T G C A A T G 

A 

T 

G 

G 

T 

G 

C 

A 

T 

Alignments and Dotplots 

A T G C G G T G C A A T G 

A 

T 

G 

G 

T 

G 

C 

A 

T 

ATG___CGGTG__CAATG 
___ATGG__TGCA____T 

__________ATGCGGTGCAATG 
ATGGTGCCAT_____________ 

• Every alignment of A, B can be uniquely mapped into a path through M 
– The path starts in the upper-left corner (coord: 0,0) 
– Go through the alignment column by column 
– Next column is “X,_” – move to the right 
– Next column is “_, X” – move down 
– Next column is “X, Y” – move right-down 
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A T G C G G T G C A A T G 

A 

T 

G 

G 

T 

G 

C 

A 

T 

A T G C G G T G C A A T G 

A 

T 

G 

G 

T 

G 

C 

A 

T 

Examples 

AT__GCGGTGCAA_TG 
_ATGGT____GCAT__ 

ATGCGGTGCAATG 
ATG__GTGCA__T 

• Clearly, the number c(P) of 1’s crossed in a diagonal step 
by a path P is the same as |P|-e(A,B) 

• Finding the path that minimizes |P|-c(P) also solves the 
problem of computing the edit distance 
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This Lecture 

 
 

• Approximate String Matching 
• Edit distance and alignment 
• Computing global alignments 
• Local alignment 
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Algorithm 

• How do we compute the edit distance of two strings? 
• Naïve: Enumerate all paths, compute c(P) for each 

3 3 5 

5 

3 5 

5 13 

• Bad news: There exist >3min(m,n) paths 
• Good news: We can compute e(A,B) with ~3*m*n  

operations 
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AGGTCG 
AGTC 

AGGTC | G 
AGTC  | _ 

AGGTCG | _ 
AGT    | C 

AGGTC | G 
AGT   | C 

AGGT | CG 
AGTC | __ 

AGGTC | _G 
AGT   | C_ 

AGGT | CG 
AGT  | C_ 

Enumerating all Paths Recursively 
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The naïve (recursive) Way 

• Observation 
– Let |A|=n, |B|=m 
– Let d(i,j)=e(A[…i], B[…j]) for  0≤i≤n and 0≤j≤m  

with d(i, 0)=i and d(0,j)=j 
– We can compute e(A,B) = d(n,m) recursively as follows 
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Algorithm 

function d(i,j) { 
 if (i = 0)  return j; 
 else if (j = 0) return i; 
 else 
  return min ( d(i,j-1) + 1, 
    d(i-1,j) + 1, 
    d(i-1,j-1) + t(A[i],B[j])); 
} 
function t(c1, c2) { 
 if (c1 = c2)   return 0; 
 else   return 1; 
} 
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What is Happening? 

d(2,2) 

d(2,1) 

d(1,1) 

d(1,0) 
d(2,0) 

d(1,2) 

d(0,2) 

d(0,1) d(1,1) 

d(1,1) 

d(0,1) 

d(0,0) d(1,0) 

d(1,0) 

d(0,0) 

d(0,1) 

d(1,0) 

d(0,0) 

d(0,1) 
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Much Redundant Computation 

There are only ~n*m different parameter combinations 

d(2,2) 

d(2,1) 

d(1,1) 

d(1,0) 
d(2,0) 

d(1,2) 

d(0,2) 

d(0,1) d(1,1) 

d(1,1) 

d(0,1) 

d(0,0) d(1,0) 

d(1,0) 

d(0,0) 

d(0,1) 

d(1,0) 

d(0,0) 

d(0,1) 
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Much Redundant Computation 

There are only ~n*m different parameter combinations 

d(2,2) 

d(2,1) 

d(1,1) 

d(1,0) 
d(2,0) 

d(1,2) 

d(0,2) 

d(0,1) d(1,1) 

d(1,1) 

d(0,1) 

d(0,0) d(1,0) 

d(1,0) 

d(0,0) 

d(0,1) 

d(1,0) 

d(0,0) 

d(0,1) 
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A T G C G G T G C A A T 

A 

T 

G 

G 

T 

G 

C 

A 

Dynamic Programming – Using a Table 

• Instead of computing top-down (from n,m), we compute 
all different values for d(i,j) bottom-up  
– We store all values in a table 

• We can immediately “compute” d(i,0) and d(0,j) 
• Which values can we compute next? 

