

Sequence Alignment

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

- A fundamental principle of bioinformatics
 - The function of a protein depends on its physical structure
 - The physical structure depends on the protein sequence
 - The protein sequence depends on the gene sequence
 - If the sequence of two genes is only slightly different, so will be the protein sequence
 - If the sequence of two proteins is only slightly different, so will be their structure
 - If the structure of two proteins is only moderately different, they likely have the same (or at least share some) function
- Studying the sequence of genes allows the generation of hypotheses about their function

- Evolution, sequences, and function
 - Any two species X_1 , X_2 have a common ancestor A
 - Any gene G from A will undergo independent evolution in X_1 and X_2 , leading to genes G_1 and G_2
 - The more similar G_1 and G_2 are, the more likely do they still have the same function (that of G)
 - For any two genes of non-trivial length, the chance that they have a very similar sequence by chance is extremely small
 - Corollary: If two genes G₁ and G₂ today are very similar, they most likely derive from the same ancestor and most likely have the same function

- The simplest model: Single bases can be replaced (R), inserted (I), or deleted (D) (or kept (M))
- Any changes must be explained by sequences of I, D, R
 - I.e., by singular evolutionary events accumulating over time
 - We call this an edit script
- Very simple yet quite powerful model
- One more simplification

- Family of genes identified first in Drosophila
- When activated in arbitrary cells, non functional eyes start to grow at various places of the body
- ey is a "master gene" controls a cascade of activations of other genes eventually leading to eye development
- Also inflicted with several other neural developments

Red: Only shadow Blue: Lenses etc. Green: Mirrors

Oval: Compound eyes Rectangle: Single chamber

Source: Treisman (2004).

- Eyes probably are an example of convergent evolution
- However, genes controlling eye development are highly conserved across a wide range of species

Eyes

Homologues of "eyeless isoform D" (DM)

🕙 job: 201105063F73IVJY0G in UniProtKB by taxonomy - Mozilla I	Firefox
Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe	
🚼 eyeless uniprot drosophila - Google-Suche 💉 💮 job:201105063F73IVJY0G in l	UniProtKB b ×
http://www.uniprot.org/uniprot/?query=job:201105063F73IVJY00	G&by=taxonomy#
🦻 Meistbesuchte Seiten 🦲 Nachsehen 🦳 Frequent 🖓 WBI 🦓 Lehre 🔧 Go	
Protein Knowledgebase (UniProtKB) 💙 [job:201105063F73IVJY0G	Search
229 results for job:201105063F73IVJY0G in UniProtKB browsing by taxon	omv
View result list	
 Ceractinomorpha (4) Eurnetazoa (225) Bilateria (224) Coelomata (213) Chordata (129) Branchiostoma (10) Urnehordata (8) Vertebrata (111) Euteleostomi (109) Clupeocephala (30) Tetrapoda (79) Armiota (56) Pheria (48) Eutheria (47) Eutheria (48) Glires (Rodents and rabbits) (22 Homo sapiens (Human) (19) Batrachia (23) Anura (18) Satamandroidea (5) Larmetra japonica (Japanese lamprey) (Entosphenu japonicus) (2) Protostomia (78) Anura (18) Echinodermata (4) Sacoglossus kowalevskii (Acorn worm) (2) Protostomia (73) Anthropoda (72) Decapodiformes (2) Lineus sanguineus (Ribbon worm) (1) Platyhelminthes (5) Schistosoma mansoni (Blood fluke) (2) Pseudocelomata (6) Brachionus plicatilis (Marine rotifer) (Brachionus muelleri) (1) Nematoda (roundworms) (5) 	Glires (Ro d
─Caenorhabditis briggsae (1) ─Caenorhabditis elegans (1)	

Caenorhabditis remanei (Caenorhabditis vulgaris)

(1)

