Selecting Materialized Views for RDF Data

Roger Castillo and Ulf Leser

Humboldt Universtiy of Berlin
{castillo, leser}@informatik.hu-berlin.de
http://www.hu-berlin.de/

Abstract. In the design of a relational database, the administrator has
to decide, given a fixed or estimated workload, which indexes should be
created. This so called index selection problem is an non-trivial optimiza-
tion problem in relational databases. In this paper we describe a novel
approach for index selection on RDF data sets. We propose an algorithm
to automatically suggest a set of indexes as materialized views based on
a workload of SPARQL queries. The selected set of indexes aims to de-
crease the cost of the workload. We provide a cost model to estimate
the potential impact of candidate indexes on query performance and an
algorithm to select an optimal set of indexes. This algorithm may be
integrated into an existing SPARQL query engine. We experimentally
evaluate our approach on a standard query processor. We claim that our
approach is the first comprehensive suggestion for the index selection
problem in RDF.

Key words: SPARQL, Indexing, Index Selection, RDF, Materialized
Views

1 Introduction

The index selection problem has been studied since the early 70’s and its im-
portance has been well recognized [1]. The basic principle of index selection is
to find the best set of indexes for a given workload that fit into a given amount
of space. Although well studied into relational databases, as far as we know,
there are not approaches, which propose an automated index selection system
for RDF data given a workload of SPARQL queries. An RDF data set is a col-
lection of statements called triples [2], of the form (s,p,0) where s is a subject,
p is a predicate, and o is an object. Each triple states the relation between sub-
ject and object. A set of triples can be represented as a directed graph where
subjects and objects represent nodes and predicates represent edges connecting
these nodes. The SPARQL query language is the official standard for querying
RDF repositories [3]. In the relational representation, RDF triples are stored in
one or more tables. A SPARQL query consists of patterns. These patterns are
translated into one or more SQL queries, depending on the query and the system
used. If the SPARQL query consists of more than one pattern, it is translated
into an SQL query that typically contains as many joins as the query has pat-
terns. Optimizing these joins and/or reducing their number is one of the critical
issues to obtain scalable SPARQL systems.

2 Roger Castillo and Ulf Leser

In [4] we propose to materialize SPARQL queries and use these materialized
views to speed-up queries. We target large data sets and SPARQL queries con-
sisting of many basic graph patterns. Examples of huge data sets are, the UniProt
database containing more than 600 million triples [5] or the W3C SWEO Link-
ing Open Data Community with more than 4 billion triples [6]. In such datasets,
executing a query with many graph patterns becomes a problem.

SELECT 7generecord ?process WHERE {
?pubmedrecord ?p mesh:D017966.
7article sc:identified_by_pmid ?pubmedrecord.
?generecord sc:describes_gene_or_gene_product_mentioned_by 7article.
?protein rdfs:subClass0f 7res.
?res owl:onProperty ro:has_function.
?res owl:someValuesFrom 7res2.
?res2 owl:onProperty ro:realized_as.
?res2 owl:someValuesFrom 7process.
?process <http://purl.org/obo/owl/obo#part_of> go:G0_0007166.
?process rdfs:subClass0f go:G0_0007166.
?protein rdfs:subClass0f ?7parent.
7parent owl:equivalentClass 7res3.
?res3 owl:hasValue 7generecord.

}

Listing 1. Complex SPARQL query to retrieve all genes that are associated
with both CA1 Pyramidal Neurons and the signal transduction processes [7].

Consider the query' in Listing 1. Executing this query on a conventional
SPARQL processor results in the computation of twelve self-joins of a large triple
table. However, one can safely assume properties such as, (identified_by_pmid,
describes_gene_or_gene_product_mentioned_by), (onProperty, someValuesFrom),
and (subClassOf, equivalentClass, hasValue) of an object are used together very
often. Therefore, by materializing this information inside the system, the query
could be computed with seven joins, as the materialized view would help to
retrieve the information on generecord and process.

In this paper, we provide a novel approach to automate the task of select-
ing indexes for RDF data given a workload of SPARQL queries. We currently
work with a constraint of number of indexes, but extensions to other constraint
resources such as storage space is straightforward. For simplicity, in the rest of
this work we refer to materialized views as indexes.

This paper is structured as follows. In Section 2 we review related work.
Section 3 gives an overview of our approach and introduces algorithms to select
a set of indexes. There, we also propose a cost model to evaluate candidate
indexes. Section 4 provides an evaluation of our approach. Finally, we conclude
in Section 5.

