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ABSTRACT

The significance of regular path queries (RPQs) on graph-
like data structures has grown steadily over the past decade.
RPQs are, often in restricted forms, part of graph-oriented
query languages such as XQuery/XPath and SPARQL, and
have applications in areas such as semantic, social, and
biomedical networks. However, existing systems for eval-
uating RPQs are restricted either in the type of the graph
(e.g., only trees), the type of regular expressions (e.g., only
single steps), and/or the size of the graphs they can handle.
No method has yet been developed that would be capable
of efficiently evaluating general RPQs on large graphs, i.e.,
with millions of nodes/edges.

We present a novel approach for answering RPQs on large
graphs. Our method exploits the fact that not all labels in
a graph are equally frequent. We devise an algorithm which
decomposes an RPQ into a series of smaller RPQs using rare
labels, i.e., elements of the query with few matches, as way-
points. A search thereby is decomposed into a set of smaller
search problems which are tackled in a bi-directional fash-
ion, supported by a set of graph indexes. Comparison of
our algorithm with two approaches following the traditional
methods for tackling such problems, i.e., the usage of au-
tomata, reveals that (a) the automata-based methods are
not able to handle large graphs due to the amount of mem-
ory they require, and that (b) our algorithm outperforms
the automata-based approach, often by orders of magnitude.
Another advantage of our algorithm is that it can be paral-
lelized easily.

1. INTRODUCTION

A general regular path query (RPQ) is a regular expres-
sion R over the (edge or node) labels of a graph G [29]. Its
result is the set of all cycle-free paths in G whose concatena-
tion of labels (edge or node) spells out R. Different flavors
of RPQs are used in a wide range of applications. For in-
stance, XPath supports a restricted form of RPQs on XML
documents [26]. SPARQL supports a very simple form of
RPQs for RDF graphs, and various proposals exist for en-
hancing SPARQL syntax with full RPQs (e.g., [5, 6, 10, 22]).
[12] describes a restricted form of RPQs important for graph
pattern matching, and [34, 35] describe languages support-
ing restricted forms of RPQs for studying social networks.
A particularly important application domain for RPQs are
the Life Sciences, where understanding the interactions of
different biological entities is of great importance. Such in-
teractions are typically modeled as graphs [4], and RPQs are
used to find specific biochemical pathways between distant
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nodes [24].

None of these works support general RPQs on large
graphs, but all focus on restricted languages which typically
allow for more efficient evaluation. Evaluating RPQs on ar-
bitrary graphs is an NP-hard problem [29]. We illustrate
the problem and our main idea by an example. Suppose a
graph of researchers (nodes), either labeled as Professors or
STudents, connected by directed edges such as Supervised
or Joint work. In this graph, the query P(JP)(JP)? finds all
paths between a professor and direct or indirect co-workers.
(PS)(PS)+(P|T) finds all paths between a professor and his
doctorate descendants. Now suppose we also model research
prizes as nodes (such as Nobel Prize or Sigmod Award), and
connect them to researchers with edges labeled Honored.
Then, we can find the doctorate predecessors of all Nobel
Prize winners using the query (PS) + PHN, and those of
any prize winner using the query (PS) + PH(N|A).

RPQs have been studied intensively for XML, where the
predominant approach is to use automata [14]. Both the
graph and the query are represented as automata, whose in-
tersection automaton is the subgraph specified by the query.
In this process, the graph needs to be translated into a DFA,
which can be of exponential space and may need exponential
construction time. Research in XML query languages has
shown that automata-based RPQ evaluation works well for
trees (XML) [32], but we will show that its space consump-
tion is enormous on general graphs (see Section 6). Further-
more, automata-based approaches completely disregard the
fact that certain labels are much more frequent than others,
which can be exploited for speeding up query execution. For
instance, to answer the query for Nobel Laureates, it is sen-
sible to first search for nodes labeled with N, because (a)
one such node must be in any matching path and (b) there
are much less Nobel Laureates than professors. Having all NV
nodes, complete paths can be computed easily by traversing
the graph.

Such reasoning is the basis of the approach we propose
in this paper; however, finding a good evaluation strategy
is not always as easy as in the example, as a query usu-
ally contains various labels with different frequencies in the
graph. To this end, we first gather all labels in the query
that only occur a few times in the graph and use these as
fix points for a series of bi-directional searches. Thus, we
split the query at these rare labels into smaller queries, and
answer these individually. We search all matching paths be-
tween each two adjacent rare labels as well as at the start
and end of the query, and combine the results to answer
the original query. The main advantage of this approach is



that we do not need to consider the whole graph, but only
those fractions of it that lie between adjacent rare labels. In
Section 6 we will show that this strategy, over a wide range
of small to large synthetic and real-life graphs, is consider-
ably faster and especially much less space-demanding than
automata-based methods ([41, 15]).
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Figure 1: a) The RPQ a+ b ¢+ shown as a (nonde-
terministic) automaton; b) a path fulfilling the RPQ
in a small exemplary graph.

Figure 1 illustrates this idea. Suppose we want to answer
the RPQ a+ b ¢+ on a graph (Fig. 1b). Since there is only
one edge labeled with b, we use it as rare label and split
the query there. Now, the two smaller queries a+ and c+
have to be answered, using the b edge as end point or start
point, respectively. The result of the original query is the
combination of the smaller queries and the rare label.

