

Sequence Alignment

Ulf Leser

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Gene Function

- A fundamental principle of bioinformatics
- The function of a protein depends on its physical structure
- The physical structure depends on the protein sequence
- The protein sequence depends on the gene sequence
- If the sequence of two genes is only slightly different, so will be the protein sequence
- If the sequence of two proteins is only slightly different, so will be their structure
- If the structure of two proteins is only moderately different, they likely have the same (or at least share some) function
- Studying the sequence of genes allows the generation of hypotheses about their function

How Genes Evolve

- Evolution, sequences, and function
- Any two species X_{1}, X_{2} have a common ancestor A
- Any gene G from A will undergo independent evolution in X_{1} and X_{2}, leading to genes G_{1} and G_{2}
- The more similar G_{1} and G_{2} are, the more likely do they still have the same function (that of G)
- For any two genes of non-trivial length, the chance that they have a very similar sequence by chance is extremely small
- Corollary: If two genes G_{1} and G_{2} today are very similar, they most likely derive from the same ancestor and most likely have the same function
- How can we quantify this?

AGGTTGATAGCCGA \mathbf{G}

\mathbf{G}_{1}
AGGTTTATAGCTCGA
AGCTTGAT_GCCGA

Basic Evolutionary Events

- The simplest model: Single bases can be replaced (R), inserted (I), or deleted (D) (or kept (M))
- Any changes must be explained by sequences of I, D, R
- I.e., by singular evolutionary events accumulating over time
- We call this an edit script
- Very simple yet quite powerful model
- One more simplification

Example: Eyeless (ey)

- Family of genes identified first in Drosophila
- When activated in arbitrary cells, non functional eyes start to grow at various places of the body
- ey is a "master gene" - controls a cascade of activations of other genes eventually leading to eye development
- Also inflicted with several other neural developments

Eyes

A

D

Red: Only shadow Blue: Lenses etc. Green: Mirrors

Oval: Compound eyes Rectangle: Single chamber

Source: Treisman (2004).

- Eyes probably are an example of convergent evolution
- However, genes controlling eye development are highly conserved across a wide range of species

Homologues of "eyeless isoform D" (DM)

```
3) job:201105063F73IVJYOG in UniProtKB by taxonomy - Mozilla Firefox
Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe
$ eyeless uniprot drosophila - Google-Suche x ..% job:201105063F73IVJYOG in UniProtKB b... x
& \
&) Meistbesuchte Seiten \square Nachsehen \square Frequent w, wis Lehre & Google \square News
    Protein Knowledgebase (UniProtKB)\vee iob:201105063F73|VJY0G
```

229 results for job:201105063F73IVJY0G in UniProtKB browsing by taxonomy
国 View result list
\pm Ceractinomorpha (4)

- Eumetazoa (225) Bilateria (224)
- Coelomata (213)
- Deuterostomia (135)

Chordata (129)

+ Branchiostoma
(10)
- vertebrata (111)
- Euteleostomi (109)
+ Clupeocephala (30)
- Tetrapoda (79)
+ Neognathae
- Theria (48)
- Eutheria (47)

Euarchontoglires (41)

+ Laurasiatheria (6)
Monodelphis domestica (Gray short-tailed gray opossum) (1)
Batrachia (23)
+ Anura (18) Lampetra japonica (Japanese lamprey) (Entosphenus japonicus)
mata (4)
saccoglossus kowalevskii (Acorn worm)
- Protostomia (78)
+ Annelida
+ Arthropoda (72)
Lineus sanguineus (Ribbon worm) (1)
- Platyhelminthes (5)

Dugesiidae
Schistosoma manson
Erachionus plicatilis (Marine rotifer) (Brachionus muelleri) (1) ${ }_{-}^{\mathrm{Br}}$

Nematoda (roundworms)

- Caenorhabditis (3)