MFTLQPTPTAIGTVVPPWSAGTLIERLPSLEDMAHKDNVIAMRNLPCLGTAGGSGLG GIAGKPSPTMEAVEASTASHPHSTSSYFATTYYHLTDDECHSGVNQLGGVFVGGRPL PDSTRQKIVELAHSGARPCDISRILQVSNGCVSKILGRYYETGSIRPRAIGGSKPRVAT AEVVSKISQYKRECPSIFAWEIRDRLLQENVCTNDNIPSVSSINRVLRNLAAQKEQQST GSGSSSTSAGNSISAKVSVSIGGNVSNVASGSRGTLSSSTDLMQTATPLNSSESGGAS NSGEGSEQEAIYEKLRLLNTQHAAGPGPLEPARAAPLVGQSPNHLGTRSSHPQLVHG NHQALQQHQQQSWPPRHYSGSWYPTSLSEIPISSAPNIASVTAYASGPSLAHSLSPP NDIESLASIGHQRNCPVATEDIHLKKELDGHQSDETGSGEGENSNGGASNIGNTEDD QARLILKRKLQRNRTSFTNDQIDSLEKEFERTHYPDVFARERLAGKIGLPEARIQVWFS NRRAKWRREEKLRNQRRTPNSTGASATSSSTSATASLTDSPNSLSACSSLLSGSAGG PSVSTINGLSSPSTLSTNVNAPTLGAGIDSSESPTPIPHIRPSCTSDNDNGRQSEDCRR VCSPCPLGVGGHQNTHHIQSNGHAQGHALVPAISPRLNFNSGSFGAMYSNMHHTAL SMSDSYGAVTPIPSFNHSAVGPLAPPSPIPQQGDLTPSSLYPCHMTLRPPPMAPAHHH IVPGDGGRPAGVGLGSGQSANLGASCSGSGYEVLSAYALPPPPMASSSAADSSFSAAS SASANVTPHHTIAQESCPSPCSSASHFGVAHSSGFSSDPISPAVS...

- 250 most similar protein sequences in UniProt
 - Sequence identities all >50%,
 - All p-Values < 1E-50</p>

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

- Definition
 - Let A, B $\in \Sigma^*$
 - An edit script e is a sequence of operations I, D, R, M
 - e is an edit script for A and B iff e(A)=B
 - Slightly underdetermined which replacement? Which base to insert?
 - The length of an edit script is the number of I,D,R it contains
 - The edit distance between A and B is the length of the shortest edit script for A and B
- Remarks
 - If we know e(A)=B, determining e' with e'(B)=A is trivial
 - The shortest edit script is not unique, but its length is

– MIMMMR	IRMMMDI
A_TGTA	_ATGTA_
AGTGTC	AGTGT_C

Alignment

- Edit scripts are intuitive from an evolutionary point-of-view, but somewhat clumsy from a computational point-of-view
- Definition
 - A (global) alignment of strings A, B is an arrangement of A and B, enriched with "_" at arbitrary positions, under each other such that no column contains two "_"
 - The score of an alignment is the number of "_" plus the number of mismatching columns it contains
 - The alignment distance between A and B is the minimal score of any alignment of A and B
- Edit distance and alignment distance are essentially identical
- Examples

-	A_TGT_A	A_T_GTA	_AGAGAG	AGAGAG_
	AGTGTC_	_AGTGTC	GAGAGA_	_GAGAGA
Score:	3	5	2	2

A Visual Approach: Dotplots

- A dotplot of two strings A, B is a matrix M with
 - The i'th character in A is represented by the i'th column
 - The j'th character in B is represented by the j'th row
 - M[i,j] = 1 (blue) iff A[i] = B[j]

Dotplot and Identical Substrings

• How do identical substrings look like in a dotplot?