! namespaces omitted for simplicity

Selecting Materialized Views for RDF Data 3

2 Related work

In relational database systems the problem of index selection has been continu-
ously addressed since the early 70’s [1]. In [8], Caprara et al. propose a practical
solution that builds on a branch-and-bound algorithm to suggest a reduced set of
candidate indexes. Chaudhuri et al. propose an index selection tool in [9]. They
implement a cost-driven approach, dividing the problem into three basic stages:
First, generation of a set of candidate indexes and selection of those which are
more promising based on the query syntax and estimated cost. Second, opti-
mization algorithms to evaluate sets of candidate indexes, and finally, iterative
generation of multi-column indexes from the simpler “good” alternatives. An en-
hancement of this approach is proposed in [10]. Contrary to the previous works,
this approach considers the combination of classical index structures, such as B+
trees, and materialized views to define an optimal physical design for a database
system.

Similar to [10], we propose an automated selection of a set of indexes in
the form of materialized views. We have in common with these previous works
that we disregard the cost of updating a view, i.e., we also only consider SE-
LECT queries in the workload. However, instead of focusing on indexing the
relational representation of an RDF storage scheme, we fully exploit the RDF
graph-structure for indexing. We are not indexing single attributes or triples,
but fractions of queries that occur frequently in a given workload. Therefore,
our approach suggests a set of native RDF/SPARQL indexes whose concepts
are viable for all possible implementations of RDF stores.

In addition to the previous approaches, several efforts have been dedicated to
provide data structures or algorithms to index RDF data in relational databases
[11-19]. These approaches target the clever construction of indexes that are
workload-unaware, i.e., they aim at achieving good scalability for any query.

In [4] we described an approach to use a predefined set of materialized
SPARQL queries as indexes for RDF data. We propose the evaluation of SPARQL
queries using (offline) materialized results of other queries. We refer to those
materialized SPARQL queries as RDFMatView indexes. Here, we target the or-
thogonal problem of selecting a set of RDFMatView indexes for a workload of
SPARQL queries. As far as we know, there exists no system for RDF data, which
provides functionality similar to our approach. Note that in this paper we as-
sume that the workload consists of distinct queries. An extension of the method
to allow queries to appear more than once is straightforward.

3 RDFMatView Index Selection Approach

We propose the evaluation of a given workload of SPARQL queries to suggest
a suitable set of RDFMatView indexes. The goal is to globally minimize the
estimated response time for all queries contained in the given workload. In this
section, we formally introduce all necessary concepts for this idea.

4 Roger Castillo and Ulf Leser

SELECT * WHERE {
?university rdf:type ub:University;
ub:name 7uni_name.

Listing 2. SPARQL query that returns universities and their names.

SELECT * WHERE {
?uni rdf:type ub:University;
ub:name 7uni_name.
?ub_AssistantProfessor ub:worksFor ?7uni;

Listing 3. SPARQL query that returns universities and their professors.

SELECT * WHERE {
?the_uni rdf:type ub:University;
ub:name 7uni_name.
?student ub:studyAt ?the_uni.

Listing 4. SPARQL query that returns universities and their students.

3.1 Workload of SPARQL Queries

Let W be a workload of n different SPARQL queries. Even when the queries in
the workload are assumed to be different, there may exist some similarity be-
tween their query patterns. As example, consider a simple workload consisting
of the three SPARQL queries ¢1, g2, and ¢3 given in Listing 2-4, respectively.
Clearly, we could materialize ¢; and reuse the result for the execution of all
three queries, as ¢ is a sub-query of ¢2 and g3 (and, of course, also of ¢1). On
the other hand, ¢; also is very simple, and pre-computing it might not save much
time for the entire workload. Suppose we were allowed to create only one index.
In this case, we need to decide whether it is more advantageous to materialize
q1, gaining limited savings for all queries, or, for instance, materializing only
q3- This would only help to speed-up the query itself, but nevertheless could
offer the highest total savings. As one can see, all queries are different. However,
they share triple patterns. Our idea is to discover those shared triple patterns
such that they can be used as indexes to improve the processing time of the
workload. A candidate index set provides an initial search space for the index
selection problem. Similar to index selection approaches for RDBMS (regarding
a workload of SQL queries) where the attributes to index are taken from SQL
queries, we extract our indez information from the SPARQL query patterns and
generate a set of indexes. Afterwards, we analyze which of them are most fre-
quently used in the workload. Such strategy (query containment in the database
field) requires to determine which pattern is contained in another query pattern
by creating mappings between their elements, and which of them brings more
savings in time for the workload. The following section describes our method in
detail.