MFTLQPTPTAI GTVPPWSAGTLIERLPSLEDMAHKDNVI AMRNLPCLGTAGGSGLG GIAGKPSPTMEAVEASTASHPHSTSSYFATTYYHLTDDECHSGVNQLGGVFVGGRPL PDSTRQKIVELAHSGARPCDI SRILQVSNGCVSKILGRYYETGSI RPRAI GGSKPRVAT AEWSSKISQYKRECPSI FAWEI RDRLLQENVCTNDNI PSVSSI NRVLRNLAAQKEQQST GSGSSSTSAGNSI SAKVSVSIGGNVSNVASGSRGTLSSSTDLMQTATPLNSSESGGAS NSGEGSEQEAIYEKLRLLNTQHAAGPGPLEPARAAPLVGQSPNHLGTRSSHPQLVHG NHQALQQHQQQSWPPRHYSGSWYPTSLSEIPISSAPNIASVTAYASGPSLAHSLSPP NDI ESLASI GHQRNCPVATEDI HLKKELDGHQSDETGSGEGENSNGGASNIGNTEDD QARLILKRKLQRNRTSFTNDQIDSLEKEFERTHYPDVFARERLAGKIGLPEARIQVWFS NRRAKWRREEKLRNQRRTPNSTGASATSSSTSATASLTDSPNSLSACSSLLSGSAGG PSVSTINGLSSPSTLSTNVNAPTLGAGIDSSESPTPI PHIRPSCTSDNDNGROSEDCRR VCSPCPLGVGGHQNTHHI QSNGHAQGHALVPAISPRLNFNSGSFGAMYSNMHHTAL SMSDSYGAVTPIPSFNHSAVGPLAPPSPIPQQGDLTPSSLYPCHMTLRPPPMAPAHHH IVPGDGGRPAGVGLGSGQSANLGASCSGSGYEVLSAYALPPPPMASSSAADSSFSAAS SASANVTPHHTIAQESCPSPCSSASHFGVAHSSGFSSDPISPAVS...

- 250 most similar protein sequences in UniProt

- Sequence identities all >50\%,
- All p-Values < 1E-50

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Edit Scripts and Edit Distances

- Definition
- Let $\mathrm{A}, \mathrm{B} \in \Sigma^{*}$
- An edit script e is a sequence of operations I, D, R, M
- e is an edit script for A and B iff $e(A)=B$
- Slightly underdetermined - which replacement? Which base to insert?
- The length of an edit script is the number of I,D,R it contains
- The edit distance between A and B is the length of the shortest edit script for A and B
- Remarks
- If we know $e(A)=B$, determining e^{\prime} with $e^{\prime}(B)=A$ is trivial
- The shortest edit script is not unique, but its length is
- MIMMMR

IRMMMDI
A_TGTA
AGTGTC
ATGTA AGTGT_C

Alignment

- Edit scripts are intuitive from an evolutionary point-of-view, but somewhat clumsy from a computational point-of-view
- Definition
- A (global) alignment of strings A, B is an arrangement of A and B, enriched with ,_, "at arbitrary positions, under each other such that no column contains two ,_"
- The score of an alignment is the number of "_ "plus the number of mismatching columns it contains
- The alignment distance between A and B is the minimal score of any alignment of A and B
- Edit distance and alignment distance are essentially identical
- Examples
- A_TGT_A AGTGTC

Score:
3

A_T_GTA _AGTGTC 5
_AGAGAG
GAGAGA
2

AGAGAG_ _GAGAGA

A Visual Approach: Dotplots

- A dotplot of two strings A, B is a matrix M with
- The ith character in A is represented by the i'th column
- The j'th character in B is represented by the j'th row
- M[i,j]=1 (blue) iff $A[i]=B[j]$

	A	T	G	C	G	G	T	G	C	A	A	T	G
A													
T													
G													
G													
T													
G													
C													
A													
T													

Dotplot and Identical Substrings

- How do identical substrings look like in a dotplot?

	A	T	G	C	G	G	T	G	C	A	A	T	G
A													
T													
G													
G													
T													
G													
C													
A													
T													

- Diagonals from up-left to down-right
- Longest diagonal is the longest common substring

Alignments and Dotplots

- Every alignment of A, B can be uniquely mapped into a path through M
- The path starts in the upper-left corner (coord: 0,0)
- Go through the alignment column by column
- Next column is " $X,{ }_{\prime}$ " - move to the right
- Next column is " ${ }^{\prime}, \mathrm{X}$ " - move down
- Next column is " X, Y " - move right-down

ATG___CGGTG__CAATG
ATGG__TGCA \qquad T

ATGCGGTGCAATG
ATGGTGCCAT \qquad

Examples

ATGCGGTGCAATG ATG__GTGCA__T

- Clearly, the number $c(P)$ of 1's crossed in a diagonal step by a path P is the same as $|P|-e(A, B)$
- Finding the path that minimizes $|P|-c(P)$ also solves the problem of computing the edit distance

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Algorithm

- How do we compute the edit distance of two strings?
- Naïve: Enumerate all paths, compute $c(P)$ for each

- Bad news: There exist >3min(m,n) paths
- Good news: We can compute e(A,B) with $\sim 3^{*} m^{*} n$ operations