A T G C G G T G C A A T 

A 

T 

G 

G 

T 

G 

C 

A 
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Example 

A T G C G G T 

0 1 2 3 4 5 6 7 

A 1 

T 2 

G 3 

G 4 

A T G C G G T 

0 1 2 3 4 5 6 7 

A 1 0 

T 2 

G 3 

G 4 

A T G C G G T 

0 1 2 3 4 5 6 7 

A 1 0 1 2 3 4 5 6 

T 2 

G 3 

G 4 

A T G C G G T 

0 1 2 3 4 5 6 7 

A 1 0 1 2 3 4 5 6 

T 2 1 0 1 2 3 4 5 

G 3 

G 4 

A T G C G G T 

0 1 2 3 4 5 6 7 

A 1 0 1 2 3 4 5 6 

T 2 1 0 1 2 3 4 5 

G 3 2 1 0 1 2 3 4 

G 4 

A T G C G G T 

0 1 2 3 4 5 6 7 

A 1 0 1 2 3 4 5 6 

T 2 1 0 1 2 3 4 5 

G 3 2 1 0 1 2 3 4 

G 4 3 2 1 1 1 2 3 



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Finding the (an) optimal Alignment(s) 

A T G C G G T 

0 1 2 3 4 5 6 7 

A 1 0 1 2 3 4 5 6 

T 2 1 0 1 2 3 4 5 

G 3 2 1 0 1 2 3 4 

G 4 3 2 1 1 1 2 3 

A T G C G G T 

0 1 2 3 4 5 6 7 

A 1 0 1 2 3 4 5 6 

T 2 1 0 1 2 3 4 5 

G 3 2 1 0 1 2 3 4 

G 4 3 2 1 1 1 2 3 

A T G C G G T 

0 1 2 3 4 5 6 7 

A 1 0 1 2 3 4 5 6 

T 2 1 0 1 2 3 4 5 

G 3 2 1 0 1 2 3 4 

G 4 3 2 1 1 1 2 3 

• Traceback 
– We find the path from back to front 
– Start at cell (n,m) 
– See which cells were used to compute d(n,m) 
– Walk any of these – finds one optimal path 
– Walking all means finding all optimal paths 

• Alternative: Store pointers while filling the table 
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Complexity 

 
• Building the table 

– For every d(i,j), we need to access three other cells and make 
some (constantly many) additions and comparisons  

– There are (m+1)*(n+1) cells 
– Thus: ~3*m*n=O(m*n) operations 

• Finding one optimal alignment 
– We must walk from (n,m) to (1,1) 
– Such a path can have at most length m+n 

• We cannot go wrong! 

– Together: approximately m+n operations 

• Together: O(m*n)  (for m*n > m+n) 



Ulf Leser: Introduction to Bioinformatics        28 

This Lecture 

 
 
 
 

• Approximate String Matching 
• Edit distance and alignment 
• Computing global alignments 
• Local alignment 
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Eyeless Again – a Closer Look 

• The similar regions in the 
different homologues are 
not distributed randomly 

• Actually, a single stretch of 
128 AA, the PAX domain, is 
virtually unchanged in all 
homologues 
– Controls binding to DNA and 

hence regulatory effects 

• Typical: Only some parts of 
a gene are conserved, and 
these carry function 



Ulf Leser: Introduction to Bioinformatics        30 

Example 

A C C C T A T C G A T A G C T A G A A G C T C G A A A A T A C C G A C C A G T A T 

A G G A G T C G A T A A T A C A T A T A A G A G A T A G A A T A T A T T G A T G 

A C C C T A T C T A T A G C T A G A A G C T C G A T A A T A C C G A C C A G T A T 

A G G A G T C G A T C A T A C A T A T A A G A G A T A G A A T A T A T T G A C G - - - - - 

- - - - 

A C C C T A T C G A T A G C T A G A A G C T C G A A A A T A C C G A C C A G T A T 

A G G A G T C G A T A A T A C A T A T A A G A G A T A G A A T A T A T T G A T G 

Zufall? 

