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Abstract. We present a logspace algorithm for computing a canonical labeling, in fact, a
canonical interval representation, for interval graphs. To achieve this, we compute canonical interval
representations of interval hypergraphs. This approach also yields a canonical labeling of convex
graphs. As a consequence, the isomorphism and automorphism problems for these graph classes are
solvable in logspace. For proper interval graphs we also design logspace algorithms computing their
canonical representations by proper and by unit interval systems.
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1. Introduction. There has been persistent interest in the algorithmic aspects
of interval graphs in past decades, spurred much by their numerous applications;
see, e.g., [Gol04]. In 1976, Booth and Lueker presented the first recognition algo-
rithm for interval graphs [BL76] running in time linear in the number of vertices and
edges, which they followed up by a linear-time algorithm for interval graph isomor-
phism [LB79]. These algorithms are based on a special data structure called PQ-trees
that is used to enforce ordering constraints. By preprocessing the graph’s modular
decomposition tree, Hsu and Ma [HM99] later presented a simpler linear-time recog-
nition algorithm that avoids the use of PQ-trees. Habib et al. [HMP+00] achieve the
same time bound employing the lexicographic breadth-first search of Rose, Tarjan,
and Lueker [RTL76] in combination with smart pivoting. Parallel AC2 recognition
and isomorphism algorithms were given by Klein in [Kle96].

All of the above algorithms have in common that they compute a perfect elim-
ination ordering (peo) of the graph’s vertices. This ordering has the property that
for every vertex, its neighborhood among its successors forms a clique. Fulkerson and
Gross [FG65] show that a graph has a peo if and only if it is chordal, and the above
methods determine whether a graph is an interval graph in linear time once a peo is
known.

Recognition of interval graphs in logspace follows from the results of Reif [Rei84]
and Reingold [Rei08]. In this article, we describe a logspace algorithm that, given
an interval graph G, constructs a canonical interval representation IG, i.e., G is
isomorphic to the intersection graph of IG, and isomorphic graphs G1

∼= G2 are
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INTERVAL GRAPHS: CANONICAL REPRESENTATIONS 1293

mapped to equal interval representations IG1 = IG2 . This, in particular, gives another
recognition algorithm and, moreover, implies that testing isomorphism of interval
graphs is also possible in logspace. Our methods are optimized for space complexity.
As such, our exposition neither relies on computing the graph’s peo nor uses transitive
orientation algorithms for comparability graphs as in [KVV85]. Instead, the basis of
our work is the observation of Laubner [Lau10] that in an interval graph, the set of
maximal cliques and a modular decomposition tree are definable in a certain logical
formalism, which makes these objects tractable in logarithmic space. We remark that
a logspace complexity bound implies an AC1 bound, while logspace and linear time
results are incomparable (neither implies the other).

More specifically, we reduce canonization of interval graphs to that of interval
hypergraphs. We split interval hypergraphs into overlap components whose interval
representations are essentially unique; we show how to compute them canonically
using Reingold’s algorithm [Rei08]. After placing these components in a tree and
coloring them with their canonical interval representations, we apply Lindell’s tree
canonization algorithm [Lin92] and use its output to combine the canonical interval
representations of the components to one for the whole hypergraph. The tree used
in our algorithm is reminiscent of a PQ-tree in that it encodes all possible interval
representations. Our tree allows us to choose one of the representations in a canonical
way. This tree is constructible in logspace without the iterative refinement that is
inherent to the linear-time algorithms.

A hypergraph is an interval hypergraph if its vertices can be ordered so that
the vertices in each hyperedge are consecutive in this order. Switching to hyper-
graphs bears the advantage that these exhibit richer structure; this helps us to avoid
technical complications and to focus on the essence of the algorithm. Recognition
of interval hypergraphs is clearly equivalent to testing the so-called consecutive-ones
property: A matrix (which we interpret as the incidence matrix of a hypergraph) has
the consecutive-ones property for rows if its columns can be reordered such that the
ones in each row are consecutive. Testing for this property has complexity similar
to that of the recognition of interval graphs: Booth and Lueker gave a linear-time
algorithm that uses PQ-trees [BL76], which was later simplified by Hsu and Mc-
Connell [HM03]. Parallel AC2 algorithms were given by Chen and Yesha [CY91]
and by Annexstein and Swaminathan [AS98]; they also follow from the parallel al-
gorithms for PQ-trees by Klein and Reif [KR88]. Our result implies that testing
the consecutive-ones property and finding an appropriate column permutation are in
logspace.

As another consequence of our logspace canonization of interval hypergraphs, we
show that convex graphs can be canonized in logspace. The isomorphism problem for
this class was previously known to be decidable by a parallel algorithm in AC2 [Che96]
and by a sequential algorithm in linear time [Che99]. Convex graphs include bipartite
permutation graphs. The isomorphism problem for the latter class was only known
to be in AC1 [CY93, YC96].

An interval graph is called proper if it admits an interval representation where no
interval is contained in another. Such representations can be found in linear time by
algorithms of Deng, Hell, and Huang [DHH96] and Hell, Shamir, and Sharan [HSS01].
An AC2 algorithm is designed by Bang-Jensen, Huang, and Ibarra [BHI07]. We
show how to compute canonical proper interval representations in logspace, implying
also logspace recognition of proper interval graphs. Unit interval graphs are inter-
val graphs representable by systems of intervals of unit length. Any such graph is
obviously a proper interval graph, and the converse is also true by a classical result
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1294 KÖBLER, KUHNERT, LAUBNER, AND VERBITSKY

of Roberts [Rob69]. Corneil et al. [CKN+95] show how to construct a unit interval
representation in linear time. Based on their methods, we observe that logspace is
sufficient to derive a unit interval representation from a proper one.

Finding logspace algorithms for the graph isomorphism problem of restricted
graph classes is an active research area. It was started by Lindell with his can-
onization algorithm for trees [Lin92]. In a series of results, Datta et al. generalize
this to planar graphs [DLN+09] (in fact, excluding one of K5 or K3,3 as minor is
sufficient [DNT+09]), whereas Köbler and Kuhnert show the generalization to k-
trees [KK09]. The graph classes considered in these results have in common that
their clique size is bounded by a constant. To the best of our knowledge, our logspace
algorithm for interval graph isomorphism is the first for a natural class of graphs con-
taining cliques of arbitrary size. For all graph classes mentioned in this paragraph,
the isomorphism problem has a matching lower bound; i.e., it turns out to be logspace
complete.

Organization of the paper. Section 2 introduces some preliminaries, notably
the decomposition of interval hypergraphs into overlap components, and includes
a detailed overview of our algorithm in section 2.4. In section 3 we show how to
compute a canonical interval representation for a single overlap component in logspace.
Section 4 contains our main result: We give a logspace algorithm to obtain a canonical
interval representation of an arbitrary interval hypergraph. In section 5, we state our
results for interval graphs and convex graphs. Section 6 contains our algorithms for
proper and unit interval representations. In section 7 we summarize our results and
show that recognition and isomorphism testing of interval and convex graphs is hard
for logspace, thereby proving logspace completeness for these problems.

2. Definitions and basic facts. As usual, L is the class of all languages de-
cidable by Turing machines with a read-only input tape using only O(log n) bounded
space on the working tapes. FL is the class of all functions computable by such ma-
chines that additionally have a write-only output tape. For a set S, we denote its
cardinality by ‖S‖.

2.1. Graphs and set systems. We write G ∼= H to say that G and H are
isomorphic graphs. The vertex set of a graph G is denoted by V (G). The set of
all vertices at distance at most 1 from a vertex v ∈ V (G) is called the (closed)
neighborhood of v and is denoted by N [v]. Note that v ∈ N [v]. We also use N [u, v] =
N [u]∩N [v] for the common neighborhood of two vertices u and v. If N [u] = N [v], we
call these vertices twins (note that only adjacent vertices can be twins according to our
terminology). We denote the degree of a vertex v ∈ V (G) as deg(v) = ‖N [v] \ {v}‖.

Let F be a family of nonempty sets, which will also be called a set system. We
allow A = B for some A,B ∈ F ; i.e., F is a multiset whose elements are sets. The
support of F is defined by supp(F) =

⋃
X∈F X . A slot is an inclusion-maximal subset

S of supp(F) such that each set A ∈ F contains either all of S or none of it.

The intersection graph of F is the graph I(F) with vertex set F where A and B
are adjacent if and only if they have a nonempty intersection. Note that, if A = B,
these two vertices are twins in the intersection graph.