Our idea can also be used for variations of the general
RPQ problem, such as finding all shortest matching paths
spelling out a regular expression, or finding all matching
paths between two given nodes. Especially the latter is im-
portant if RPQs are used as predicates in a general query
language (see, for instance, [22]), where variables for defin-
ing the start and the end of a path often already have been
bound by other predicates before RPQs are evaluated. For
space constraints, in this paper we only describe in detail
the algorithm for solving the general RPQ problem (finding
all acyclic paths matching a given regular expression) with-
out bindings for the start and end nodes, as this is the most
complex case (see Section 6.9 for a comparison of runtimes
with and without start and end bindings). Furthermore, we
only consider RPQs over edge labels; extensions to include
node labels are straight-forward.

This paper is structured as follows. Section 2 gives an
overview on related work. In Section 3, we define the basic
concepts. In Section 4, we describe our novel RPQ evalua-
tion algorithm and give implementation details in Section 5.
We evaluate our method in Section 6 using various real and
synthetic graphs and conclude in Section 7.

2. RELATED WORK

The most common approach for answering RPQs is
based on automata. One implementation of this idea are
DataGuides by Goldman and Widom [14], based on Lorel [1].
Therein, the graph is considered as an NFA that is first con-
verted into a DFA and then minimized. This minimized
DFA (a DataGuide) is then used as an index. However,
this index can become much larger than the original graph,
which is a problem when dealing with arbitrary graphs (but
not for regularly structured XML). Goldman and Widom
therefore propose “Approximate DataGuides” [15] which re-
duce the index size using heuristics. As the implementation

of Lorel (and DataGuides) is not supported any more since
2000, we re-implemented the algorithms and compare them
to our approach in Section 6.

After the uptake of the semi-structured data model in
XML, many proposals have been put forward to use au-
tomata in optimizing queries on XML (see e.g. [16, 26, 32]).
However, these works mostly use tree automata [32] and
are not applicable to arbitrary graphs. Additional index
structures have been proposed, for instance, by Milo and
Suciu [30] and Kaushnik et al. [21], but, again, they are
designed to work with XML data and cannot be applied to
non-tree graphs. Fernandez and Suciu present another inter-
esting approach to speed up graph searching based on Graph
Schemas [13]; however, these have to be created manually, a
step that seems unfeasible for graphs with millions of nodes.

An area where RPQ queries on graphs are important is
querying RDF data. However, SPARQL, the official W3C
recommendation as an RDF query language, does not sup-
port regular path queries, which spurred research into ex-
tending SPARQL with RPQs. Alkhateeb et al. [5] developed
the query language PSPARQL that includes RPQs, but the
authors focus on formal semantics of RPQs on RDF and do
only describe a proof-of-concept implementation based on
backtracking. Detwiler et al. [10] present the GLEEN sys-
tem, an extension to SPARQL including RPQs that is im-
plemented as an extension to the ARQ library for SPARQL
processing. Anyanwu et al. [6] present another extension to
SPARQL that also includes RPQs, but no method for eval-
uating them is described. Zauner et al. [41] present a path
language for RDF supporting RPQs and does provide an
implementation; the system is based on automata, and we
compare against it in Section 6. SPARQLeR is another RDF
querying language encompassing RPQs, again based on au-
tomata, for which an implementation was published [22],
but is not available anymore (even after multiple requests).
Note that the runtimes reported in the latter paper range
in the order of seconds for queries with bound start and end
nodes on moderately sized graphs, a setting in which our
algorithm only needs milliseconds (see Section 6.9).

There were also a number of proposals for general graph
query languages that are not based on RDF. Mork et al.
[31] propose a query language for semi-structured biological
databases. Leser [24] proposes a query language for querying
biological pathways. Both languages syntactically support
RPQs, but neither of them describes a scalable resolution
technique. Graphs-at-a-time is a query language based on
graph grammars that is capable of expressing RPQs, but
the presented implementation does not cover such predi-
cates [17]. The query language proposed in [11], which also
includes a type of RPQs, is not accompanied by any im-
plementation. Several systems have been designed to sup-
port extremely large graphs (hundreds of millions nodes and
edges), such as Pregel [27], GRAIL [40], or DEX [28], how-
ever, none of these systems support RPQs. Finally, Sevon
and Eronen [36] describe a method for querying paths in
labeled graphs using context-free grammars. They traverse
the graph breadth-first and use a context-free parser to find
matches. While context-free grammars are more powerful
than regular expressions, [36] only focus on finding paths
between fix start and end nodes and do not provide opti-
mization techniques as we do.

Due to the high worst-case complexity of RPQs [7], re-
searchers recently started to look into restricted forms of



RPQs which allow more efficient evaluation strategies. Fan
et al. [12] show that a language supporting reachability and
a restricted form of RPQs allows for an evaluation in cu-
bic time. Jin et al. [20] present algorithms for finding paths
which only consist of labels from a predefined set of labels.
Ronen and Shmueli [34] describe a graph query language
that supports conditions on labels being contained or not
contained in paths and also supports ranking (provided that
the edges are weighted) and aggregation over sets of paths.
In contrast to these works, our approach supports full RPQs.