Kein Zufall! 
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Distance or Similarity 

• Until now, we computed a global distance 
– The higher e(A,B), the less similar are A and B 
– The longer A and B, the higher their distance in general  
– Different lengths are punished: e(A,B) ≥ | |A|-|B| | 

• Often, we want a local similarity instead  
– If we don’t compare two entities, but two strings presumably 

containing each one entity 
– If we have a sequence and don’t know exactly where the genes are 
– If a function is associated to a motif in a protein 

• We need to search for substrings A’∈A, B’∈B which are 
very similar to each other 
– A’ and B’ should have a certain length to be interesting 
– e(A’,B’) does not help – optimal distance is 0 for A’=B’=“” 
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Sequence Similarity 

• A scoring function is a function s: Σ‘xΣ‘ → Integer 
– We also call s a substitution matrix 

• The ungapped similarity sim’ of A, B wrt. s with |A|=|B|=n 
is defined as  
 

 

 
• The similarity sim of A, B (wrt. s) is the highest ungapped 

similarity score over all alignments of A and B 
– Higher = better; maximal similarity is n*max(s) 

• We are not yet there: This still is a global similarity score 

( )∑
=

=
n

i
iBiAsBAsim

1
][],[),('
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Example 

A C G T _ 

A 4 -2 -2 -1 -3 

C 4 -1 -2 -3 

G 4 -2 -3 

T 4 -3 

= -1 

= 15 

∑‘ = {A,C,G,T,_} 
AC_GTC 
AGGT_C 

= 10 

ACGTC 
AGGTC 

A_CGTC 
AG_GTC 
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Computing sim(A, B) 

• Same ideas as for edit distance 
• But: We want a high similarity, not a low distance 
• Thus, we can compute sim(|A|,|B|) with 
   

𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 0 = � 𝑠𝑠 𝐴𝐴 𝑘𝑘 , _          𝑠𝑠𝑠𝑠𝑠𝑠 0, 𝑗𝑗 = � 𝑠𝑠(_,𝐵𝐵 𝑘𝑘 )
𝑘𝑘=1..𝑗𝑗𝑘𝑘=1..𝑖𝑖

 

 

 𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑗𝑗 − 1 + 𝑠𝑠 _,𝐵𝐵[𝑗𝑗]
𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 − 1, 𝑗𝑗 + 𝑠𝑠(𝐴𝐴 𝑖𝑖 , _)

𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 − 1, 𝑗𝑗 − 1  + 𝑠𝑠(𝐴𝐴 𝑖𝑖 ,𝐵𝐵 𝑗𝑗 )
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A G G T C 

0 1 2 3 4 5 

A 1 0 1 2 3 4 

G 2 1 0 1 2 3 

T 3 2 1 1 1 2 

C 4 3 2 2 2 1 

C 5 4 3 3 3 2 

A G G T C 

0 -3 -6 -9 -12 -15 

A -3 4 1 -2 -5 -8 

G -6 1 8 5 

T -9 

C -12 

C -15 

Edit Distance 

A G T C 
A 4 -1 -1 -1 
G 4 -1 -1 
T 4 -1 
C 4 
- -3 -3 -3 -3 

Similarity 

Example 
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Lokal Similarity = Local Alignment 

• Definition  
– The local similarity score sim* of A, B is defined as 

 
 
 

 
• Remark 

– Inequality in length of A and B does not matter any more 
– Sounds terribly complex, but there is a neat trick 

( )
BfsubstringOBAfsubstringOA

BAsimBAsim
','