We consider intervals in the set of positive integers N, using the standard notation
[a, b] = {i ∈ N | a ≤ i ≤ b}. We say [a1, b1] < [a2, b2] if a1 < a2 or if a1 = a2 and
b1 < b2. We extend this order to interval systems, i.e., multisets of intervals. For
interval systems I and J , we write I < J if the smallest interval in the symmetric
difference of I and J (with due regard to the multiplicities) belongs to I.
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A graph G is an interval graph if it is isomorphic to the intersection graph of a
family of intervals I. This is equivalent to the standard definition of interval graphs as
intersection graphs of real intervals. Indeed, if we understand [a, b] as a real interval,
this does not change the intersection graph. On the other hand, given a finite system
of real intervals I, denote the set of all endpoints by P . Then the system of discrete
intervals induced by I on P has the same intersection graph. It remains to embed P
in N so that the order is preserved.

An isomorphism � : V (G) → I from G to I(I) is called an interval labeling of
G. The interval system I is called an interval representation of G and will also be
denoted by G�.

A labeling of a graph G is a bijection � : V (G) → {1, . . . , ‖V (G)‖}. In this case
G� will denote the isomorphic image of G on the vertex set {1, . . . , ‖V (G)‖}. The
canonical (interval) labeling problem for a class of graphs G consists of computing
for a given graph G ∈ G an (interval) labeling �G such that G�G = H�H whenever
G ∼= H . We call �G a canonical (interval) labeling and G�G a canonical (interval)
representation of G. Note that solving the canonical interval labeling problem implies
solving the canonical labeling problem, as the intervals can be sorted and renamed.

2.2. Hypergraphs. We consider only hypergraphs (V,H) without isolated ver-
tices; i.e., the vertex set V is exactly supp(H). Hence, we often refrain from explicitly
mentioning V . In order to represent multiple hyperedges, we assign to each hyper-
edge H ∈ H a positive integer c(H) ≥ 1, called the multiplicity of H . It should be
stressed that, speaking of a hypergraph H, we will always suppose that H is a set
rather than a multiset. In other words, if hyperedges A ∈ H and B ∈ H are equal
as sets, they will be considered the same hyperedge (whose multiplicity can be more
than 1). An isomorphism from a hypergraph H to a hypergraph K is a bijection
φ : supp(H) → supp(K) such that

• H ∈ H if and only if φ(H) ∈ K for every H ⊆ supp(H), and
• c(H) = c(φ(H)) for every H ∈ H.

We say that two hyperedges A and B overlap and write A � B if A and B have
a nonempty intersection but neither of them includes the other. The overlap graph
O(H) is the subgraph of the intersection graph I(H) where the vertices corresponding
to the hyperedges A and B are adjacent if and only if they overlap.

Of course, O(H) can be disconnected even if I(H) is connected. A subset O of the
hyperedges of H corresponding to a connected component of O(H) will be referred
to as an overlap component of H. This is a subhypergraph of H and should not be
confused with the corresponding induced subgraph of O(H). Note that a hyperedge
of an overlap component inherits the multiplicity that it has in H.

If O and O′ are different overlap components, then either every two hyperedges
A ∈ O and A′ ∈ O′ are disjoint or all hyperedges of one of the two components
are contained in a single slot of the other component. (This follows from a simple
observation that the conditions B ⊂ A, B � B′, and ¬(B′ � A) imply that B′ ⊂ A.)
This containment relation determines a tree-like decomposition of H into its overlap
components. In the case that O(H) is connected, H will be called an overlap-connected
hypergraph.

We call an interval system I an interval representation of a hypergraph H if
I viewed as a hypergraph is isomorphic to H. Hypergraphs having interval repre-
sentations are known in the literature as interval hypergraphs [BLS99, section 8.7].
Note that interval graphs are not just interval hypergraphs with hyperedges of size
2 (those are exactly unions of paths). This difference stems from the fact that inter-
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vals correspond to the vertices of interval graphs and to the hyperedges of interval
hypergraphs.

Any isomorphism φ from H to I induces a labeling �φ : H → I of the hyperedges
in H with intervals from I where �φ(H) =

{
φ(x) | x ∈ H

}
. We call a function

� : H → I an interval labeling of H if � = �φ for some φ. For another hypergraph
isomorphism ψ from H to I, we have �φ = �ψ if and only if ψ−1φ maps every slot of
H onto itself. In other words, an interval labeling � : H → I specifies an isomorphism
from H to I up to arbitrary rearrangements within slots.

Speaking of an interval representation I, we will suppose that supp(I) = [1, k],
where k = ‖supp(I)‖. The map r(x) = k+1−xwill be called themirror reflection, and
the isomorphic interval system I∗ = r(I) will be referred to as the mirror image of I.
An interval system I is mirror-symmetric if I∗ = I. The mirror image of an interval
labeling � : H → I is the interval labeling �∗ : H → I∗ defined as �∗(A) = r(�(A)).

Lemma 2.1. Let H be an overlap-connected hypergraph with at least two hyper-
edges. Then H has either none or exactly two interval labelings, being mirror images
of each other.

Lemma 2.1 can be deduced from an equivalent statement in [CY91, Theorem 2].
For the reader’s convenience we here give a direct, independent proof.

Proof. Let � : H → I be an interval labeling of H. Since I and H are isomorphic,
O(I) is connected and I contains at least two intervals. The intervals I ∈ I containing
1 (resp., ‖supp(I)‖) will be called leftmost (resp., rightmost). Denote the longest
leftmost (resp., rightmost) interval in I by L (resp., R). Note that L �= R or else I
would contain only one interval or O(I) would not be connected. Call a hyperedge
X ∈ H marginal if the overlaps

{
X ∩ Y ∣∣ Y ∈ H, Y � X

}
form a single inclusion chain.

It is not hard to see that �(X) ∈ {L,R} if and only if X is inclusion-maximal and
marginal. The latter conditions define an unordered pair of hyperedges, A and B, in
H, that does not depend on �. Without loss of generality, suppose that �(A) = L and
�(B) = R. By definition, �∗(B) = r(R).

Now consider any interval labeling �′ : H → I ′ mapping H to an arbitrary interval
system I ′ with supp(I ′) = [1, ‖supp(H)‖]. As we just observed, the leftmost interval
in I ′ equals either �′(A) or �′(B). Consider first the former case. We have �′(A) =
[1, ‖A‖] = L; that is, �′ coincides with � on A. Using induction on the distance d
between A and X in O(H), we prove that �′ and � coincide on all X ∈ H. If d = 1,
then �′(X) = �(X) because both intervals must be equal to [‖A \X‖ + 1, ‖A ∪X‖].
If d ≥ 2, let Z � Y � X be the terminal part of a shortest path from A to X in
O(H). By the induction hypothesis, we have �′(Y ) = �(Y ) = I and �′(Z) = �(Z) = J .
It suffices to show that the intervals I and J uniquely determine �(X) and �′(X)
and the determination rules for both are identical. Indeed, both �(X) and �′(X)
contain exactly one endpoint of I, which is shared with J if and only if X and Z have
nonempty intersection. This determines the side of I where �(X) and �′(X) have to
be attached. The exact position of �(X) and �′(X) is determined by the length of the
overlap with I, which is equal to ‖X ∩ Y ‖. We have proved that �′ = �.

In the case that �′(B) is leftmost, we have �′(B) = [1, ‖B‖] = �∗(B), and the same
argument shows that �′ = �∗. Thus, there exists no interval labeling of H different
from � and �∗.

In section 3 we prove a constructive version of Lemma 2.1 (namely, Lemma 3.2),
allowing us to show that the unique pair of mutually reversed interval labelings is effi-
ciently computable. In fact, in section 3 we switch into another, equivalent language.
Given an isomorphism φ from a hypergraph H to an interval system I, note that φ
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Fig. 1. An interval graph G, a minimal interval representation I of G, and the bundle hyper-
graph BG of G. The maxcliques of G are C1 = {b, c}, C2 = {a, b, d}, C3 = {a, e}, and C4 = {a, f}.

takes a slot of H onto a slot of I and the slots of I form a partition of supp(I) into
intervals. Thus, φ determines a natural geometric order ≺φ between the slots of H:
for two slots S and S′ we put S ≺φ S′ if φ(S) lies completely to the left of φ(S′)
in N. It is easy to see that ≺φ=≺ψ exactly when ψ−1φ maps every slot of H onto
itself. Therefore, we have equality �φ = �ψ for interval labelings exactly when we have
equality ≺φ=≺ψ for slot orderings. Moreover, given �φ, it is easy (in logspace) to
construct ≺φ and vice versa; hence, the two notions are equivalent for our purposes.