- Diagonals from up-left to down-right
 - Longest diagonal is the longest common substring

- Every alignment of A, B can be uniquely mapped into a path through M
 - The path starts in the upper-left corner (coord: 0,0)
 - Go through the alignment column by column
 - Next column is "X,_" move to the right
 - Next column is "_, X" move down
 - Next column is "X, Y" move right-down

Examples

- Clearly, the number c(P) of 1's crossed in a diagonal step by a path P is the same as |P|-e(A,B)
- Finding the path that minimizes |P|-c(P) also solves the problem of computing the edit distance

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Algorithm

- How do we compute the edit distance of two strings?
- Naïve: Enumerate all paths, compute c(P) for each

- Bad news: There exist >3^{min(m,n)} paths
- Good news: We can compute e(A,B) with ~3*m*n operations

Enumerating all Paths Recursively

The naïve (recursive) Way

- Observation
 - Let /A/=n, /B/=m
 - Let d(i,j)=e(A[...i], B[...j]) for $0 \le i \le n$ and $0 \le j \le m$ with d(i, 0)=i and d(0,j)=j
 - We can compute e(A,B) = d(n,m) recursively as follows

$$d(i, j) = \min \begin{cases} d(i, j-1) + 1 \\ d(i-1, j) + 1 \\ d(i-1, j-1) + t(i, j) \end{cases}$$

$$t(i, j) = \begin{cases} 1: if \quad A[i] \neq B[j] \\ 0: else \end{cases}$$

```
function d(i,j) {
      if (i = 0)
                 return j;
      else if (j = 0) return i;
      else
             return min ( d(i,j-1) + 1,
                          d(i-1,j) + 1,
                          d(i-1,j-1) + t(A[i],B[j]));
}
function t(c_1, c_2) {
      if (c_1 = c_2)
                          return 0;
      else
                           return 1;
}
```

What is Happening?

Much Redundant Computation

There are only ~n*m different parameter combinations

Much Redundant Computation

There are only ~n*m different parameter combinations

- Instead of computing top-down (from n,m), we compute all different values for d(i,j) bottom-up
 - We store all values in a table
- We can immediately "compute" d(i,0) and d(0,j)
- Which values can we compute next?

Example

 $d(i, j) = \min \begin{cases} d(i, j-1) + 1 \\ d(i-1, j) + 1 \\ d(i-1, j-1) + t(i, j) \end{cases}$

		A	Т	G	С	G	G	Т
	0	1	2	3	4	5	6	7
A	1							
т	2							
G	3							
G	4							

		A	Т	G	С	G	G	Т
	0	1	2	3	4	5	6	7
A	1	0						
т	2							
G	3							
G	4							

		A	Т	G	C	G	G	Т
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
т	2							
G	3							
G	4							

		A	Т	G	С	G	G	Т
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
т	2	1	0	1	2	3	4	5
G	3							
G	4							

		A	Т	G	C	G	G	Т
	0	1	2	3	4	5	6	7
А	1	0	1	2	3	4	5	6
т	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4							

		A	Т	G	С	G	G	Т
	0	1	2	3	4	5	6	7
Α	1	0	1	2	3	4	5	6
т	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4	3	2	1	1	1	2	3

Finding the (an) optimal Alignment(s)

- Traceback
 - We find the path from back to front
 - Start at cell (n,m)
 - See which cells were used to compute d(n,m)
 - Walk any of these finds one optimal path
 - Walking all means finding all optimal paths
- Alternative: Store pointers while filling the table

			A	Т	G	С	G	G	т
	(3	-1	2	-3-	4	5	6	-7
A		L	0	1	2	3	4	5	6
т		2	1	0	1	2	З	4	5
G]	3	2	1	0	1	2	3	4
G	4	1	3	2	1	1	1	2	3

Complexity

- Building the table
 - For every d(i,j), we need to access three other cells and make some (constantly many) additions and comparisons
 - There are (m+1)*(n+1) cells
 - Thus: ~3*m*n=O(m*n) operations
- Finding one optimal alignment
 - We must walk from (n,m) to (1,1)
 - Such a path can have at most length m+n
 - We cannot go wrong!
 - Together: approximately m+n operations
- Together: $O(m^*n)$ (for $m^*n > m+n$)

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Eyeless Again – a Closer Look