Enumerating all Paths Recursively

The naïve (recursive) Way

- Observation
- Let $|A|=n,|B|=m$
- Let $d(i, j)=e(A[. . i], B[. . j])$ for $0 \leq i \leq n$ and $0 \leq j \leq m$ with $d(i, O)=i$ and $d(0, j)=j$
- We can compute $e(A, B)=d(n, m)$ recursively as follows

$$
d(i, j)=\min \left\{\begin{array}{c}
d(i, j-1)+1 \\
d(i-1, j)+1 \\
d(i-1, j-1)+t(i, j)
\end{array}\right.
$$

$$
t(i, j)=\left\{\begin{array}{l}
1: \text { if } \quad A[i] \neq B[j] \\
0: \text { else }
\end{array}\right.
$$

Algorithm

```
function d(i,j) {
    if (i = 0) return j;
    else if (j = 0) return i;
    else
        return min ( d(i,j-1) + 1,
        d(i-1,j) + 1,
        d(i-1,j-1) + t(A[i],B[j]));
}
function t(c, c, cor) {
    if (c
    else
return 1;
}
```


What is Happening?

Much Redundant Computation

There are only $\sim n^{*} m$ different parameter combinations

Much Redundant Computation

There are only $\sim n^{*} m$ different parameter combinations

Dynamic Programming - Using a Table

- Instead of computing top-down (from n, m), we compute all different values for $d(i, j)$ bottom-up
- We store all values in a table
- We can immediately "compute" d(i,0) and d(0,j)
- Which values can we compute next?

Example

$$
d(i, j)=\min \left\{\begin{array}{c}
d(i, j-1)+1 \\
d(i-1, j)+1 \\
d(i-1, j-1)+t(i, j)
\end{array}\right\}
$$

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1							
T	2							
G	3							
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0						
T	2							
G	3							
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
T	2							
G	3							
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3							
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4	3	2	1	1	1	2	3

Finding the (an) optimal Alignment(s)

- Traceback
- We find the path from back to front
- Start at cell (n,m)
- See which cells were used to compute d(n,m)
- Walk any of these - finds one optimal path
- Walking all means finding all optimal paths
- Alternative: Store pointers while filling the table

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4	3	2	1	1	1	2	3

		A	T	G	C	G	G	T
	0	1	2	3	4	5	G	7
A	1	Q	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4	3	2	1	1	1	2	3

		A	T	G	C	G	G	T
	O	$\mathbf{1}$	2	$\mathbf{2}$	$\mathbf{4}$	5	6	7
A	$\mathbf{1}$	Q	$\mathbf{1}$	2	3	4	5	6
T	2	1	9	1	2	3	4	5
G	3	2	1	9	4	2	3	4
G	4	3	2	1	1	1	2	3

Complexity

- Building the table
- For every d(i,j), we need to access three other cells and make some (constantly many) additions and comparisons
- There are $(m+1) *(n+1)$ cells
- Thus: $\sim 3^{*} m^{*} n=0\left(m^{*} n\right)$ operations
- Finding one optimal alignment
- We must walk from (n, m) to $(1,1)$
- Such a path can have at most length m+n
- We cannot go wrong!
- Together: approximately m+n operations
- Together: $\mathrm{O}\left(\mathrm{m}^{*} \mathrm{n}\right)$ (for $\mathrm{m}^{*} \mathrm{n}>\mathrm{m}+\mathrm{n}$)

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Eyeless Again - a Closer Look

Filter - Overview Results • Job information Customize order

Graphical overview

Color code for identity $\mathbf{0 - 1 0 0} \%=$					
Accession	Entry name	0	Query hit	898	0
\square Query $201105063 \mathrm{~F} 73 . \mathrm{J6N16R}$					
\square Q6S728	Q65728_HUMAN				
$\square \mathrm{C4QNQ9}$	C4QNQ9_SCHMA				
\square E6ZHK0	E6ZHKO_DICLA				
\square - $\square_{\text {ads11 }}$	日5DS11_DROPS				
\square-4H9@0	B4H9Q0_DROPE				
\square Q9W601	Q9W601_CHICK				
\square Q3LFR5	Q3LFR5_TAKRU				
\square A2AKM9	A2AKM9_MOUSE	\cdots			
\square A2AKM8	A2AKM88_MOUSE				
\square A2AKM7	A2AKM7_MOUSE				
\square A2AKM6	A2AKM6_MOUSE				
\square A2AKM5	A2AKM5_MOUSE				
\square E2RIS8	E2RIS8_CANFA				
\square D2HAM7	D2HAM7_AILME				
\square Q65732	Q65732_HUMAN				
\square Q65731	Q65731_HUMAN				
\square Q68730	Q65730_HUMAN				
\square Q68729	Q65729_HUMAN				
\square Q5SFM2	Q5SFM2_HUMAN				
\square E7ERW5	E7ERW5_HUMAN				
\square ETEQT0	E7EQTO_HUMAN				
\square E3N992	E3W992_HUMAN				
\square COKTG0	COKTGO_HUMAN				
\square COKTF6	COKTF6_HUMAN	\cdots			
\square Q02650	PAX5_MOUSE				
\square Q02548	PAX5_HUMAN				