2.3. From interval graphs to interval hypergraphs. An inclusion-maximal
clique in a graph G will be called a maxclique. The (maxclique) bundle Bv at a vertex
v consists of all maxcliques containing v. The bundle hypergraph of G is defined by
the set system BG = {Bv}v∈V (G); i.e., it has the maxcliques of G as vertices and the
maxclique bundles as hyperedges. Note that for twins u, v ∈ V (G), the bundles Bu
and Bv are equal; in this case the corresponding hyperedge has multiplicity greater
than one.

Lemma 2.2. Every maxclique C of an interval graph G contains vertices u and
v such that C = N [u, v].

Proof. Given an interval representation of G, we will use the notation Iv for the
interval corresponding to a vertex v ∈ V (G). We have C ⊆ N [u, v] for any u, v ∈ C,
and, therefore, we need only find u, v such thatN [u, v] ⊆ C. For this purpose, consider
an interval representation ofG and choose u, v ∈ C so that Iu∩Iv is inclusion-minimal.
For any w ∈ C, we have Iw ⊇ Iu ∩ Iv or else Iu ∩ Iw or Iw ∩ Iv would be strictly
included in Iu ∩ Iv. Suppose now that z ∈ N [u, v]. Since Iz intersects Iu ∩ Iv, it has
nonempty intersection with Iw for each w ∈ C. By maximality, z ∈ C.

For adjacent vertices u and v in an arbitrary graph G holds: If N [u, v] is a clique,
it is maximal. Lemma 2.2 shows that, in an interval graph G, any maxclique is of this
kind and, hence, can be represented by a pair of vertices u and v (that are adjacent
and satisfy the condition that N [u, v] is a clique). An explicit representation of the
bundle hypergraph BG of G can be computed in logspace by listing, for each bundle
Bv, the maxcliques that contain v.

We call an interval representation I of an interval graph G minimal if the size of
supp(I) is the smallest possible. The following lemma has several important conse-
quences. First, it implies that G is an interval graph if and only if BG is an interval
hypergraph (this equivalence is well known; cf. [Gol04, Theorems 8.1 and 8.3]). More-
over, the bundle hypergraph BG captures all information about a minimal interval
representation of G, which is unique up to hypergraph isomorphism. In particular,
BG retains the isomorphism type of G (in fact, G ∼= I(BG) via the isomorphism v �→ Bv
holds for any graph—not just for interval graphs). See Figure 1 for an example.

Lemma 2.3. For every minimal representation I of an interval graph G, the
interval system I viewed as a hypergraph is isomorphic to the bundle hypergraph BG
of G.
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Proof. Denote the set of all maxcliques of G byM . As in the proof of Lemma 2.2,
the interval of I corresponding to a vertex v of G will be denoted by Iv. This proof
actually shows that every C ∈ M contains vertices u and v such that the three
conditions w ∈ C, Iu ∩ Iv ⊆ Iw, and (Iu ∩ Iv) ∩ Iw �= ∅ are equivalent. It follows that
for each C we can choose a point xC ∈ supp(I) (in fact, an arbitrary point in Iu ∩ Iv)
so that

(2.1) w ∈ C ⇔ Iw � xC .

Note that xC �= xC′ if C �= C′. Let X = {xC | C ∈ M} and I ′w = Iw ∩ X for all
w ∈ V (G). The system I ′ = {I ′w | w ∈ V (G)} is still an interval representation of
G (here we speak of intervals in the linearly ordered set X). Indeed, if u and v are
adjacent, let C be a maxclique containing u and v and note that both I ′u and I ′v
contain xC ; if u and v are nonadjacent, then I ′u ∩ I ′v = ∅ because Iu ∩ Iv = ∅.

By minimality of I, we conclude that I ′ = I and supp(I) = X . Therefore, the
correspondence C �→ xC is a bijection from M to supp(I). By (2.1), this is actually
a hypergraph isomorphism from BG to I (since the condition w ∈ C can be rewritten
as C ∈ Bw).

While it is often assumed that the endpoints of the intervals of an interval system
are distinct, Lemma 2.3 gives our motivation to focus on computing minimal interval
representations, where some of the endpoints coincide. This way we avoid arbitrary
choices that are not inherent to the canonical representation problem. We remark
that the two notions are equivalent: To obtain a minimal interval representation from
a distinct-endpoint interval representation, contract each block of consecutive start
points together with the following block of consecutive endpoints to a single point.
For the reverse direction, replace each point by a set of consecutive points, one for
each interval that starts or ends at this point, placing the start points first. If the
start points are ordered by interval length and the endpoints by the corresponding
start points, this transformation preserves canonicity.

Given an interval labeling � : H → I of a hypergraphH, we will denote the interval
system I also by H�. The canonical interval labeling problem for hypergraphs is to
compute for a given interval hypergraph H an interval labeling �H so that H�H = K�K
whenever H ∼= K. We call �H a canonical interval labeling and H�H a canonical
interval representation of H.

Lemma 2.4. The canonical interval labeling problem for interval graphs is re-
ducible in logspace to the canonical interval labeling problem for interval hypergraphs.

Proof. Let G be an interval graph. By Lemma 2.3, the bundle hypergraph
H = BG of G is interval. We define an interval labeling �G for G using the canonical
interval labeling �H of H by setting �G(v) = �H(Bv) for each vertex v of G. Since the
correspondence v �→ Bv is a graph isomorphism fromG to I(H) and �H is a hypergraph
isomorphism from H to the interval system H�H , the map �G is an isomorphism from
G to I(H�H). This shows that �G is indeed an interval labeling of G. It is canonical
because BG ∼= BG′ whenever G ∼= G′ and because �H is canonical. It remains to note
that the bundle hypergraph BG and the map v �→ Bv are constructible in logspace
due to Lemma 2.2.

2.4. An overview of our canonization algorithms. Lemma 2.4 reduces com-
puting a canonical interval labeling for interval graphs to computing one for interval
hypergraphs.

Given an interval hypergraph H, we start computing a canonical interval labeling
�H piecewise, first finding interval representations for each overlap component O of
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H. Notice that the overlap components of H can be computed in logspace using
undirected reachability in O(H) [Rei08]. By Lemma 2.1, O has exactly two interval
labelings � : O → I and �∗ : O → I∗. As the canonical version IO we take the smaller
of I and I∗ with respect to the order on interval systems introduced in section 2.1
(or any of them in the mirror-symmetric case I = I∗). Section 3 explains how to
perform this phase in logarithmic space.

To compose all IO’s into an interval representation IH of the whole hypergraphH,
we use the tree-like decomposition of H into overlap components (see section 2.2) to
construct a tree representation T(H) of H (see section 4). Lindell’s tree canonization
algorithm [Lin92] allows us to compute IH canonically.

3. Canonizing overlap components. In this section we show how to compute
a canonical interval labeling for an overlap-connected interval hypergraph O. We call
two vertices u, v ∈ supp(O) indistinguishable in O and write u ∼O v, if there is no
hyperedge B ∈ O that contains exactly one of them. Clearly, ∼O is an equivalence
relation on supp(O). The equivalence classes of ∼O are the slots of O. If O consists
of a single hyperedge B, we use the interval labeling �O that maps B to [1, ‖B‖]. So
from now on we assume that O consists of at least two hyperedges.

By Lemma 2.1 we know that O has a unique, up to reflection, interval labeling �.
Recall that an interval labeling of O uniquely determines the action of the underlying
isomorphism on the slots of O (see section 2.2). The slots of O that are placed by �
at the left or right end will be called side-slots. We first show that the two side-slots
of O can be identified in logarithmic space; then we show how to compute the order
on the other slots once the left end is fixed. Note that in a logspace computation,
any slot can be represented by a single vertex contained in it; the other vertices in
the slot can be easily computed since the relation ∼O is decidable in logspace. In the
forthcoming argument, we will make use of the fact that sentences referring to the
set-theoretic relations and involving quantification over vertices and hyperedges are
verifiable in logspace.

Lemma 3.1. Let O be an overlap-connected interval hypergraph with at least two
hyperedges. Then the two side-slots of O can be found in FL.

Proof. As O is an interval hypergraph, there exists an interval labeling � of O.
By Lemma 2.1, � is unique up to reflection. Like in the proof of that lemma, we call
a hyperedge B marginal if its intersections with the overlapping hyperedges B′ � B
form a single inclusion chain. Note that, unless an inclusion-maximal interval in O�

starts leftmost or ends rightmost, it is overlapped by other inclusion-maximal intervals
from both sides; otherwise O would not be overlap-connected. It follows that we can
identify (i.e., recognize in logspace) the two hyperedges B1, B2 ∈ O that are mapped
by � to the longest interval starting leftmost and the longest interval ending rightmost:
(1) They are marginal, and (2) they are not included in any other hyperedge in O.
It is clear that each side-slot of O is contained in exactly one of the hyperedges B1

and B2. Denote the side-slots by S1 and S2, assuming that Si ⊂ Bi. Our aim is
to characterize S1 and S2 by logspace verifiable conditions. The following argument
applies to each i = 1, 2.