Matching regular expressions (REs) on strings is a related
problem that was recently picked up by the database com-
munity. Examples are [8, 9], which both use index structures
that are similar in spirit to our method, i.e., concentrating
on rare characters in the query. Another line of related re-
search is graph indexing. Here, the idea of using frequencies
of labels has been used extensively, especially in mining and
searching of subgraphs [38, 23]. The most related work along
this line is the distance-join described in [42], describing a
method to match subgraphs where edges may be matched
to paths of a certain label and of restricted length.

In summary, despite a large body of research around eval-
uating RPQs on graphs, we are aware of only two available
implementations supporting full RPQs as we do [41, 10]. In
Section 6, we compare our approach to these methods and
also to a re-implementation of the DataGuide system [14]
and show that, for large graphs, they suffer from excessive
memory consumption and are clearly outperformed by our
method.

3. TERMS AND DEFINITIONS

We use labeled directed multigraphs, i.e., a graph G is a
tuple G = (V, E, f,1,%), where V is a finite set of nodes, E
is a finite set of edges, | : ' — 3 specifies the edge labels 3,
and f : E — V x V is the connection function, specifying
which nodes are connected by which edges.

The topological properties of a graph can be measured
through node degree and label distribution. A graph is
called scale-free if the number of nodes with degree k is
P(k) ~ k= for large values of k. Scale-free graphs are the
likely outcome of various random growth processes, and,
indeed, many graphs discovered in biological research are
scale-free [25]. The label distribution in a graph is called
Zipfian if the frequency of the labels occurring in the graph
follows the power law F(k) ~ k™%, with & ~ 1.

A regular path query (RPQ) is a regular expression over
Y. We use the definition for regular expressions as in [18].
To evaluate regular path queries, a regular expression can
be converted into an automaton that can be used to match
paths. We assume definitions for deterministic (DFA) and
non-deterministic automata (NFA) as in [3].

Several kinds of questions can be answered for a given reg-
ular expression R and a given graph G. (1) Does G contain
any path fulfilling R? (2) Which is the shortest path in G
fulfilling R? (3) Is there a path in G between two fixed nodes
fulfilling R? (4) Which paths in G fulfill R? In this paper, we
discuss our proposal using the latter problem as show case
as it subsumes all other types of queries. In Section 6, we
will show that, for instance, fixing the start and end nodes
of an RPQ allows to drastically speed-up query processing
compared to the more liberal problem of returning all paths
in the graph.

4. ANSWERING RPQS USING RARE LA-
BELS

In this section, we present our novel algorithm for effi-
ciently answering RPQs. The basic idea is to search the
graph while simultaneously advancing in the query automa-
ton. Compared to an approach which converts both the
graph and the query into automata, our method has several
advantages: No preprocessing of the large graph is needed,
it only uses space linear in the size of the graph, the search is
easily parallelizable, and it can be enhanced with techniques
that take label frequencies into account.

4.1 Rare Labels

Definition 1. Let G be a graph and R be a RPQ. We
call a label occurrence in R mandatory iff it occurs in every
possible result of R in G. We call a label rare iff it occurs
at most m times in G and is mandatory in R (where m is a
parameter of the method, see Section 4.3).

For example, in the regular expression a b+ cx d?, a and
b are mandatory, while ¢ and d are not. Finding all rare
labels in a query is very fast if a list of all labels in the
graph together with their frequencies is stored. If this list is
indexed by labels, finding all rare labels for a given query is
linear to the size of the query pattern.

If a query contains a rare label, then any match of the
query in the graph must contain an occurrence of it. There-
fore, we can use the occurrences of rare labels as way-points
during the search process. If we can find two or more rare
labels in a query, we can use a two-way search algorithm to
find all matching paths between their matches in the graph.
Every additional rare label further reduces the search space.

This idea can be visualized intuitively assuming a graph
of randomly distributed nodes in a 2D space, where ev-
ery node is connected to its k nearest neighbors. In such
a graph, the number of nodes that are visited in a breadth-
first search correlates with Euclidean distance, i.e., with the
size of a circle around a node. In Figure 2a), we assume
that a query contained two rare labels. Thus, we perform a
two-way search between any occurrences of these labels in
a breadth-first manner, during which we visit a number of
nodes that correlates with the size of the circles in the figure
(reality is more complex, as we also need to search from the
rare labels to possible start and end points; furthermore,
rare labels usually are not unique). In Figure 2b), we as-
sume a third rare label, which reduces the number of visited
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Figure 2: Illustration of the area that needs to be
searched in a two-way search with different numbers
n of known way-points (only valid for certain types
of graphs, see the explanation in the text).



nodes by a factor which, for these special graphs, is propor-
tional to the decrease in covered space. In such graphs, the
(nn—%)? . % and thus shrinks
linearly to the number of known nodes between the start
and end nodes. Note that this example is only given as il-
lustration and that the formulas are not valid for arbitrary
graphs. However, the number of visited nodes always corre-
lates with the distance (in hops) to a known node, and thus
the general idea also holds for arbitrary graphs.