- The similar regions in the different homologues are not distributed randomly
- Actually, a single stretch of 128 AA, the PAX domain, is virtually unchanged in all homologues
- Controls binding to DNA and hence regulatory effects
- Typical: Only some parts of a gene are conserved, and these carry function

Example

$$
\begin{aligned}
& \text { AICICC|TATIC|GATIAGC|TA|G|AA|G|CTIC|GA|A|AA|TAC|C|GAC|CA|G|TA|T }
\end{aligned}
$$

Zufall?

Kein Zufall!

IIIIIIIII
AGGAG|T|CGA|TA|A|TAC|ATA|TA|A|GA|G|ATA|GAAATA|TATTT|GATT|G

Distance or Similarity

- Until now, we computed a global distance
- The higher $e(A, B)$, the less similar are A and B
- The longer A and B, the higher their distance in general
- Different lengths are punished: $e(A, B) \geq||A|-|B||$
- Often, we want a local similarity instead
- If we don't compare two entities, but two strings presumably containing each one entity
- If we have a sequence and don't know exactly where the genes are
- If a function is associated to a motif in a protein
- We need to search for substrings $A^{\prime} \in A, B^{\prime} \in B$ which are very similar to each other
- A^{\prime} and B^{\prime} should have a certain length to be interesting
- $e\left(A^{\prime}, B^{\prime}\right)$ does not help - optimal distance is 0 for $A^{\prime}=B^{\prime}={ }^{\prime \prime \prime}$

Sequence Similarity

- A scoring function is a function s: $\Sigma^{\prime} x \Sigma^{\prime} \rightarrow$ Integer
- We also call s a substitution matrix
- The ungapped similarity sim' of A, B wrt. s with $|A|=|B|=n$ is defined as

$$
\operatorname{sim}^{\prime}(A, B)=\sum_{i=1}^{n} s(A[i], B[i])
$$

- The similarity sim of A, B (wrt. s) is the highest ungapped similarity score over all alignments of A and B
- Higher = better; maximal similarity is $\mathrm{n} * \max (\mathrm{~s})$
- We are not yet there: This still is a global similarity score

Example

$$
\Sigma^{\prime}=\left\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{~T}_{-}\right\}
$$

	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}	-
\mathbf{A}	$\mathbf{4}$	-2	-2	-1	-3
\mathbf{C}		4	-1	-2	-3
\mathbf{G}			4	-2	-3
\mathbf{T}				4	-3

AC_GTC AGGT_C	$=\mathbf{- 1}$
ACGTC AGGTC	$=15$
A_CGTC AG_GTC $=10$	

Computing $\operatorname{sim}(\mathrm{A}, \mathrm{B})$

- Same ideas as for edit distance
- But: We want a high similarity, not a low distance
- Thus, we can compute $\operatorname{sim}(|A|,|B|)$ with

$$
\begin{gathered}
\operatorname{sim}(i, 0)=\sum_{k=1 . . i} s\left(A[k],{ }_{2}\right) \quad \operatorname{sim}(0, j)=\sum_{k=1 . . j} s\left(_, B[k]\right) \\
\operatorname{sim}(i, j)=\left\{\begin{array}{l}
\operatorname{sim}(i, j-1)+s\left(_, B[j]\right) \\
\operatorname{sim}(i-1, j)+s(A[i], \ldots) \\
\operatorname{sim}(i-1, j-1)+s(A[i], B[j])
\end{array}\right.
\end{gathered}
$$