Given a slot S of O, define B(S) = {B ∈ O | S ⊆ B}. Note that B(S) �= B(S′)
if S �= S′. Looking at the interval system O�, which is an isomorphic image of O, we
see that the slot S = Si satisfies the following condition: Every B ∈ B(S) is marginal
and is a subset of Bi. Denote the set of all slots satisfying this condition by Si. Thus,
we have to identify Si amongst other slots in Si.

Let φ be an arbitrary isomorphism underlying the interval labeling �. Without
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1 2 3 4 5 6 7

A
B

C
D

E

Fig. 2. Identification of the side-slots S1 and S2: The two inclusion-maximal marginal hyper-
edges are B1 = B and B2 = E; B1 contains the marginal hyperedges A and C; S1 consists of the
slots S′ = {1, 2} and S′′ = {3}. Since B(S′) = {A,B} is included in B(S′′) = {A,B, C}, we have
S1 = S′.

loss of generality, suppose that �(Bi) = φ(Bi) is leftmost.

Claim A. Let S and S′ be two slots in Si. If the interval φ(S) lies to the left of the
interval φ(S′), then B(S′) properly contains B(S).

Claim A implies that Si is exactly that slot in Si which minimizes ‖B(S)‖ over
S ∈ Si (see an example in Figure 2). This gives us the lemma as, given a slot S, one
can in logspace decide if S ∈ Si and compute ‖B(S)‖.

It remains to prove Claim A. Let T be the slot in Si with the interval φ(T ) lying
rightmost. It suffices to show that there is no hyperedge B ∈ O with φ(B) lying to the
left of φ(T ). Claim A follows from this because then, for any S ∈ Si and B ∈ B(S),
the interval φ(B) contains φ(T ) and hence all φ(S′) between φ(S) and φ(T ).

To finish the proof, suppose to the contrary that some φ(B) lies to the left of
φ(T ). Let U be the slot of O whose image φ(U) is the right neighbor of φ(T ) in
O�. Consider a shortest overlap-chain of hyperedges A1 � A2 � . . . � Ak = B such
that U ⊂ A1 (such a chain exists because O is overlap-connected). Since U �⊆ Aj for
any j ≥ 2, all φ(Aj) for j ≥ 2 are to the left of φ(U). In particular, φ(A2) overlaps
φ(A1) on its left side. Since φ(U) �⊆ φ(A2), the interval φ(A1) must contain φ(T ).
Taking into account that T ⊂ A1 and T ∈ Si, we conclude that A1 ⊆ Bi and A1 is
marginal. The latter condition implies that there is no hyperedge A0 such that φ(A0)
overlaps φ(A1) on its right side. Let W be the slot within A1 whose image φ(W ) is
the rightmost slot within φ(A1) (it is possible that W = U). Clearly, φ(W ) lies to
the right of φ(T ). We show that W ∈ Si, contradicting the choice of T .

Indeed, consider an arbitrary hyperedge A ∈ B(W ). Since φ(A) can overlap φ(A1)
neither on the right nor on the left side, we have either A ⊃ A1 or A ⊂ A1. In the
former case T ⊂ A, which implies that A ⊆ Bi and A is marginal. In the latter case
A ⊆ A1 ⊆ Bi. Moreover, there is no hyperedge A0 such that φ(A0) overlaps φ(A) on
its right side, for else φ(A0) would overlap φ(A1) on the same side. Therefore, A is
marginal in this case as well. The proof is complete.

Following [Lau10], we can now use a side-slot S to define a partial order ≺S on
supp(O) as the smallest relation that satisfies the following properties:

1. u ≺S v for each u ∈ S and v /∈ S.
2. For each hyperedge B in O and vertices u, v ∈ B, w /∈ B,

(3.1) u ≺S w ⇔ v ≺S w and w ≺S u ⇔ w ≺S v.
u ≺S v can be read as “if slot S is leftmost, then vertex u is left of v.”

Lemma 3.2. If S is a side-slot of O, then ≺S induces a strict linear order on
the slots of O, which is equal to the order in which slots appear in an interval labeling
of O.

Proof. Let I be an interval representation of O and φ be a hypergraph iso-
morphism from O to I. Suppose that φ(S) is placed leftmost (reverse the interval
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representation if necessary). Define a relation ≺ on supp(O) by setting u ≺ v if and
only if the interval φ([u]∼O ) lies strictly to the left of the interval φ([v]∼O ). Since
Conditions 1 and 2 in the definition of ≺S are true for ≺, ≺S is a subrelation of ≺.
We will prove that ≺S is actually equal to ≺.

Given u �∼O v, it suffices to show that either u ≺S v or v ≺S u. Let B0 � · · · �Bk
be a shortest overlap-path in O such that S ⊆ B0 and Bk contains precisely one of
u and v. The claim is proved by induction on the length k of the path. If k = 0,
the claim holds by Conditions 1 and 2 because there is a hyperedge, namely, B0,
containing S and precisely one of u and v. If k ≥ 1, suppose without loss of generality
that u ∈ Bk. If v /∈ Bk−1, then for any w ∈ Bk−1 we have either v ≺S w or w ≺S v
by induction, and since Bk−1 ∩ Bk �= ∅ the claim follows by (3.1). If v ∈ Bk−1,
then also u ∈ Bk−1 since we assumed the path to be shortest. In this case, for any
w′ ∈ Bk \Bk−1, we have v ≺S w′ or w′ ≺S v by induction, and again the claim follows
by (3.1).

By Lemma 3.2 we can use ≺S to define an interval labeling �S of O by

(3.2) �S(B) =
[
pos(B), pos(B) + ‖B‖ − 1

]
,

where a vertex v ∈ supp(O) has position pos(v) = ‖{u ∈ supp(O) | u �S v}‖ and a
hyperedge B ∈ O has position pos(B) = min{pos(v) | v ∈ B}.

Let �S1 and �S2 be the interval labelings for O corresponding to the two side-slots
S1 and S2 of O. By Lemma 2.1, these are the only two interval labelings of O. It
easily follows that the pair {O�S1 ,O�S2 } stays the same for any isomorphic copy of
O. Hence, we can choose a canonical interval labeling �O of O among �S1 and �S2

such that the interval system O�O is minimal in the pair {O�S1 ,O�S2 } (if O�S1 = O�S2

is mirror-symmetric, we choose it arbitrarily). We denote the corresponding partial
order on the vertices of O by ≺O.

Lemma 3.3. Given an overlap-connected hypergraph O, the following can be done
in logspace:

1. computing the partial order ≺O on supp(O),
2. computing a canonical interval labeling �O of O, and
3. deciding if O�O is mirror-symmetric or not.

Proof. To prove that u ≺S v can be decided in logspace, we construct an auxiliary
undirected graph G:

V (G) = {s} ∪ {
(u, v) | u, v ∈ supp(O) with u �= v

}
,

E(G) =
{{s, (u, v)} | u ∈ S, v /∈ S

}
∪ {{(u,w), (v, w)} | ∃B ∈ O : u, v ∈ B,w /∈ B

}
∪ {{(w, u), (w, v)} | ∃B ∈ O : u, v ∈ B,w /∈ B

}
.

A node (u, v) corresponds to the statement “u ≺S v.” Using this interpretation, the
edges of G correspond closely to Conditions 1 and 2 in the definition of ≺S; so we have
u ≺S v if and only if there is a path from s to (u, v) in G. Reachability in undirected
graphs is decidable in L using Reingold’s algorithm [Rei08].

Once ≺S can be decided in logspace, it is easy to compute �S according to (3.2)
and to choose the left side-slot S ∈ {S1, S2} so that O�S = min{O�S1 ,O�S2}. Finally,
O�O is mirror-symmetric if and only if both interval representations are equal.

4. Canonizing interval hypergraphs. Let H be an interval hypergraph. We
assume that H is connected: To ensure this, we add an additional hyperedge B0 =
supp(H) (and discard it once the canonical interval labeling is computed).
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4.1. The tree representation. As noted before, the overlap components of H
form a tree. Specifically, let S be a slot of an overlap component O of H. We say that
an overlap component Q of H is located at slot S of O if supp(Q) ⊆ S and there is no
“intermediate” overlap componentO′ �= O such that supp(O′) ⊆ S andQ is contained
in some slot of O′. Furthermore, a vertex v of H is located at slot S of O if v ∈ S
and there is no overlap component O′ located at slot S of O such that v ∈ supp(O′).
We now define the overlap component tree of H as follows: Its nodes are the overlap
components of H, their slots, and the vertices of H. Since a slot S of O may belong
also to another overlap component, we denote the corresponding slot node by SO. The
children of an overlap component node O are the slots of O. The children of a slot
node SO are the vertices and the overlap components located at the slot S of O. As
H is connected, there is an overlap component O0 with supp(H) = supp(O0). Thus,
O0 is the root of the overlap component tree. Figure 3 shows an interval hypergraph
H1 and its overlap component tree.