Note that our implementation (see Section 5.2) also treats
disjunctions (regular expressions of the form (alb|...)) as
mandatory by searching for any occurrence of the labels.
A further, not yet implemented optimization would be to
rewrite expressions of the form R S* T, where R, S, and T
are regular expressions, as two expressions RT and R S+ T.
Thus, the original expression could be answered by evaluat-
ing two expressions, one of which is shorter and the other
contains an additional mandatory label for our optimization.

search area for n nodes is S =

4.2 Searching the Graph using Rare Labels

For queries that include at least one rare label, we split the
query at these rare labels and use them as fix points in the
search. Searching the graph and advancing in the regular
expression at the same time, we search all paths between
each two adjacent rare labels, all paths from the first rare
label backward to the start of the regular expression, and
from the last rare label forward to the end. As shown above,
the number of nodes that need to be visited during this
search shrinks with every additional rare label but grows
with increasing numbers of occurrences of rare labels.

Besides keeping the search space smaller, rare labels often
also allow for early stops. If there is no path between any two
adjacent rare labels, then there can be no path fulfilling the
original query, and the search can be stopped immediately.

In the following, we use the term first rare nodes for all
nodes that are starting point of an edge of which the label
is the first rare label, according to the regular expression.
Analogously, last rare nodes are the end nodes of all edges
with the last rare label. Answering RPQs using rare labels
is done in the following 6 steps.

1. Gather all rare labels for the query in the graph.

2. If more than one rare label exists, find the paths be-
tween the first and second rare label, the second and
third etc. using a two-way search algorithm. If no path
can be found in any of these search processes, stop the
search and return an empty result for the query.

3. If more than one rare label exists: Using the results
from step 2, find all paths from the first rare nodes to
the last rare nodes and remove all rare nodes that are
on no path, as these cannot be on a result path.

4. Beginning at all remaining first rare nodes, find all
paths to the beginning of the regular expression,
searching backward.

5. Beginning at all remaining last rare nodes, find all
paths to the end of the regular expression (forward).

6. Using the results, enumerate all paths in the graph
that fulfill the regular expression and return the result.

Figure 3 shows the principle of the algorithm. On a sam-

ple graph (edge labels and directions omitted), the query
a+ b c+ d e+ is executed, assuming that b and d are rare la-
bels. In step 1, rare label edges are gathered (b and d edges).
In step 2, we search all paths between the end nodes of the
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Figure 3: Search process example for the query
a+ b ¢+ d e+ in an arbitrary graph (edge labels and
directions omitted).

b edges and the beginning of the d edges. These paths must
fulfill the regular expression between the two rare labels, in
this case c+. Here, two such paths can be found. For one
rare edge, no path could be found, thus it is removed from
further consideration in step 3.

In step 4, a one-way backward search is performed, start-
ing at the start nodes of the b edges. The search ends once
all paths have been found that fulfill the first part of the
regular expression (a+). In step 5, we search all paths from
the end of the last rare label to the end of the regular ex-
pression in forward direction. As a last step (not shown in
the picture), we enumerate all paths by combining the re-
sults of the previous steps. In this case, there are 4 distinct
paths. The result subgraph can be gathered by enumerating
all nodes and edges of the result paths.

Our approach specifically aims at queries that include la-
bels that do not occur often in the graph. While most queries
used in Bioinformatics are interested in these rare labels,
there are also queries in which no rare label is present. In
such cases, our algorithm automatically switches to a brute
force search, starting a search at every node in the graph
(respectively at the given start/end nodes, if specified). In
Section 6 we show that our implementation is faster than
other approaches (in particular, the automata-based one)
even for those cases.

4.3 Determining Rare Labels

The algorithm described above assumes a fixed value for
m, the parameter determining which labels are considered
rare. The choice of m needs to find a compromise between
treating as many labels as rare as possible and keeping the
number of occurrences of rare labels as small as possible. If
a rare label has many occurrences in the graph, the search
space increases because each occurrence needs to be included
in the search (forward and backward). On the other hand,
multiple different rare labels in a query speed up its exe-
cution, because partial paths that need to be searched are
shorter.

We know of no simple way to determine the best value for
m. It depends on the graph as well as on the query, so using
a fixed value is not the best approach. We therefore use an
adaptive heuristic for determining which labels to consider
rare for a given graph and query. The idea is that if, for
a given query, there are several possible rare labels, we set
the threshold for rare labels higher than if only very few



rare labels can be found. This, on the one hand, produces
less queries without any rare labels. On the other hand, for
queries with many potential rare labels, only labels with a
small number of occurrences are included.

Our proposed heuristic works as follows. We first acquire
a list of all potential rare labels for the query. We then
reduce this list depending on the overall number of paths
that would need to be searched in the current configuration.
Labels that produce the most paths are removed first; we can
compute the number of paths between any two adjacent rare
labels 71, r2 as |r1] - [r2|. The overall number of paths is the
sum of all paths between all adjacent pairs. For the first and
last rare labels, we also add their number of occurrences to
account for the search to the beginning and to the end of the
path. We repeatedly remove the rare label that produces the
most paths, until the sum of all paths is below a threshold.

S. IMPLEMENTATION

In this section, we give a short overview of the data struc-
tures and some details about the implementation of the algo-
rithms. Like all other implementations of RPQ-like queries
we are aware of (see Section 2), our algorithms are main-
memory based. Our current implementation requires about
2 GB of memory for a graph with 10 million nodes and 20
million edges, including all additional data structures de-
scribed in the following. Thus, working with graphs even
much larger than the ones we use for evaluation (see Section
6.1) would, in the first place, not be a problem of memory.