Selecting Materialized Views for RDF Data 5

index1 indexs indexs ... indexn,

query:r 0 o .. O
querys 0 w 0 t
querys Yy 0 oo 0
query, 2 0 0 s

Table 1. An initial set of candidate indexes. One index is generated from each query
of the workload.

3.2 Candidate Indexes

In [4] we showed that it is possible to use materialized SPARQL queries to speed
up the execution of other queries. We refer to a materialized SPARQL query as
RDFMatView index. During query processing, the system may decide which of
the existing indexes to use. First, it has to decide which indexes it may use for
a given query. This task is performed by finding mappings between index and
query patterns using a query containment algorithm [20] adapted for SPARQL
queries. Essentially, we find all mappings between any index pattern and the
query patterns by enumerating all possible cases. If a mapping exists, the index
is eligible for that query. Note that, for a given index, there potentially are many
different eligible mappings.

In the problem treated here, we assume a workload of SPARQL queries. From
this workload, we derive a set of candidate indexes building our search space.
There are different methods that may be used to provide a candidate index set.
Currently, we generate one candidate index for each query, which is the query
itself such that each query can be processed by using at least one index. This
approach guarantees that very expensive queries are considered as potential in-
dexes even if they are not useful for processing any other query than themselves.
Therefore, the candidate index set, denoted as I., has as many indexes as the
workload has distinct queries. However, for future work, we plan to consider
alternative options to create candidate index sets, such as sub-queries with a
minimal size constraint and query patterns with overlapping triple patterns.

An index created for a query 7 sometimes is also eligible for a query j. We
represent this information by computing an asymmetric quadratic matrix, where
the queries from the workload are the rows and the indexes are the columns. An
example is shown in Table 1. A value m;; in the matrix indicates which savings
can be achieved by using index v; for query g;; if this value is 0, it means that
the index is not eligible for the query. The computation of these values will
be described in the following sections. The total savings of an index can be
computed by summing up all values in its column.

6 Roger Castillo and Ulf Leser

3.3 Cost Model

To decide which indexes from the candidate index set are the most effective for
the given workload, the system needs to evaluate all indexes and their influences
on query processing. This decision should be made based on the expected time
reduction that the usage of an index from the candidate index set brings to the
execution of the queries from the workload. We refer to these savings as gain
of an index; such gains need to be compared to the resources (such as number
of indexes, storage space, or time to keep it up-to-date) allowed. Currently,
our approach suggests an optimal set of indexes regarding costs and a given
number of indexes (v) since no other index information is available (indexes
are generated at processing time, and therefore no offline estimations of their
exact number of occurrences or processing time are possible)?. However, we
want to emphasize that the implementation of any other resource constraint in
the system is straightforward when additional index information such as number
of occurrences or processing time is provided.

We estimate the gain an index offers to a query by comparing the costs
it takes to execute the query with or without the index. Our cost model is
purely abstract; absolute values have no meaning. We only look at the differences
between different costs, which should roughly correlate with the savings in time
(as shown in Section 4).

As our knowledge about the indexes is very limited, our cost model is defined
on the potential number of occurrences an index could have in a given data graph.
To estimate the costs, we need the size of the index pattern |P|, which is the
number of triples in the query pattern and the size of the data graph |G| (total
number of triples). Assume a large triple table containing the RDF data set
and a SPARQL query. Since each triple pattern from the query may potentially
match all triples from the data graph, we define the cost of an query as follows.

Definition 1 (Cost of a query). Let q¢ be a query over a data graph G and
P, be the pattern of q. The cost c¢(q) of q is defined as:

c(q) = |G|

Since we build candidate indexes from a workload of SPARQL queries, we
use this model to estimate costs for both queries and candidate indexes. We
refer to the cost of an index as the estimated time we could save when it is
precomputed; thus, high costs are better. Having a high cost means that the
index pattern covers a larger number of query patterns.

Definition 2 (Saving of an index). Let i be an index over a data graph G.
The saving s(i) of i is defined as:

s(1) = (i)

2 An estimation of which size of v is optimal for the workload is out of the scope of
this paper

Selecting Materialized Views for RDF Data 7

We generate a set of candidate indexes using each query pattern as an index
pattern. Thus, for each query @ of the workload there exist at least one index
(generated from the query pattern P(Q)), which can improve its processing time.
However, this is the simplest case, and we look for indexes, which could be used
to improve the processing time of more than one query from the workload. This
particular case may imply that a query might not be completely covered by an
index, i.e., there is a residual part of the query pattern, which is not covered by
the index pattern. This fact requires to estimate the processing time of using
the index plus evaluating the residual part of the query.