Example

	A	G	T	C
A	4	-1	-1	-1
G		4	-1	-1
T			4	-1
C				4
-	-3	-3	-3	-3

Edit Distance
Similarity

		A	G	G	T	C
	0	1	2	3	4	5
A	1	0	1	2	3	4
G	2	1	0	1	2	3
T	3	2	1	1	1	2
C	4	3	2	2	2	1
C	5	4	3	3	3	2

		A	G	G	T	C
	0	-3	-6	-9	-12	-15
A	-3	4	1	-2	-5	-8
G	-6	1	8	5		
T	-9					
C	-12					
C	-15					

Lokal Similarity = Local Alignment

- Definition
- The local similarity score sim* of A, B is defined as

$$
\operatorname{sim}^{*}(A, B)=\max _{\forall A^{\prime} \text { substringOf } A, B^{\prime} \text { substringOf } B}
$$

- Remark
- Inequality in length of A and B does not matter any more
- Sounds terribly complex, but there is a neat trick

ACCCCTATTCGATIAGCTTAGAAIGCTICGAAAAATACCIGACCAIGTAIT
ll।IIIII
AIGGAGTCIGATIAATTACAITAITAAGAGAITAGAAITATTAITTGATG

Example
Match: +1
I/R/D: -1

		A	T	G	T	G	G
	0	-1	-2	-3	-4	-5	-6
G				-1			
T					0		
G						1	
A							0

		A	T	G	\mathbf{T}	\mathbf{G}	\mathbf{G}
	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$				
\mathbf{G}				$\mathbf{1}$			
\mathbf{T}					2		
\mathbf{G}						3	
A							$\mathbf{2}$

Smith-Waterman Algorithm

- Smith, Waterman: „Identification of common molecular subsequences", J. Mol. Bio 147, 1981
- Idea
- Note: Local paths need not span the entire strings
- Look at a single path
- A series of matches (positive values for scoring function s) creates a series of increasing similarity values
- Any step with s<0 lowers the score
- Whenever the cumulative score falls below 0 , we drop this prefix
- Instead of carrying on, we conceptually start a new local path
- To this end, we simply set true_score=max(0,score)
- The highest value in the matrix is the end of the best local path

Computation

- The same ideas as before
- We compute $\operatorname{sim}^{*}(\mathrm{~A}, \mathrm{~B})$ with
- Assume $\forall X: s\left(X, _\right)<0$ and $s\left(_, X\right)<0$

$$
\begin{gathered}
\operatorname{sim}(i, 0)=\sum_{k=1 . . i} s\left(A[k],{ }_{2}\right) \quad \operatorname{sim}(0, j)=\sum_{k=1 . . j} s\left({ }_{\mathrm{H}}, B[k]\right) \\
\operatorname{sim}(i, j)=\max \left\{\begin{array}{c}
\operatorname{sim}(i, j-1)+s\left(_, B[j]\right) \\
\operatorname{sim}(i-1, j)+s\left(A[i],{ }_{2}\right) \\
\operatorname{sim}(i-1, j, 1) s(A[i], B[j])
\end{array}\right.
\end{gathered}
$$

Example

I/R/D: -1

		A	T	G	T	C	G
	0	-1	-2	-3	-4	-5	-6
A	-1	1	0	-1	-2	-3	-4
T	-2	0	2	1	0	-1	-2
G	-3	-1	1	3	2	1	0

ATGTCG
ATG
ATGTCG
AT \qquad
ATGTCG
A__T_G

		A	T	G	T	C	G
	0	0	0	0	0	0	0
A	0	1	0	0	0	0	0
T	0	0	2	1	1	0	0
G	0	0	1	3	2	1	1

ATGTCG
ATG \qquad

Local versus global Alignment

- Global Alignment
- Comparison of two entire sequences
- Use when you think the entire sequences are related
- Interest: The differences; assumption: Relatedness
- Example: Proteins of the same family
- Local Alignment
- Compare uncharacterized sequences
- Use when comparing "randomly sampled" sequences
- Interest: Similar regions; assumptions: None
- Often a first step before global alignment
- Example: Find similar genes in other species genomes

Beware: Not all Events are Equal

Wildtype
CTTTAGTGACTACGGTAAA DNA

Leu	Ser	Asp	Tyr	Gly	Lys

CTTAGTGACTAGGGTAAA DNA

Leu	Ser	Asp	Stop-Codon Protein

CTTTAGTGAACTACGGTAAA DNA

Leu	Ser	His	Asp	Leu	Thr

CTTAGCGACTACGGTAAA DNA

Leu	Ser	Asp	Tyr	Gly	Lys

CTTAGTGAATACGGTAAA DNA

Leu	Ser	Glu	Tyr	Gly	Lys

Further Reading

- Everywhere
- Relaxed: Christianini \& Hahn, Chapter 3
- Step by step: Waack, Chapter 9