We remark that the overlap component tree of H is essentially a PQ-tree that
encodes all possible interval representations of H (cf. [BL76]). Start with any interval
representation of H, and order sibling nodes in the tree by their position in this rep-
resentation. Slot nodes are P-nodes ; i.e., their children can be reordered arbitrarily.
Overlap component nodes are Q-nodes ; i.e., the order of their children can only be
reversed. It is easy to verify that, after reordering in this way, reading the vertex
nodes from left to right again corresponds to an interval representation of H. Using
Lemma 2.1 and a simple inductive argument on the depth of the overlap component
tree, one can easily show that every interval representation of H is obtainable in this
way (cf. [HM03]). Though we do not use the latter fact below, it may be of indepen-
dent interest to note that part 1 of Lemma 3.3 implies logspace constructibility of a
PQ-tree for H and, using this, logspace constructibility of a (noncanonical) interval
representation for H.

In order to obtain a canonical interval labeling of an interval hypergraph H, we
will construct a tree representation T(H) such that H1

∼= H2 if and only if T(H1) ∼=
T(H2). To achieve this, we start with the overlap component tree of H and color the
component nodes with their canonical interval representation. However, this is not
enough to ensure that isomorphic tree representations imply isomorphic hypergraphs,
as the tree isomorphisms are not restricted in the way they permute the children of
an overlap component node. An example where this is a problem can be seen in
Figure 3.

To make sure that isomorphic trees imply isomorphic hypergraphs, we constrain
the order of the slot nodes of an overlap component O. If O is not mirror-symmetric,
we take a first step toward canonization and completely fix the order of its slots. We
do this by assigning a distinct color to each slot S of O, namely, its position lposO(S)
from the left in the canonical interval representation of O:

lposO(S) = ‖{S′ | S′ is a slot of O with S′ �O S}‖.
For overlap components O with mirror-symmetric interval representation we need

to make the order of the slot nodes SO of O unique up to reflection. To this end, we
color each SO with the minimum of lposO(S) and rposO(S), where

rposO(S) = ‖{S′ | S′ is a slot of O with S �O S′}‖
is the position of S from the right in the canonical interval representation of O.
Note that any two slot nodes with the same color are interchangeable, which still
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H1:

1 2 3 4 5 6 7 8

A

B

C

D E F G H

H2:

1 2 3 4 5 6 7 8

A

B

C

D EF G H

A,B,C

1, 2

D

1, 2

1 2

3, 4

E

3, 4

3 4

5, 6

F

5

5

G

6

6

7, 8

H

7

7

8

Fig. 3. An interval hypergraph H1 and its overlap component tree. In the tree, the node of an
overlap component O is given by listing the hyperedges in O; a slot node SO is given by listing
the vertices contained in S (we omit the reference to O as it is understood from the tree structure).
The hypergraph H2 is not isomorphic to H1. Yet both have isomorphic overlap component trees.

causes the problem shown in Figure 3. To overcome this problem, we group the
slots of the overlap components by introducing an additional type of node in the
tree: For each overlap component O, we add three nodes loO, miO, and hiO in a
layer between O and its slots. If O has a mirror-symmetric canon O�O , we call a
slot S of O low if lposO(S) < rposO(S), middle if lposO(S) = rposO(S), and high
if lposO(S) > rposO(S). If O�O is not mirror-symmetric, we call all its slots low.
Low, middle, and high slots of O become children of the nodes loO, miO, and hiO,
respectively. Note that, if O�O is mirror-symmetric, the node names loO and hiO are
interchangeable.

Using these notions, we now formally define the tree representation of an interval
hypergraph.

Definition 4.1. For a connected interval hypergraph H, its tree representation
T(H) is defined by

V (T(H)) = {O, loO,miO, hiO | O is an overlap component of H}
∪ {SO | S is a slot of overlap component O} ∪ supp(H),

E(T(H)) = {(O, loO), (O,miO), (O, hiO) | O is an overlap component of H}
∪ {(loO, SO), (miO, SO), (hiO, SO) | S is a low/middle/high slot of O}
∪ {(SO,O′) | the overlap component O′ is located at slot S of O}
∪ {(SO, v) | the vertex v is located at slot S of overlap component O}.

Furthermore, we define a coloring c of the component and the slot nodes by

c(O) = O�O ,

c(SO) =

{
lposO(S) if S is a low or a middle slot of O,

rposO(S) if S is a high slot of O.

See Figure 4 for an example of a tree representation.
Note that, for an overlap component O with symmetric interval representation,

the order ≺O is defined only up to reflection, so lposO and rposO can exchange
their values depending on the particular choice of ≺O. These choices influence the
construction of the tree. However, all possible T(H) are isomorphic, as the lo and hi
nodes can be exchanged and the colors of the slots stay the same.
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H :

a b c

d e f

g h

C

H

F G

D E

B

A

I :

1
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d

3
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4
b

5
e

6
f

7
c

8
h

H C

F
A

B
D

G
E

T(H) : F,A,B {[1, 2], [2, 7], [3, 8]}

lo

g 1

H{[1, 1]}

lo mi

g 1

g

hi

d 2

d

a, b, c, e, f 3

a D,G, E {[1, 2], [2, 3], [3, 4]}

lo

b 1

C{[1, 1]}

lo mi

b 1

b

hi

e 2

e

mi hi

f 2

f

c 1

c

h 4

h

mi hi

Fig. 4. An interval hypergraph H and the corresponding tree representation T(H). Gray areas
in T(H) indicate the color of overlap components and their slots . An overlap component O is
represented by listing the hyperedges in O (sorted, for the reader’s convenience, by their correspond-
ing intervals in the canon of O). We omit the references from slot and connector nodes to their
overlap components as they are understood from the tree structure. The interval system I ∼= H can
be derived from T(H) by reading the vertex nodes from left to right (see section 4.2 for details).

Our goal is to compute a canonical interval labeling of H using a modified version
of Lindell’s canonization algorithm for trees [Lin92] on T(H). For this approach,
it is necessary that T(H) is computable in logspace and that isomorphic interval
hypergraphs have isomorphic tree representations.

Lemma 4.2. For a given interval hypergraph H, its tree representation T(H) can
be computed in FL.

Proof. Each overlap component O of H can be identified in FL by running Rein-
gold’s algorithm [Rei08] onO(H) and represented by any hyperedge B ∈ O. Moreover,
supp(O) and the slots of O are easy to compute. Notice that a slot S of O can be
represented by a tuple (u,B), where u is any vertex contained in S. Computability of
the relation “located at” follows from its definition. Lemma 3.3 allows us to compute
≺O and �O for an overlap component O in logspace. Using ≺O, we can enumerate
all slots and compute lposO(S) and rposO(S). With this information, the adjacency
relation of T(H) and the vertex coloring can easily be constructed in logspace.

Lemma 4.3. If H and K are isomorphic connected interval hypergraphs, then
T(H) ∼= T(K).

Proof. Given an isomorphism φ from H onto K, we will define an isomorphism
φ′ from T(H) onto T(K). Given an overlap component O = {B1, . . . , Bk} of H, let
φ′(O) = {φ(B1), . . . , φ(Bk)}. This is an overlap component of K isomorphic to O;
hence the nodes O and φ′(O) get the same color in the trees T(H) and T(K). For
any slot S of O, we define φ′ on the slot node SO by φ′(SO) = φ(S)φ′(O). The set
φ(S) is a slot of φ′(O) because φ induces an isomorphism from O onto φ′(O). By
the same reasoning, SO and φ′(SO) are equally colored in T(H) and T(K). If O has
an asymmetric canonical representation, let φ′ take the lo, mi, and hi children of
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O to the lo, mi, and hi children of φ′(O), respectively; otherwise φ′ may swap the
lo and the hi nodes in order to obey adjacency. Finally, we let φ′(v) = φ(v) for all
v ∈ supp(H), certainly respecting adjacency in the trees T(H) and T(K).