We estimate a cost for processing the residual part by looking at the number
of patterns it contains and applying the cost model provided in Definition 3.
Using this model to estimate costs we can now define the cost of a query when
using indexes. Even though there exists a cost for retrieving the precomputed
data, currently we assume real cost of an index c¢(i) = 0; if ¢ is precomputed.

Definition 3 (Cost of a query when using an index). Let ¢ be a SPARQL
query, i an index and let v be the residual part of ¢ when using i, or q otherwise.
The cost ¢(q,1) of executing q using i is defined as follows:

c(q), if i not eligible for q
c(q,i) =40, if|r|=0
c(r), otherwise

Based on the cost for executing a query with or without an index we can now
define the gain an index provides when used in a query.

Definition 4 (Gain of an index). Let g be a query and i an index. The gain
of i when used in q is defined as follows:

gaing(i) = c(q) — c(q,)
Note that gaing(i) = 0 if i is not eligible for q.

We can now define the optimal set of indexes given a workload: It is the one
set, for which the sum of the gains of the indexes in the set is the highest.

Definition 5 (Gain for a SPARQL workload). Let W be a workload of
SPARQL queries and i be an index. The gain of and index i € I in W is defined
as follows:
gainy (1) = Z gaing(i)|i € I'}
qEW

Together, we have:

Definition 6 (Optimal set of indexes). Let I be a set of candidate indezes
for a workload W. Let v be the maximum number of indexes, which can be
suggested for the workload. A subset S C I for speeding up W is called optimal
if the following holds:

8 Roger Castillo and Ulf Leser

= D ies 9ainw (i) is mazimal and

-S| <v.

Even when our model accurately tries to capture the influence of an index
in the workload, a closer look into it reveals areas of improvement. Especially,
the case when two indexes are eligible for the same query, their gains are taken
into account for both indexes. This behavior should be avoided since at query
processing time, only one index is considered (except in the cases when indexes
overlap); resulting in an overestimation of the gains. Therefore, discovering over-
lapping indexes is a logical next factor to consider in future research.

3.4 Enumeration of search space

Finding an optimal subset from all candidate indexes is not trivial. If there are n
candidate indexes each offering a specific gain, choosing the optimal set under a
space constraint is NP-Complete, as shown in [1] by reduction on the Knapsack
problem. This also holds for a uniform space model as in our case. However,
there are fast approximation algorithms that have provable quality. Specifically,
we propose the use of a greedy heuristic [21], which sorts the items (indexes) in
decreasing order of estimated value. We then select indexes in decreasing order
until the v parameter is reached. This algorithm guarantees that our solution
is bounded with a value of at least gainy (J) < %W(I), where J C I and
gainy (I) is the maximal gain that can be achieved from the candidate index
set using v indexes.

4 Evaluation

This section describes the evaluation of our approach using the Berlin SPARQL
Benchmark [22]. We use the ARQ/Jena RDF Storage System (version 2.5.7) [23]
and the RDFMatView approach [4] on Postgres 8.2 as framework.

4.1 Dataset and queries

To evaluate the performance of our approach, we generate a set of nine indexes
and compare the workload processing time (using indexes) against standard
query processing (without indexes) over four datasets with 250k, 500k, 1M, and
10M triples respectively. Additionally, we evaluate our approach by creating
three sets of indexes suggested by our approach containing 3, 4 and 5 indexes
respectively. As in the previous test, these sets are used to process the entire
workload and their processing time is compared to the workload processing time
when using five randomly generated index configurations (each configuration
consists of 3 sets containing 3, 4 and 5 indexes). We evaluate these six configu-
rations over an RDF dataset containing 500K triples. Our datasets are based on
e-commerce use case information and were created by using the data generator

Selecting Materialized Views for RDF Data 9

provided in [22]. Based on the set of queries provided in [22], we derive 18 queries
as workload. We transformed the query patterns into simple graph patterns (the
only form of patterns the current RDFMatView approach implementation can
cope with) and removed bindings to variables. Bound variables incur extremely
high selectivity resulting in the retrieval of only a handful of triples. Such queries
are well supported by existing index structures and do not require the type of
join-optimization that is achieved with the RDFMatView approach; therefore,
performance gains would be only marginal.