)','(max),(*
∀

=

A C C C T A T C G A T A G C T A G A A G C T C G A A A A T A C C G A C C A G T A T 

A G G A G T C G A T A A T A C A T A T A A G A G A T A G A A T A T A T T G A T G 
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Example 

A T G T G G 

0 -1 -2 -3 -4 -5 -6 

G -1 

T 0 

G 1 

A 0 

Match: +1 

I/R/D:  -1 

A T G T G G 

0 0 0 

G 1 

T 2 

G 3 

A 2 

Path length 

Similarity 
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Smith-Waterman Algorithm 

• Smith, Waterman: „Identification of common molecular 
subsequences“, J. Mol. Bio 147, 1981 

• Idea 
– Note: Local paths need not span the entire strings 
– Look at a single path 
– A series of matches (positive values for scoring function s) creates 

a series of increasing similarity values  
– Any step with s<0 lowers the score 
– Whenever the cumulative score falls below 0, we drop this prefix 
– Instead of carrying on, we conceptually start a new local path 
– To this end, we simply set true_score=max(0,score) 
– The highest value in the matrix is the end of the best local path 
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Computation 

• The same ideas as before 
• We compute sim*(A,B) with 

– Assume ∀X: s(X,_)<0 and s(_,X)<0 
 

𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 0 = � 𝑠𝑠 𝐴𝐴 𝑘𝑘 , _          𝑠𝑠𝑠𝑠𝑠𝑠 0, 𝑗𝑗 = � 𝑠𝑠(_,𝐵𝐵 𝑘𝑘 )
𝑘𝑘=1..𝑗𝑗𝑘𝑘=1..𝑖𝑖

 

 

 𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 �

𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑗𝑗 − 1 + 𝑠𝑠 _,𝐵𝐵[𝑗𝑗]
𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 − 1, 𝑗𝑗 + 𝑠𝑠(𝐴𝐴 𝑖𝑖 , _)

𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 − 1, 𝑗𝑗 − 1  + 𝑠𝑠(𝐴𝐴 𝑖𝑖 ,𝐵𝐵 𝑗𝑗 )
0
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Example 

A T G T C G 

0 -1 -2 -3 -4 -5 -6 

A -1 1 0 -1 -2 -3 -4 

T -2 0 2 1 0 -1 -2 

G -3 -1 1 3 2 1 0 

A T G T C G 

0 0 0 0 0 0 0 

A 0 1 0 0 0 0 0 

T 0 0 2 1 1 0 0 

G 0 0 1 3 2 1 1 

Match: +1 

I/R/D:  -1 

ATGTCG 
ATG___ 

ATGTCG 
AT___G 

ATGTCG 
A__T_G 

ATGTCG 
ATG___ 
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Local versus global Alignment 

 
• Global Alignment 

– Comparison of two entire sequences 
– Use when you think the entire sequences are related  
– Interest: The differences; assumption: Relatedness 
– Example: Proteins of the same family 

• Local Alignment  
– Compare uncharacterized sequences 
– Use when comparing “randomly sampled” sequences 
– Interest: Similar regions; assumptions: None 
– Often a first step before global alignment 
– Example: Find similar genes in other species genomes 
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Beware: Not all Events are Equal  

C T T A G T G A C T A C G G T A A A 

Leu Ser Asp Tyr Gly Lys 

DNA 

Protein 
Wildtype 

C T T A G C G A C T A C G G T A A A 

Leu Ser Asp Tyr Gly Lys 

DNA 

Protein 
Neutral 

C T T A G T G A A T A C G G T A A A 

Leu Ser Glu Tyr Gly Lys 

DNA 

Protein 
Functional 

DNA 

Protein 
Probably fatal 

C T T A G T G A C T A G G G T A A A 

Leu Ser Asp Stop-Codon 

DNA 

Protein 
Probably fatal 

C T T A G T G A C T A C G G T A A A 

Leu Ser 

A 

His Asp Leu Thr 
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Further Reading 

 
 
 
 

• Everywhere 
• Relaxed: Christianini & Hahn, Chapter 3 
• Step by step: Waack, Chapter 9 
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