5.1 Data Structures

We use a node based storage schema, which means that
the nodes in the graph are represented explicitly, while the
edges only exist as attributes of the nodes in the form of
adjacency lists. Edges are stored in forward and backward
direction, which enables two-way searching but almost dou-
bles memory consumption. Labels are always stored as in-
tegers; if the labels are given as strings, a global mapping
table is used to map them to numbers. This schema needs
28 bytes per node plus 16 bytes per edge to represent the
graph. However, due to the storage overhead in Java objects,
our implementation needs about 80 bytes per node plus 16
bytes per edge. To be able to efficiently gather rare labels
from the graph, we also use an index on the edge labels also
encoding their multiplicity.

Regular path queries are represented as NFAs. Convert-
ing a regular expression into an NFA is straight-forward.
The automaton is stored as states and transitions, which
are labeled with the number representing the label for the
transition. Transitions are stored in both directions for two-
way search. To speed up query execution, we create a list for
every state with all labels that are accepted in that state,
and a list showing into which states the automaton may
transition for each label. We call these labeled follow sets as
a reference to follow sets used in compiler construction [3].

5.2 Search Algorithms

Answering RPQs involves several algorithms. In this sec-
tion, we give an overview of the most important ones.

RARE LABEL SEARCH. The first task in executing a query
is to find the rare labels. To this end, we go through the
automaton representing the query from start to end. For
every state, we check if it is mandatory (i.e., does not have
a modifier as * or 7). If it is mandatory, we look up the edge

label the state represents in the edge label index (which
requires constant time). This index gives us the number
of occurrences of the label in the graph. If it is below the
given threshold, the current state is added to the list of rare
states. We consider alternatives (e.g., a|b) as rare if the sum
of the number of occurrences of all alternatives is below the
threshold. Items in brackets can only be mandatory if the
bracket itself is mandatory.

TwWO-WAY SEARCH. If two or more rare labels have been
found, we use a two-way search algorithm to find paths be-
tween each two neighboring rare labels. Since rare labels
can occur more than once, this is a many-to-many search,
starting at the end nodes of all edges with one rare label,
and ending at the start nodes of all edges with the next
rare label. The search is performed breadth-first by iterat-
ing through the graph and the query automaton at the same
time. A search state (one specific point during the search
process) consists of the current position in the graph and the
current state of the automaton. Different search states can
be at the same position in the graph but in different states
of the automaton, or vice versa. When traversing an edge in
the graph, we check if its label is in the labeled follow set of
the current state. In that case, new entries are added to the
end of the list of search states to be processed. One search
state is created for each entry in the follow set.

The aim of the search is to find all paths for each pair of
fix start and end nodes. A path is found if a forward and a
backward search meet at a node and are in the same state of
the query automaton. We keep lists for every node where we
store in which states a search passed the node. This is used
to find completed paths as well as to prevent cycles in the
result paths. The search ends once the list of unprocessed
search states is empty.

START AND END SEARCH. Searching for the start and end
of the path works much like the two-way search algorithm.
The only differences are that we search one-way and that we
do not end when finding specific nodes, but when hitting a
finish state in the query automaton (or a start state, for the
backward search).

5.3 Two-Way Search Complexity

Theoretically, all nodes might need to be searched during
a two-way search, and every node could be visited in every
state of the automaton, and from every start or end node,
resulting in a complexity of O(|V| - |S| - r), with S being
the states of the automaton and r the number of start plus
end nodes, i.e., the occurrences of the rare labels used for
that search. In reality, however, the search space is limited
because the labels on the path must match the automaton
(a query should thus be as small as possible, e.g. not include
axax instead of ax). Also, the number of start and end nodes
is much smaller than |V| (depending on which labels are
considered rare). Due to two-way search, the search space
is reduced further in most cases, since complete paths are
only half as long from both directions.

Additional checks have to be made during the search, but
they do not add to its complexity. For finish and cycle
checks, we need to check for all nodes encountered on the
path whether they have already been visited in the same
state in the same direction (indicating a circle) or in the
other direction (indicating a completed path). This can be
done in constant time. However, cycle checks might be per-
formed more than once per node, if a node has multiple in-



coming edges: In the worst case, the check is performed as
often as the number of edges in the graph. Thus, the overall
worst-case complexity sums up to O((|V| + |E|) - |S] - 7).

5.4 Parallelization

The search process can be parallelized in different ways.
For a query that contains n rare labels, n+ 1 smaller queries
have to be answered. This is performed as n+1 independent
searches which are executed in parallel. Also, the search
algorithm is a many-to-many search if the rare labels occur
more than once in the graph. This can also run in parallel,
with different threads processing different start points.

6. EXPERIMENTAL RESULTS

In this section, we present an experimental evaluation of
our method. We compare our rare-label based algorithm
with other implementations available and show results for
different graphs and different kinds of queries. Further ex-
periments are devoted to scalability with regard to the size
and density of graphs, to the effects of parallelization, differ-
ent query types, and different label distributions. All tests
were executed on a Quad-Core AMD Opteron machine with
16 GB of main memory. The execution times for queries
given in the following were gathered by executing 10,000
queries (see Section 6.2) and building the average.

As threshold for the number of path combinations in the
rare label optimization (see Section 4.3), we used a value of
100; higher values did not yield any significant changes in
runtimes, while lower values lead to slower queries.