4.2 Results

Using our approach, we generate a set of indexes for each dataset and evaluate the
workload using the RDFMatView approach and plain ARQ (without indexes).
To compute the workload processing time, all queries were executed 5 times and
average execution times are reported. Figure 1 illustrates the processing time
for each workload over the four datasets. For each dataset, the set of suggested
indexes contains 9 indexes. These indexes could be used to process 10 queries
from the workload respectively. In all scenarios, the workload processing time
dramatically improves in comparison to standard query processing.

Workload processing
time in sec
(log)

B Standard proc. time 117.76 32436 634.49 992774
B Proc. time with indexes 32.30 64.19 104.33 213413

Data set size

Fig. 1. Workload processing time without using indexes compared to workload pro-
cessing time using nine suggested indexes. The graphic illustrates that for each dataset,
there is a large gain of processing time for the given workload when using the set of
indexes suggested by our approach.

To verify the goodness of our approach, we generate three optimal sets of
indexes (based on our cost model) consisting of 3, 4, and 5 indexes. We also
create five random index configurations with the same number of indexes and
evaluate the workload using the RDFMatView system and plain ARQ (without
indexes). With this configuration we want to stress that our suggested sets of
indexes are a suitable indexing solution for the given workload. Figure 2 shows
that all sets suggested by our system improve the processing time of standard
query processing (without indexes). In fact, the processing time resulting from

10 Roger Castillo and Ulf Leser

using our selected indexes is better than the 66% of the processing time when
using random index sets and ARQ. However, it also shows that some random
index configurations are quite better than our index selection (see random_1 and
random_3 with 3 and 5 indexes respectively). A closer look into the workload re-
veals that some queries generate large numbers of matches when they are queried
against the dataset independent from their number of triple patterns, incurring
in costly processing time. Clearly, our cost model does not consider these cases
since indexes are evaluated regarding their number of triple patterns and no
assumption about real number of occurrences is foreseen. In [4] has been proved

600.0

500.0 4

400.0 4

300.0 4

200.0 4

Workload progessing time
(sec)

100.0 4

0.0 4

selected random_1 random_2 random_3 random_4 random_5 arq

0 3 Indexes 3005 721 013 2092 3098 3950 3244

e 4 Indexes 296.8 3313 6.5 2991 289.8 316.2 3244

B 5 Indexes 2955 2831 522.6 66.5 2822 4132 244
Set of indexes

Fig. 2. Workload processing time using six different index configurations over a 500K
triples dataset. Each configuration contains three sets with 3,4 and 5 indexes respec-
tively. The workload was processed using indexes selected by our approach, randomly
selected indexes and without indexes (standard ARQ).

that covering a large number of patterns using as few indexes as possible signifi-
cantly improves the processing time. These savings in time are due to the number
of joins required to answer the SPARQL query, which are drastically reduced
using this approach. To perform this process, RDFMatView requires overlap-
ping indexes?, which allow an optimal covering of the query patterns. Since our
index selection approach suggests indexes regarding the complete query pattern
for each query, it may occur that those indexes do not overlap at all. In queries
where the number of covered patterns is smaller than the number of residual
patterns, the final processing time may increase depending on the number of
partial results resulting from the covered and uncovered patterns using RDF-
MatView query processing. Thus, the selection of potential overlapping indexes
which could be used to process queries from the workload and a more accu-
rate estimation of the number of query occurrences are natural next factors to
consider in future work.

3 indexes with triple patterns in common

Selecting Materialized Views for RDF Data 11
5 Conclusions and future work

We introduced and developed a system to analyze SPARQL queries, which re-
turns a set of RDFMatView indexes such that their application in the query
processing improves the entire workload processing time. Candidate indexes are
evaluated by a cost model regarding their potential number of occurrences in a
given dataset. Results show that indexes selected using our approach can dra-
matically decrease the workload processing time. Furthermore, we analyzed and
compared the processing time of the workload using six different index config-
urations. Each configuration consists of 3 index sets with 3, 4 and 5 indexes
respectively. One of these configurations is suggested by our system and five are
randomly generated. Upon analysis, indexes selected by our approach outper-
form randomly selected indexes in most cases by assuring a suitable indexing
solution for the given workload. Up to now, our approach is restricted to queries
containing only a basic graph pattern and without filters, modifiers and blank
nodes. We currently work with a constraint on the number of indexes, but ex-
tensions to other constraints like storage space are straightforward. Currently,
we are working on novel ideas for optimization of the index selection process
analyzing not only the given queries but also generating potential indexes based
on sub patterns of the query patterns (assuming a minimum pattern size). An-
other interesting improvement is to generate statistics using fixed predicates, for
instance count(?x, p, 7y), which can be used as a fine-grained cost model for each
triple pattern. We believe that such an approach should improve the quality of
the suggested indexes.