Color cod	e for identity 0-100	% =			
Accession	Entry name	0	Query hit	898	0
🔲 Query 201	105063F73J6N16R				
🗌 Q6S728	Q6S728_HUMAN				
C4QNQ9	C4QNQ9_SCHMA				
🗌 E6ZHK0	E6ZHK0_DICLA				
B5DS11	B5DS11_DROPS				
🗌 B4H9Q0	B4H9Q0_DROPE				
🔲 Q9W601	Q9W601_CHICK				
🗌 Q3LFR5 👘	Q3LFR5_TAKRU				
🗌 A2AKM9	A2AKM9_MOUSE				
🗌 A2AKM8	A2AKM8_MOUSE				
🗌 A2AKM7	A2AKM7_MOUSE				
🗌 A2AKM6	A2AKM6_MOUSE				
🗌 A2AKM5	A2AKM5_MOUSE	•••••			
E2RIS8	E2RIS8_CANFA				
D2HAM7	D2HAM7_AILME				
🗌 Q68732	Q6S732_HUMAN				
🗌 Q6S731	Q6S731_HUMAN	•••••			
🗌 Q6S730	Q6S730_HUMAN	•••••			
🗌 Q6S729	Q6S729_HUMAN				
🗌 Q58FM2	Q5SFM2_HUMAN	•••••			
E7ERW5	E7ERW5_HUMAN				
E7EQT0	E7EQT0_HUMAN				
E3W992	E3W992_HUMAN				
СОКТОО	COKTGO_HUMAN	••••••	••••••		
COKTF6	COKTF6_HUMAN				
🗌 Q02650	PAX5_MOUSE				
🔲 Q02548	PAX5 HUMAN	••••••			

- The similar regions in the different homologues are not distributed randomly
- Actually, a single stretch of 128 AA, the PAX domain, is virtually unchanged in all homologues
 - Controls binding to DNA and hence regulatory effects
- Typical: Only some parts of a gene are conserved, and these carry function

ACCCTATCGATAGCTAGAAGCTCGAAAATACCGACCAGTAT AGGAGTCGATAATACATATAAGAGAGATAGAATATATTGATG

Zufall?

ACCCT	ATC	ΤA	T <mark>A</mark> -	- <mark>-</mark> G	C-	·T	A	<mark>3</mark> A	A	GC	T	C G Z	1 T	AA	TA	CC	3 <mark>A</mark>		GI	AT-
I					I	I											I			
<mark>A – G</mark> GA	GTC	<mark>G</mark> A	TCZ	ATA	CZ	T	A	ΓA	A	<mark>3 -</mark>	A -	- G Z	1 T	<mark>A</mark> G	A A	TAI	C A	– T 1	G-	ACG

Kein Zufall!

ACCCTATCGATAGCTAGAAGCTCGAAAATACCGACCAGTAT

.

AGGAGTCGATAATACATATAAGAGATAGAATATATATGATG

- Until now, we computed a global distance
 - The higher e(A,B), the less similar are A and B
 - The longer A and B, the higher their distance in general
 - Different lengths are punished: $e(A,B) \ge ||A|-|B||$
- Often, we want a local similarity instead
 - If we don't compare two entities, but two strings presumably containing each one entity
 - If we have a sequence and don't know exactly where the genes are
 - If a function is associated to a motif in a protein
- We need to search for substrings A'∈A, B'∈B which are very similar to each other
 - A' and B' should have a certain length to be interesting
 - e(A',B') does not help optimal distance is 0 for A'=B'=""

Sequence Similarity

- A scoring function is a function s: $\Sigma' x \Sigma' \rightarrow$ Integer – We also call s a substitution matrix
- The ungapped similarity sim' of A, B wrt. s with |A|=|B|=n is defined as

$$sim'(A,B) = \sum_{i=1}^{n} s(A[i], B[i])$$

• The similarity sim of A, B (wrt. s) is the highest ungapped similarity score over all alignments of A and B

Higher = better; maximal similarity is n*max(s)