6.1 Graphs and Queries

We use real graphs (from biological research) as well as
artificially created graphs for the evaluation. We present
results for two real-world graphs which we call AliBaba
and FExtracts. AliBaba is a network of protein-protein-
interactions extracted by text mining on all of PubMed [33].
The graph has about 50,000 nodes and 340,000 edges. Fax-
tracts is a graph of enzymes and their relations, also ex-
tracted by text mining from biomedical abstracts, containing
about 80,000 nodes and one million edges. Note that these
graphs are not toys; such networks today are used regularly
in Systems Biology, for instance to improve protein function
prediction [19] or disease-gene identification [2]. Their size is
roughly comparable or larger to that of the largest databases
of biological networks (the KEGG network currently con-
tains approximately 45.000 nodes), but their density is con-
siderably higher. Thus, they represent rather difficult cases
for this domain. Results for other biological networks we
tested were similar to those on these two graphs.

To systematically study the scalability of the algorithms
with regard to various parameters, we created artificial
graphs with sizes between 1000 and one million nodes, with
different average degrees and different label distributions.
All real and all synthetic graphs are scale-free and roughly
have a Zipfian distribution of edge label frequencies. The
influence of the type of graph and the label distribution is
shown in Section 6.6.

6.2 Query Sets

For our evaluation, we used both real-life queries from the
Bioinformatics domain as well as large, randomly generated
sets of queries with similar properties.

For most tests, we used synthetically generated sets of
10,000 queries that were created with the following proper-
ties. The length of a query is chosen randomly with certain
probabilities. The shortest query consists of three labels and
has the highest probability of occurring (15%). The prob-
ability decreases to the longest possible query of 10 labels
(5%). Queries containing multiple brackets can be up to 20
labels long. The average query length is about 5.

Most labels are connected by concatenation. Brackets are
used with a probability of 5% for every label. Alternations
only occur in brackets, with a probability of 10%. Modifiers
(such as +, * and ?) are also distributed randomly on the
labels and brackets. Each label or bracket has a 30% prob-
ability of having no modifier, 30% each of having a + or *,
and 10% for 7.

For query sets that do not use rare labels, labels are cho-
sen randomly. Labels that occur more often in the graph
are used more often in the queries, with the same degree.
For query sets with rare labels, we ensure that at least one
rare label is present in the query. Different rare query sets
use different minimum numbers of rare labels, and different
numbers of occurrences of the labels to be considered rare.
The rare labels do not appear in brackets and have no mod-
ifiers except possibly +, so that they can be used for our
optimizations.

6.3 Biological Queries

In addition to these synthetic queries, we evaluated our
method using 12 biological queries from a real-life applica-
tion. Recall that the AliBaba graph has been created by
extracting different types of relations (generally called in-
teractions) between proteins from a selection of abstracts
available in PubMed. A very important question in Systems
Biology is how sets of such single interactions act together
to achieve and control a certain biological function, such as
formation of protein complexes or concerted gene regulation
[39]. Such groups of interactions are called network motifs,
and a large class of these motifs can be described using reg-
ular path queries. As an example, researchers are interested
in finding chains of interacting proteins that result in the
acetylation and then up-regulation of other proteins. As an
“interaction” can be expressed by many words in a paper,
finding such motifs requires both unions of labels (for find-
ing everything that is indicative for an interaction) and their
concatenation in a regular expression. Other query examples
are methylation that results in up- or down-regulation, re-
ceptors that increase or decrease phosphorylation, or fusions
of interactions and phosphorylation. We omit the concrete
queries here for brevity; they are available on request.

Table 1 shows result sizes and runtimes for the biologi-
cal queries executed on the AliBaba graph. Eight of these
queries contain a rare label and can thus benefit from our
optimization, while the others are answered using the brute
force approach. Clearly, all queries with rare labels can be
answered significantly faster than with the brute force al-
gorithm. In turn, times for answering the queries with the
automata-based method are between 2 and 6 times longer
than with our method. Note that all queries, even those
which generate almost 100,000 different paths, can be an-
swered in less than one second.

6.4 Comparing with Other Implementations

We are aware of just two implementations of regular path



Result Run Time
Query | Rare Label | Paths | Rare | Brute
1 acetylation 1710 62 ms | 458 ms
2 acetylation 20 4 ms | 196 ms
3 methylation — 95 ms | 211 ms
4 methylation - 4 ms | 164 ms
5 fusions - 1 ms | 122 ms
6 fusions 8 3 ms | 417 ms
7 receptor - 9 ms | 330 ms
8 receptor - 2 ms | 100 ms
9 — 80905 - 796 ms
10 - 2118 - 170 ms
11 - 249 - 250 ms
12 — 49638 — 823 ms

Table 1: Rare labels, number of result paths, aver-
age execution times with our rare label algorithm
and with the brute force baseline for biological
queries on the AliBaba graph (using 4 processors).

queries on graphs and considered both as competitors of our
algorithm.

RPL [41] evaluates RPQs on RDF graphs using an
automata-based implementation. Using the original code
provided by the authors, we observed that the system works
well on small RDF graphs. However, it cannot handle graphs
of the size we target with our work. For answering queries
on a graph with approx. 10,000 nodes and 20,000 edges, the
system already required 16 GB of main memory. Queries on
this graph required already several seconds per query, while
our algorithm answers those queries in less than 100ms. All
larger graphs, including our real-world biological graphs,
could not be handled anymore. Therefore, we do not in-
clude this system in the following systematic evaluation.