4.2. Computing a canonical interval labeling. Our construction of a canon-
ical interval labeling for H is based on a traversal of T(H) such that the vertex nodes
of T(H) are visited exactly in the order in which the corresponding vertices will ap-
pear in the resulting canonical interval representation of H. The tree representation
(viewed as a PQ-tree) already restricts the possible traversals to those that visit the
slots of each overlap component O in either ascending or descending order of their
position in O�O , where the latter is possible only if O�O is symmetric. Thus, there
remains a freedom to choose one of two possible orientations for each symmetric O�O .
Also, for each slot S of an overlap component of H, there is a freedom to choose
the order of appearance of the vertices and the overlap components located at S. To
come up with a canonical choice between the remaining possibilities, we employ a
generalization of Lindell’s tree canonization algorithm [Lin92].

Lemma 4.4. Lindell’s algorithm [Lin92] can be extended to colored trees and to
output not only a canonical form but also a canonical labeling. This modification
preserves the logarithmic space bound.

Proof sketch. Colors can be handled by extending the tree isomorphism order
defined in [Lin92] by using color(s) < color(t) as an additional condition (where s
and t are the roots of the trees to compare). For concreteness, we give this additional
condition the highest priority. The canonical labeling can be computed by using a
counter i initialized to 0: Instead of printing (the opening parenthesis of) the canon
of a node v, the modified algorithm increments i and prints “v �→ i.”

We recall the logspace traversal algorithm for trees with a linear order among
siblings (as used in, e.g., Lindell’s canonization). For a given node, it is possible
in logspace to (1) go to its first child, (2) go to its next sibling, and (3) go to its
parent. These operations allow a depth-first traversal of the tree where only the
current node and whether we arrived there from its last child must be remembered.
The only requirement is that the order among siblings can be evaluated in logspace.
In our traversal of T(H) we use the following order, where λ = λT(H) is the canonical
labeling of T(H) as obtained by Lemma 4.4.

• The children of an overlap component node O are ordered loO < miO < hiO
if O�O is not mirror-symmetric or if λ(loO) < λ(hiO); otherwise they are
ordered hiO < miO < loO.

• The children of the first child of an overlap component node O (this can be
either loO or hiO) are visited in ascending order of their colors; note that
these colors are all distinct.

• The children of the last child of an overlap component node O (this can be
either hiO or loO) are visited in descending order of their colors; again, these
are all distinct.

• A miO node can have at most one child, which does not need ordering.
• The children of a slot node are ordered by the label assigned to them by λ.

Note that ordering T(H) in this way yields a permissible realization of the PQ-tree;
i.e., the slots of each overlap component O are placed in ascending or descending
order of their position in O�O . In the following, we exploit this to compute an interval
labeling of the entire hypergraph H.

Let φ : supp(H) → [1, ‖supp(H)‖] number the vertices of H in the same order as
their nodes are visited in the described traversal of T(H), and let �H(B) = {φ(v) | v ∈
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B} be the induced mapping on the hyperedges of H. It is clear that both φ and �H
can be computed in logspace.

Lemma 4.5. �H is an interval labeling of H.
Proof. We have to show for every hyperedge B ∈ H that �H(B) is an interval.

Let B ∈ H be any hyperedge and let O be the overlap component that contains B.
We have already ensured that the slot nodes of O are visited in either ascending or
descending order of their appearance in the interval representation O�O of O. This
implies that the slots of O that are contained in B are visited consecutively, and with
them also the vertices contained in them, as these are exactly the vertices contained
in the subtrees rooted at these slot nodes.

Now we are ready to prove our main result on interval hypergraphs.
Theorem 4.6. Given an interval hypergraph H, a canonical interval labeling �H

for H can be computed in FL.
Proof. Let �H be the interval labeling of H defined above. By Lemma 4.4 the

canonical labeling λT(H) of T(H) can be computed in logspace; the rest of the com-
putation of �H is possible in logspace as well.

It remains to show that the labelings �H and �K of isomorphic interval hyper-
graphs H ∼= K map these graphs to the same interval representation H�H = K�K . By
Lemma 4.3, the colored trees T(H) and T(K) are isomorphic. Hence, the canonical
labelings λT(H) and λT(K) map these trees to the same colored tree T(H)λT(H) =

T(K)λT(K) . Note that the interval representation H�H depends only on the tree
T(H)λT(H) . It follows that H�H = K�K .

5. Canonizing interval graphs and convex graphs. The reduction given by
Lemma 2.4 transforms Theorem 4.6 into a result on interval graphs.

Corollary 5.1. Given an interval graph G, a canonical interval labeling �G for
G can be computed in FL.

A bipartite graph G is called convex if one of its vertex classes can be linearly
ordered so that the neighborhoods of the vertices in the other class are intervals
with respect to this order. If both vertex classes have such orderings, G is called
biconvex. The standard representation of hypergraphs as bipartite graphs transforms
a hypergraph with vertex set V and hyperedge set H into the bipartite graph with
vertex classes V and H where vertices v ∈ V and H ∈ H are adjacent if and only if
v ∈ H . Note that this transformation yields exactly the convex graphs when applied
to interval hypergraphs.

Corollary 5.2. Given a convex graph G, a canonical labeling �G for G can be
computed in FL.

Proof. The open neighborhood of a vertex v is defined by N(v) = N [v] \ {v}.
Let G be a connected convex graph with vertex classes U and V . Reversing the
aforementioned transformation of hypergraphs into bipartite graphs, we obtain two
hypergraphs HU = (U, {N(v) | v ∈ V }) and HV = (V, {N(u) | u ∈ U}). Since G is
convex, at least one of them is an interval hypergraph. Suppose that this is true for
HU and let � be its canonical interval labeling. Sorting the labels �(N(v)), v ∈ V ,
we obtain a labeling of V . A labeling of U is obtained from the canonical ordering of
slots of HU determined by � (as noted in the end of section 2.2). If HV is an interval
hypergraph too (i.e., G is biconvex), we compare the two labelings and, if they differ,
choose the lexicographically smaller.

If G is disconnected, we split it into connected components using Reingold’s al-
gorithm [Rei08], canonize each of the components, and compose the total labeling of
G componentwise in lexicographic order.
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G:
a

b

c

I:

1 2 3 4

Ia
Ib

Ic

BG:

{a, b} {b, c}

Ba
Bb
Bc

NG:

a b c

N [a]
N [b]
N [c]

Fig. 5. A proper interval graph G and a proper interval representation I of G. However, the
bundle hypergraph BG is not proper. The neighborhood hypergraph NG is neither proper nor an
interval representation of G.

6. Computing proper and unit interval representations. We first prove a
useful fact on overlap-connected hypergraphs.

Lemma 6.1. Let F and E be overlap-connected hypergraphs with supp(F) =
supp(E), each containing at least two hyperedges. Then their union F ∪ E is overlap-
connected, too.

Proof. Choose F ∈ F and E ∈ E with nonempty intersection. If F � E or
F = E, the claim is obviously true. Otherwise, suppose that E ⊂ F . Note that
F �= supp(F) because F is not the only hyperedge in F and O(F) is connected. Let
x ∈ supp(F) \ F . Since supp(F) = supp(E), there is a hyperedge E′ ∈ E containing
x. By the connectedness of O(E), there is an �-path E1 � E2 � . . . � El connecting
E = E1 and E′ = El. Let m < l be the largest index such that Em ⊆ F . Then
Em+1 � F .

The set system NG = {N [v]}v∈V (G) is called the (closed) neighborhood hyper-
graph of the graph G. It is clear that NG

∼= NH whenever G ∼= H . Harary and
McKee [HM94] show that the converse is true if G is chordal.

An interval system I is proper if there is no inclusion I ⊆ J between two intervals
I and J in I. An interval labeling � : V (G) → I of a graph G is proper if the interval
representation I is proper. Graphs admitting such labelings are called proper interval
graphs. Let I =

{
[ai, bi]

∣∣ 1 ≤ i ≤ n
}
. In the absence of inclusions, the left endpoints

ai are pairwise distinct, and the same is true about the right endpoints bi. Suppose
that ai < ai+1 for all i < n; then we also have bi < bi+1. This yields a natural
geometric order on I.

Let v1, . . . , vn be the corresponding order on V (G), that is, �(vi) = [ai, bi]. Ob-
serve that, if vi is adjacent to vj with j > i, then vi is adjacent to vk for all i < k ≤ j.
This implies that each N [vi] is an interval with respect to the introduced order; there-
fore, NG is an interval hypergraph.1 If combined with the aforementioned result of
Harary and McKee and our Theorem 4.6, this immediately gives us a logspace com-
putable complete invariant for proper interval graphs: G is isomorphic to another
graph G′ exactly when the canonical interval representations of NG and NG′ are
equal. Note that an interval representation of the hypergraph NG is generally not an
interval representation of the graph G. Note also that the minimal interval represen-
tation constructed from the maxclique bundle hypergraph BG (as in Corollary 5.1)
is not proper if the graph contains at least one edge; see Figure 5 for an example.
Now our aim is to come up with a canonical proper interval representation of a given
proper interval graph.