References

1. Comer, D.: The difficulty of optimum index selection. ACM Trans. Database Syst.
3(4) (1978) 440-445

2. Manola, F., Miller, E.: RDF Primer (February 2004) W3C Recommendation.

3. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (April
2008) W3C Recommendation.

4. Castillo, R., Leser, U., Rothe, C.: RDFMatView: Indexing RDF Data for SPARQL
Queries. Technical report, Humboldt University of Berlin (2010)

5. Dataset, U.R.: http://dev.isb-sib.ch/projects/uniprot-rdf/

6. Project, W.S.C. Linking open data on the semantic web.
http://esw.w3.org/topic/sweoig/taskforces/communityprojects/linkingopendata/

7. Stenzhorn, H., Srinivas, K., Samwald, M., Ruttenberg, A.: Simplifying access to
large-scale health care and life sciences datasets. In: ESWC. (2008) 864-868

8. Caprara, A., Fischetti, M., Maio, D.: Exact and approximate algorithms for the
index selection problem in physical database design. IEEE Transactions on Knowl-
edge and Data Engineering 7(6) (1995) 955-967

9. Chaudhuri, S., Narasayya, V.R.: An Efficient Cost-Driven Index Selection Tool
for Microsoft SQL Server. In: VLDB ’97: Proceedings of the 23rd International
Conference on Very Large Data Bases, San Francisco, CA, USA, Morgan Kaufmann
Publishers Inc. (1997) 146-155

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Roger Castillo and Ulf Leser

Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated Selection of Materialized
Views and Indexes in SQL Databases. In: VLDB ’00: Proceedings of the 26th
International Conference on Very Large Data Bases, San Francisco, CA, USA,
Morgan Kaufmann Publishers Inc. (2000) 496-505

Groppe, J., Groppe, S., Ebers, S., Linnemann, V.: Efficient Processing of SPARQL
Joins in Memory by Dynamically Restricting Triple Patterns. In: Proceedings of
the 24th ACM Symposium on Applied Computing (ACM SAC 2009), Honolulu,
Hawaii, USA, ACM (March 8 - 12 2009) 1231-1238

Groppe, S., Groppe, J., Linnemann, V.: Using an Index of Precomputed Joins in
order to speed up SPARQL Processing. In Cardoso, J., Cordeiro, J., Filipe, J.,
eds.: Proceedings 9th International Conference on Enterprise Information Systems
(ICEIS 2007 (1), Volume DISI), Funchal, Madeira, Portugal, INSTICC (June 12 -
16 2007) 13-20

Jinghua Groppe, S.G., Kolbaum, J.: Optimization of SPARQL by Using coreS-
PARQL. In Cordeiro, J., Filipe, J., eds.: Proceedings of the 11th International
Conference on Enterprise Information Systems, Volume DISIL,(ICEIS 2009), Mi-
lano, Italien, INSTICC (Mai 6 - 10 2009) 107-112

Olaf Hartig, R.H.: The SPARQL Query Graph Model for Query Optimization. In:
ESWC2007. (2007)

Matono, A., Amagasa, T., Yoshikawa, M., Uemura, S.: An Indexing Scheme for
RDF and RDF Schema based on Suffix Arrays. In: Proceedings of SWDB 2003.
(2003) 151-168

Udrea, O., Pugliese, A., Subrahmanian, V.S.: GRIN: A Graph Based RDF Index.
In: AAAT. (2007) 1465-1470

Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic
web data management. Proc. VLDB Endow. 1(1) (2008) 1008-1019

Yan, X., Yu, P.S., Han, J.: Graph indexing based on discriminative frequent struc-
ture analysis. ACM Trans. Database Syst. 30(4) (2005) 960-993

Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. Proc. VLDB
Endow. 1(1) (2008) 647-659

Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10(4)
(2001) 270-294

Dantzig, G.: Linear Programming and Extensions. Princeton University Press
(August 1998)

Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal
On Semantic Web and Information Systems - Special Issue on Scalability and
Performance of Semantic Web Systems, 2009 (2009)

ARQJena: ARQ - A SPARQL Processor for Jena.
http://jena.sourceforge.net/ARQ/ (2010)