• We are not yet there: This still is a global similarity score

Example

 $\Sigma' = \{A, C, G, T, \}$

	Α	С	G	Т	_
Α	4	-2	-2	-1	-3
С		4	-1	-2	-3
G			4	-2	-3
Т				4	-3

AC_GTC AGGT_C	= -1
ACGTC AGGTC	= 15
A_CGTC AG_GTC	= 10

- Same ideas as for edit distance
- But: We want a high similarity, not a low distance
- Thus, we can compute sim(|A|,|B|) with

$$sim(i,0) = \sum_{k=1..i} s(A[k],]) \qquad sim(0,j) = \sum_{k=1..j} s(_, B[k])$$

$$sim(i, j) = \max \begin{cases} sim(i, j - 1) + s(_, B[j]) \\ sim(i - 1, j) + s(A[i], _) \\ sim(i - 1, j - 1) + s(A[i], B[j]) \end{cases}$$

Example

	A	G	Т	C
Α	4	-1	-1	-1
G		4	-1	-1
Т			4	-1
C				4
-	-3	-3	-3	-3

Edit Distance

Similarity

		A	G	G	т	С
	0	1	2	3	4	5
A	1	0	1	2	3	4
G	2	1	0	1	2	3
т	3	2	1	1	1	2
С	4	3	2	2	2	1
C	5	4	3	3	3	2

		A	G	G	Т	С
	0	-3	-6	-9	-12	-15
A	-3	4	1	-2	-5	-8
G	-6	1	8	5		
т	-9					
C	-12					
C	-15					

- Definition
 - The local similarity score sim* of A, B is defined as

$$sim^*(A, B) = \max(sim(A', B'))$$

$$\forall A' substring Of A, B' substring Of B$$

- Remark
 - Inequality in length of A and B does not matter any more
 - Sounds terribly complex, but there is a neat trick

- Smith, Waterman: "Identification of common molecular subsequences", J. Mol. Bio 147, 1981
- Idea
 - Note: Local paths need not span the entire strings
 - Look at a single path
 - A series of matches (positive values for scoring function s) creates a series of increasing similarity values
 - Any step with s<0 lowers the score
 - Whenever the cumulative score falls below 0, we drop this prefix
 - Instead of carrying on, we conceptually start a new local path
 - To this end, we simply set true_score=max(0,score)
 - The highest value in the matrix is the end of the best local path

Computation

- The same ideas as before
- We compute sim*(A,B) with

– Assume $\forall X: s(X,_) < 0$ and $s(_,X) < 0$

$$sim(i,0) = \sum_{k=1..i} s(A[k],]) \quad sim(0,j) = \sum_{k=1..j} s(_, B[k])$$

$$sim(i,j) = max \begin{cases} sim(i,j-1) + s(_,B[j]) \\ sim(i-1,j) + s(A[i],_) \\ sim(i-1,j-1) + s(A[i],B[j]) \\ 0 \end{cases}$$

Example

I/R/D: -1

		A	т	G	т	С	G
	0	-1	-2	-3	-4	-5	-6
A	-1	1	-0 +	-1	-2	-3	-4
т	-2	0	2	- 1 ←	-0+	-1	-2
G	-3	-1	1	3	2	1.	_0

ATGTCG ATG
ATGTCG ATG
ATGTCG
AT_G

		A	т	G	т	С	G
	0	0	0	0	0	0	0
A	0	1	0	0	0	0	0
т	0	0	2	1	1	0	0
G	0	0	1	3	2	1	1

ATGTCG ATG____

Global Alignment

- Comparison of two entire sequences
- Use when you think the entire sequences are related
- Interest: The differences; assumption: Relatedness
- Example: Proteins of the same family
- Local Alignment
 - Compare uncharacterized sequences
 - Use when comparing "randomly sampled" sequences
 - Interest: Similar regions; assumptions: None
 - Often a first step before global alignment
 - Example: Find similar genes in other species genomes

Beware: Not all Events are Equal

- Everywhere
- Relaxed: Christianini & Hahn, Chapter 3
- Step by step: Waack, Chapter 9