It is easy to see that a proper interval graph with n vertices always has a

1The converse is also true: If NG is an interval hypergraph, then G is a proper interval graph
(see [Rob69, Duc84]).
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proper interval representation I =
{
[ai, bi]

∣∣ 1 ≤ i ≤ n
}

where
{
ai, bi

∣∣ 1 ≤ i ≤ n
}

= {1, 2, . . . , 2n}. From now on we will consider only such representations. Together
with a proper interval labeling � : V (G) → I, the graph G has also the reversed proper
interval labeling �∗ : V (G) → I∗ with �∗(vi) = r([ai, bi]), where r(x) = 2n + 1 − x.
Under this interval labeling, the vertices of G appear as intervals in the reversed or-
der vn, . . . , v1. The first, graph-theoretic part of the following lemma is a version of a
result by Deng, Hell, and Huang [DHH96, Corollary 2.5]. We state it in another form
and prove it by a different method, which allows us to obtain a logspace computability
result also.

Lemma 6.2. Let G be a connected proper interval graph with no twins. Then,
up to reflection, G has a unique proper interval labeling. The latter is computable in
logspace.

Proof. Call a vertex u of G universal if N [u] = V (G). Since universal vertices
are twins, G can have at most one such vertex.

Let � : V (G) → I be a proper interval labeling of G. Let v1, . . . , vn be the as-
sociated geometric ordering of the vertices of G. Denote the corresponding strict
order on V (G) by ≺�. As was mentioned, ≺� defines an interval representation of the
neighborhood hypergraph NG.

Given a nonuniversal vertex vi, let s = s(i) be the largest index such that s < i
and vs /∈ N [vi], and, similarly, let t = t(i) be the smallest index such that t > i
and vt /∈ N [vi]. At least one of these indices is well defined. Note that N [vi] � N [vs].
Indeed, vs /∈ N [vi], vi /∈ N [vs], and vs+1 belongs to both sets (vs and vs+1 are adjacent
because G is connected). Similarly, we have N [vi] � N [vt]. Note that neither vs nor vt
is universal. It follows that, for any nonuniversal vi, there is a subsequence of indices
i1, . . . , ik containing i such that

N [vi1 ] � N [vi2 ] � · · · � N [vik ] and N [vi1 ] ∪N [vi2 ] ∪ · · · ∪N [vik ] = V (G).

If there is a universal vertex u, remove N [u] from NG and denote the modified
hypergraph by N ′

G. By Lemma 6.1 we conclude that N ′
G is overlap-connected. By

Lemmas 2.1 and 3.2 there is a canonical pair of mutually reversed strict orders ≺, ≺∗

on the slots of N ′
G such that the slots appear according to one of these orders in any

interval labeling of the hypergraph.

Since G has no twins, the slots of NG are singletons {v1}, . . . , {vn}. Note that
N ′
G has all the same slots. Thus, ≺ and ≺∗ can be considered orders on V (G), and

one of them must coincide with ≺�. To prove the uniqueness result, it now suffices to
notice that ≺�, i.e., the sequence v1, . . . , vn, uniquely determines �. Indeed, we must
have

(6.1)
ai = i+ ‖{j < i | vj is nonadjacent to vi}‖

and bi = ai + 1 + deg(vi).

The computability result readily follows by (6.1) from the logspace computability of
the sequence v1, . . . , vn and/or its reversal; see Lemma 3.3.

Theorem 6.3. Given a proper interval graph G, a canonical proper interval
labeling �G for G can be computed in FL.

Proof. Assume that G is connected. If G has no twins, Lemma 6.2 allows
us to compute two mutually reversed proper interval labelings � : V (G) → I and
�∗ : V (G) → I∗. We choose � as canonical if I < I∗ (the order on interval systems
is defined in section 2.1); otherwise �∗ is chosen (if I = I∗, either choice is good).
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If G has twins, we still have a canonical pair �, �∗ which is unique up to interchang-
ing labels within a twin class. In order to compute this pair, we replace each twin
class by a single representative, obtaining a twins-free quotient graph G′. As in the
proof of Lemma 6.2, we compute the proper ordering v′1, . . . , v

′
n′ on V (G′) (unique up

to reflection). Further, we expand this sequence by substituting each v′i with all its
twins, obtaining an ordering v1, . . . , vn of V (G). Finally, the intervals �(vi) = [ai, bi]
are computed accordingly to (6.1). Another candidate is �∗ = r ◦ �; we choose one of
the two which gives a <-least interval representation.

If G is disconnected, we split it into connected components G1, . . . , Gk using
Reingold’s reachability algorithm. For each of them, we compute the canonical label-
ing �Gj : V (Gj) → Ij and sort out the interval representations I1, . . . , Ik. Then we
merge the labelings �Gj into an integrated labeling �G : V (G) → I so that the sup-
ports of the interval representations Ij appear in supp(I) according to the established
order.

Note that both the linear-time [DHH96, HSS01] and the AC2 [BHI07] representa-
tion algorithms for proper interval graphs are based on computing the canonical order
of vertices of the input graph as in the proof of Lemma 6.2 (as we already mentioned,
this lemma is proved in [DHH96] in a different language and by a different argument).

Finally, let us turn to the task of finding a canonical unit interval labeling for
a given proper interval graph. A graph is a unit interval graph if it has an interval
model over rationals in which every interval has unit length. It is well known that the
class of proper interval graphs is equal to the class of unit interval graphs [Rob69].

Given a unit interval graph G = (V,E), let �G be the canonical proper interval
labeling for G as in Theorem 6.3. We assume that G is connected; if it is not, then
we deal with the connected components individually and piece them back together
in the end. Let v1, . . . , vn be the vertices of G in the ordering induced by �G. For
every vertex v �= v1, let lv be the least neighbor of v in this ordering. The edge (lv, v)
is called principal edge at v. It is easy to see that the set of principal edges forms a
directed tree T on V that is rooted at v1. We order the children of each vertex in T
according to the above ordering.

For a vertex v, let k(v) be the level at which v is located in T , and let p(v) be
the number assigned to v in the postorder traversal of T . Since T is constructible
in logspace, both values can be computed in FL for any v ∈ V . Assign to each
vertex v the value vL = k(v) + p(v)/n. Corneil et al. show in [CKN+95, Theorem
3.2] that assigning [vLi , v

L
i + 1] to vi for every i ∈ [1, n] yields a unit interval labeling

for G. Since we started with a canonical proper interval representation of G and the
procedure does not involve any arbitrary choices, we obtain a canonical unit interval
labeling for G in FL.

7. Completeness results. Being able to compute canonical (interval) labelings
for a (hyper)graph class in FL immediately implies that the isomorphism problem of
that class is in L. Thus the isomorphism problem of interval hypergraphs, interval
graphs, and convex graphs is in L by Theorem 4.6, Corollary 5.1, and Corollary 5.2.
Moreover, there is a standard Turing reduction of the automorphism group problem
(i.e., computing a generating set of the automorphism group of a given graph) to the
search version of graph isomorphism for colored graphs (cf. [Hof82, KST93]). It is not
hard to see that this reduction can be performed in logspace. We obtain the following
result for interval graphs.

Corollary 7.1. Computing a generating set of the automorphism group of
a given interval graph, and hence computing a canonical labeling coset for a given
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1310 KÖBLER, KUHNERT, LAUBNER, AND VERBITSKY

P :
c

P ′:
c�→ �→

G:
c

c′

G′:
c

c′

Fig. 6. The reduction from PathCenter to the automorphism problem of caterpillars.

interval graph, is in FL. Further, the automorphism problem (i.e., deciding if a given
graph has a nontrivial automorphism) for interval graphs is in L. The same holds for
interval hypergraphs and convex graphs.

In this section, we additionally prove the hardness of these problems for L. The
hardness results are under DLOGTIME-uniform AC0 reductions.

Theorem 7.2. The isomorphism and automorphism problems of interval graphs,
bipartite permutation graphs, biconvex graphs, and convex graphs are L-complete.

Bipartite permutation graphs are a subclass of biconvex graphs, which are in turn
a subclass of convex graphs; so logspace algorithms for these classes are already pre-
sented in the previous sections. To prove hardness, we show that the isomorphism and
automorphism problems are L-hard even for caterpillars, a subclass of the mentioned
graph classes. Caterpillars are trees that become paths when all leaves are removed.

Lemma 7.3. Given a caterpillar G, it is L-hard to decide if G has a nontrivial
automorphism.