GLEEN [10] is implemented as an extension to the ARQ
library for SPARQL processing. Thus, a comparison of run-
times would be rather unfair, as the ARQ extension mecha-
nism is based on an iterative load-and-verify of single edges
of a graph, which cannot be compared to our approach of
loading the entire graph into memory at once.

This leaves the re-implementation of the DataGuides sys-
tem [15] (called AUT from now on) to compare with. For
comparing our RL method with AUT, we use sets of queries
with rare labels as well as completely random queries (which
may contain an arbitrary number of rare labels or none). As
we are not aware of any efficient parallelization scheme for
automaton minimization and determinization, we only com-
pare single-threaded versions of both implementations; the
additional speed-up that is possible with our algorithm on
current (multi-core) hardware will be evaluated in Section
6.8.

Figures 4 and 5 show the average runtime (averaged over
10,000 queries) for answering an RPQ with RL and with
AUT. The former is faster in all cases. For queries without
rare labels, the runtimes do not differ much for small graphs,
but differences get significant for larger graphs. For a graph
of 10,000 nodes and 20,000 edges, RL already performs al-
most two orders of magnitude faster than AUT. For queries
that contain at least one rare label, again, RL is always
faster, and its superiority increases with graph size; differ-
ences for those queries are larger than for queries without
rare labels.

Comparing Figures 4 and 5, one can see that rare la-
bels have a considerable influence on the runtime of RL.

E 10000 <7
=
- 1000 4
a
5’ 100
a ]
:J.-’_ 10 EL
E mAUT
= 1 -+
2
B W @ e
R G (- L~
Ll A
.\Q My ,\S)

Figure 4: Average runtime (log scale) to answer
one query without rare labels on different graphs.
Queries on Extracts as well as on the synthetic graph
with 100K nodes could not be executed with AUT.
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Figure 5: Same as Figure 4, but for queries contain-
ing at least one rare label.

In contrast, we found that for AUT, the runtime for dif-
ferent queries on the same graph is about equal. However,
time is only one problem of this method; the other is space.
The NFA-DFA conversion in AUT incurs an exponential in-
crease in the number of nodes. In our implementation, the
whole process requires 350 MB for the graph with 1000 nodes
and 2000 edges, but already 3.8 GB for the 10 times larger
graph — which still is considerably less space than required
by RPL (see above). Running AUT on the AliBaba or Ex-
tracts real-life graphs or on the 100K synthetic graph failed
due to memory overflow.

6.5 Scalability: Graph Size and Density

To test different scalability aspects of RL, we used arti-
ficially created graphs with varying properties. All queries
contain at least one rare label. For this evaluation, we used
the multi-threaded implementation with a fixed number of
four threads. We evaluated the effect of our rare-label opti-
mization by comparing it to a baseline method, which per-
forms a brute-force search starting at every node (also in
parallel) without considering label frequencies.

Figure 6 shows how RL scales with the size of the graph at
a fixed node/edge ratio. The smallest graph has 10K nodes
and 20K edges, and the largest graph has 1 million nodes and
2 million edges. Clearly, the scaling of the implementation
with the rare-label optimization is much better than that of
the baseline. Even for the largest graphs we tested, RL can
answer a regular path query in few seconds on average.

Figure 7 shows scalability of RL with the average graph
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Figure 6: Average runtime for answering one query
on synthetic graphs with different numbers of nodes
and a fixed node to edge ratio of 1:2.

degree. Using multiple artificial graphs with 100,000 nodes,
we increased the number of edges (and thus the average de-
gree), leaving all other properties equal. Again, the increase
in execution time is favorable compared to the baseline.
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Figure 7: Average runtime for answering one query
on synthetic graphs with 100,000 nodes and different
numbers of edges.

Both experiments also show that execution times grow
super-linearly with increasing graph size and graph den-
sity. Also, the absolute times cannot be compared to those
achieved for answering, for instance, reachability queries on
graphs of similar size [40, 37]. But one should not forget that
evaluating RPQs on graphs is a NP-hard problem, whereas
reachability can be answered in O(n?).

6.6 Skew in Distribution of Label Frequencies

To show the influence of the distribution of label frequen-
cies in the graph, we created several graphs of the same size
with differently distributed labels. To this end, we raised
the exponent in the power law the labels are created with,
and as a result the total number of labels in the graph grows,
creating more — and more rare — rare labels. Figure 8 shows
the results for different label distributions. As can be seen,
the impact of the distribution is comparably small over a
wide range of distributions; only queries on graphs with few
distinct labels are answered significantly slower. In those

graphs, there are hardly any rare labels; furthermore, the
number of matching paths on average increases steeply with
decreasing numbers of labels, as the probability for a path
to match an RPQ increases by pure chance.

1200

i

£ 1looo

£

T 11|

a

& \

P11

a

g \

a4

=

g 200 —
0 T T 1
100 1000 10000 100000

Mumber of Distinct Labels {log)

Figure 8: Average runtime for answering one query
on a synthetic graph with 100,000 nodes and 200,000
edges and different edge label distributions.