Proof. We reduce from the L-complete problem PathCenter (cf. [KK09]): Given
an undirected path P of odd length and a vertex c ∈ V (P ), decide if c is the center
node of P . We can assume that c has distance at least two to both ends; otherwise
the instance can be trivially decided. We use the reduction (P, c) �→ G, where G is
the graph that is obtained from P by adding a new vertex c′ and an edge {c, c′}; see
Figure 6 for an example. It is clear that G is a caterpillar. If c is the center of P ,
then G has the nontrivial automorphism that reflects P and maps c′ to itself. If c is
not the center of P , consider any automorphism ϕ of G. It must map c to itself as it
is the only vertex of degree 3. Also, it must map c′ and the ends of p to themselves,
as they are the only vertices of degree 1 and all of them have a different distance to c.
This implies that the other vertices are fixed as well, so ϕ must be the identity.

The following lemma can be proved using a similar construction, which also marks
either of the two end vertices of P (using two additional vertices—see Figure 7) in G1

and G2, respectively.

Lemma 7.4. Given two caterpillars G1 and G2, it is L-hard to decide if G1 and
G2 are isomorphic.

We observe that these constructions can be modified to yield proper interval
graphs: For this, we add edges from the newly introduced marker vertices to all
neighbors of the corresponding marked vertex (including other marker vertices).

Theorem 7.5. The automorphism and isomorphism problems of proper interval
graphs are L-complete.

Another modification of these constructions can be used to show that the auto-
morphism and isomorphism problems of interval hypergraphs are hard for L: Paths
can also be viewed as 2-uniform hypergraphs (i.e., hypergraphs with all hyperedges
of size 2). The only difference is that no new edges are added, but the edges incident
to the vertex that is to be marked are extended to also include the marker vertices.
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P :
c

P ′:
c�→ �→

G1:
c

c′

G2:
c

c′

G′
1:

c

c′

G′
2:

c

c′

Fig. 7. The reduction from PathCenter to the isomorphism problem of caterpillars.

Theorem 7.6. The automorphism and isomorphism problems of interval hyper-
graphs are L-complete.

We now turn to the recognition problems of the mentioned graph classes.

Theorem 7.7. The recognition problem is L-complete for

• interval graphs,
• proper interval graphs,
• convex graphs,
• biconvex graphs,
• bipartite permutation graphs,
• caterpillars,
• paths, and
• interval hypergraphs, respectively.

Recognition of interval graphs in logspace follows from the results of Reif [Rei84]
and Reingold [Rei08] (or as well from our Corollary 5.1). Each of the classes of convex,
biconvex, and bipartite permutation graphs admits a characterization in terms of so-
called asteroidal triples; see [BLS99, Proposition 6.2.1] and [Tuc72, Theorem 6]. This
characterization enables recognition of each of the three classes in logspace by a simple
reduction to the connectivity problem. Interval hypergraphs are also recognizable in
logspace either by using a characterization by Duchet [Duc78] (or our Theorem 4.6).
Proper interval graphs can be recognized in logspace using our results from section 6.

Proof. To prove the hardness, we give a reduction from the L-complete problem
Ord such that positive instances are mapped to paths (which are included in all
graph classes listed above and also are 2-uniform interval hypergraphs) and negative
instances are mapped to graphs which are neither chordal nor bipartite (and thus are
not in any of the listed classes).

Ord was proved to be L-complete by Etessami [Ete97] and can be described as
follows: Given a directed path P and two vertices s, t ∈ V (P ), decide if there is a path
from s to t, that is, if s is smaller than t in the order induced by the edge relation.

If P is such a directed path, it can be checked in AC0 if t is among the first two
vertices in the path. If so, output a trivial yes- or no-instance depending on whether
s has been encountered first.

If t is not among the first 2 vertices of P , then we construct an undirected graph
G from P as follows: For each vertex v ∈ V (P ) we insert a new vertex v′ after v.
Replace the incoming edge of s with (t′, s) and replace the edge (t, t′) with an edge
that connects the first vertex in P and t. Finally, forget about the directions of the
edges. Figure 8 shows an illustration of this construction. It is easy to verify that
positive instances of Ord are mapped to paths, while the images of negative instances
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s t t s

�→ �→

s s′ t t′ t t′ s s′

Fig. 8. The reduction that maps positive instances of Ord to paths and negative instances to
nonchordal nonbipartite graphs.

contain a chordless circle of odd length at least 5.

Remark 7.8. Using Reingold’s undirected graph reachability algorithm [Rei08],
it can be shown that recognition of bipartite graphs is in L. Together with a result
by Reif [Rei84], Reingold’s algorithm also implies that recognition of chordal graphs
can be done in logspace. Thus, the proof of Theorem 7.7 also implies L-completeness
of the recognition problems for these two graph classes.

We also remark that an interval graph is proper if and only if it has no induced
copy of K1,3 [Rob69] and that this property can be tested in AC0.

Corollary 7.9. The problems of computing a perfect elimination order (peo)
and an interval labeling for a given interval graph G are in FL and are logspace hard.

Proof. An interval labeling can be constructed in logspace by Corollary 5.1. Any
interval labeling induces an ordering of V (G); it is not hard to see that such an
ordering is a peo. On the other hand, computing a peo is logspace hard even for
paths by a reduction from Ord [KK09].

8. Conclusion. We have proved that canonical interval labelings of interval
graphs and interval hypergraphs can be computed in logarithmic space. In particular,
this puts into FL the problems of deciding graph isomorphism and finding a generating
set of the automorphism group of interval graphs, interval hypergraphs, and convex
graphs. We also gave logspace algorithms to compute interval representations of
interval graphs and interval hypergraphs, and proper and unit interval representations
of proper interval graphs, placing the recognition of proper interval graphs in L as well.
Finally, we showed L-hardness of the recognition, isomorphism, and automorphism
problems of these graph classes and concluded that all these problems are in fact
L-complete.

Our canonization techniques can be used to show that each interval graph can be
succinctly defined in first-order logic with counting quantifiers, where the vocabulary
consists of the adjacency and the equality relations on the vertex set. By the results of
Laubner [Lau10], this is possible in a logic with a bounded number of first-order vari-
ables. Cai, Fürer, and Immerman [CFI92] established a general connection between
definability of graphs and solvability of the isomorphism problem by the multidimen-
sional Weisfeiler–Lehman algorithm. As a consequence, there is a constant k such
that the k-dimensional Weisfeiler–Lehman algorithm correctly decides isomorphism
of two interval graphs (in time O(nk)). We are now able to show that interval graphs
are definable in a finite-variable counting logic with logarithmic quantifier depth. By
a result of Grohe and Verbitsky [GV06], this implies that a parallel version of the
Weisfeiler–Lehman algorithm solves interval graph isomorphism in TC1.

Going beyond interval graphs, there are several natural graph classes that sug-
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gest an investigation into whether they can similarly be handled in L. For example,
circular-arc graphs generalize interval graphs as intersection graphs of arcs on a circle.
While circular-arc graphs can be recognized in linear time [McC03], the best known
isomorphism test for this class [Hsu95] runs in time O(mn), where m and n denote
the number of edges and vertices in the input graph. Whereas intuition suggests a
reduction of circular-arc graphs to interval graphs by “cutting open” the circle that
carries the graph’s circular-arc representation, all known algorithms require additional
techniques that are fairly specific to circular-arc graphs. One of the obstacles is that
maxcliques cannot be handled as easily as in Lemma 2.2, since there are possibly
exponentially many of them.

Another generalization of interval graphs is the class of rooted directed path
graphs, i.e., intersection graphs of paths in a rooted directed tree. For this class,
only polynomial-time isomorphism algorithms are known [BPT96, EPT00]. While
maxcliques in a rooted directed path graph can still be recognized in a way similar to
that of this paper, the procedure for linearly ordering maxcliques as given in section 3
cannot be employed in the presence of tree nodes of degree more than 2.

In the above paragraph, it is important that trees are rooted and directed ac-
cordingly, as intersection graphs of paths in unrooted directed trees are isomorphism-
complete [BPT96]. Also, two well-known extensions of interval graphs, chordal graphs
and co-comparability graphs, are known to be isomorphism-complete [LB79]. The
same is true for boxicity-2 graphs, the intersection graphs of axis-parallel boxes in the
plane (cf. [Ueh08]). Another obstacle for efficiently computing a canonical (or even
arbitrary) intersection model for boxicity-2 graphs is that recognition of this class is
NP-hard [Kra94]. This applies also to disk graphs, the intersection graphs of plane
disks [Kra96].

Finally, we would like to refer the reader to [Spi03] for further graph classes for
which the precise complexity of recognition and isomorphism remains open.

Acknowledgment. We thank the anonymous referees for helpful comments and
detailed suggestions on how to improve this paper.
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