6.7 Influence of Query Types

To evaluate the influence of our optimizations on different
types of queries, we created ten sets of 1000 queries each
differing in the number of occurrences of rare labels. One
set does not contain any rare labels (set 0). All other sets
contain exactly one rare label, but with an increasing num-
ber of occurrences in the graph. The rare labels found in
query set 1 appear only once in the graph, rare labels from
set 2 exactly twice, and so on. The runtimes for the different
query sets are shown in Figure 9.
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Figure 9: Average runtime for answering one query
from the respective query set. The synthetic graph
that was used has 10,000 nodes and 20,000 edges.

As expected, answering queries without rare labels is con-
siderably slower than for queries containing rare labels. The
difference between queries without rare labels and those with
one rare label appearing exactly once in the entire graph is
almost three orders of magnitude. Also, queries with a rare
label that occurs less frequently in the graph generally are
executed faster. However, this trend is partly out-weighed
by noise generated through the random complexity of the
queries in the workload.



To further study how runtimes change for different
queries, we categorized the runtimes of all queries from our
query set on a given graph. As Figure 10 shows, more than
90% of all queries are answered in less than 10ms, and more
than 95% are answered in less than 100ms. But a few queries
take exceptionally longer than all others. These pathologi-
cal queries are queries that contain only very frequent labels,
leading to exceptionally large result sets. For instance, the
most difficult query from our set took about 4 seconds and
generated a result set of 230 million matching paths. How-
ever, we believe that such queries rarely occur in any real
application.
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Figure 10: Number of queries taking up to 10 ms,
100ms, 1s, and 10s to execute (logarithmic scale).
The set of 10,000 queries was evaluated on a graph
with 10,000 nodes and 20,000 edges.

We also investigated the influence of query lengths, i.e.,
the number of lables in the regular expression of the query.
Comparing the execution times of queries depending on their
lengths, we found that the query length only has a minor in-
fluence on execution speed (data not shown). The reason is
that, although longer queries are more complicated to an-
swer in general, they often do not have as many matches
in the graph which reduces the search space. For execution
speed, the number of occurrences of the labels and the num-
ber of rare labels are much more important than the sheer
number of labels in the query.

6.8 Parallelization

Figure 11 shows the effect of using multiple threads for
RL. The scale-up is very good for up to four threads, but the
additional advantage of adding more threads levels out for
more than 4 threads. This behavior can be explained by the
fact that our current implementation uses additional threads
only for additional rare labels. For example, a query con-
taining two rare labels uses three threads: One for searching
the paths between the rare labels, one for searching to the
start and one for searching to the end of the query. Since
few queries contain more than three rare labels, the scal-
ing diminishes. However, it would be possible to enhance
the implementation by also running the searches between
two instances of a rare label in parallel. Since most rare
labels appear more than once in the graph, finding paths
between them is a many-to-many search and could use dif-
ferent threads starting at different nodes.

6.9 Search with Fixed Start and End Nodes
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Figure 11: Average runtime for answering a query
containing rare labels on a graph with 10,000 nodes
and 20,000 edges against the number of threads
used.

An important subclass of RPQs are those where the start
and end node of a query are fixed, i.e., queries that search for
all matching paths between two given nodes. As mentioned
in Section 2, such queries often appear when RPQs are used
as predicates in graph query languages. We performed tests
using artificial graphs of different sizes and with different
node degrees. We used the same set of 10,000 queries as be-
fore, but this time always added randomly chosen start and
end nodes. Figure 12 shows the results for graphs of differ-
ent sizes with a node to edge ratio of 1:2, while Figure 13
shows results for varying graph densities.
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Figure 12: Average runtime for one query with fixed
start and end nodes on graphs with different sizes
and a node to edge ratio of 1:2.

Clearly, specifying start and end nodes has a tremendous
effect on runtimes. Queries are answered up to three orders
of magnitude faster when compared to the unbound case
(see Figure 6), and runtimes grow only linear in the size of
the graph. The reason is that fixing start and end nodes
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Figure 13: Average runtime for one query with fixed
start and end nodes on graphs with 100,000 nodes
and different numbers of edges.

implies that only a very small part of the graph needs to be
searched. The same effect can be observed for graphs with
growing density (compare to Figure 7), though the increase
in runtime remains super-linear.

Searching paths between two given nodes also is the type
of query analyzed in SPARQLer [22], the only other work we
know of that gives a quantitative evaluation of RPQs. As our
method, SPARQLer is main-memory based. Since no code
is available (we contacted the authors without success), we
can only compare the numbers as given in their paper. [22]
reports runtimes in the range of seconds for graphs of sim-
ilar size where our algorithm only takes a few milliseconds.
However, these numbers are not directly comparable as they
were measured with different graphs and machines.

7. CONCLUSION

We presented a novel approach for answering regular path
queries on large graphs. Our main idea is to structure a
graph traversal along those labels from a query that are
infrequent in the graph, but guaranteed to occur in any
matching path. We use these rare labels as start-, end-,
and way-points during traversal, thus essentially breaking
up a very large search space into many much smaller ones.
We compare our novel method with a traditional approach
using automata and find that the former outperforms the
latter over a wide range of different graphs and queries; fur-
thermore, it requires only linear preprocessing and is able
to handle much larger graphs. We also showed that using
the rare-label optimization considerably improves scalability
with regard to the size of the graph and to graph density.
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