Objektorientierte Programmierung mit C++ Dr. K. Ahrens M

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)

Durch die freie Kombination kann es leicht zu Mehrdeutigkeiten kommen

Falls diese nicht auflosbar sind, liegt ein statischer Fehler vor (s.0. B: A,2)

Aber auch:
class A {public: int 1i;}; class B: public A{};

class C: public A, public B {}; // ERROR
// i ... which i ? A::i ? which A::i ?

Mehrdeutigkeiten, die durch scope resolution auflosbar sind, sind erlaubt

struct A { int i1; }; struct B { int 1i; };
class C: public A, public B { i=1; // ERROR
A::i=1; // OK
B::i=1; // OK
};

stemanalys: 210

Objektorientierte Programmierung mit C++ Dr. K. Ahrens M

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)

Selbst bei virtuellen Basisklassen kann es auf Grund der Maschenbildung sein, dass
ein Name eines Members auf mehreren "Wegen" auflésbar ist und zu
verschiedenen Membern flhrt, Eindeutigkeit liegt dann vor, wenn es ? enau) einen
kiirzesten Weg gibt »Dominanzregel« (ansonsten muss ebenfalls qualifiziert
werden)

X

class A { public: void £ () {cout<<"A::£()\n";} };

class B: public virtual A {

) public: void £ () {cout<<"B::£f()\n";}

class C: public virtual A {
public: void £ () {cout<<"C::£()\n";}
};

class D: public B, public C {};

int main() { D d;
// d.£(); ERROR: ambiguous access of 'f'
d.A::£f(); // ok
B *pb = &d; pb->£(); // ok
C *pc = &d; pc->£(); // ok

stemanalys: 211

Objektorientierte Programmierung mit C++ Dr. K. Ahrens .

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)

Selbst bei virtuellen Basisklassen kann es auf Grund der Maschenbildung sein, dass

ein Name eines Members auf mehreren "Wegen" auflosbar ist und zu

verschiedenen Membern fuhrt, Eindeutigkeit liegt dann vor, wenn es ? enau) einen
Ifiziert

kiirzesten Weg gibt »Dominanzregel« (ansonsten muss ebenfalls qua
werden)
.l‘\'
class A { public: void f() {cout<<"A::£f()\n";} };
class B: public virtual A {

public: void £ () {cout<<"B::f()\n";}
};

class C: public virtual A {};
class D: public B, public C {};

int main() { D 4d;
d.£() ; Al f
d.A::£();
B b = &d; pb->£();
C c = &d; ;

212

Objektorientierte Programmierung mit C++ Dr. K. Ahrens .
Informatik

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)

Mehrfachvererbung und virtuelle Funktionen sind miteinander kombinierbar, im
Falle von virtuellen Basisklassen stehen u.U. ebenfalls mehrere Wege der
Auflésung zur Verfligung: falls keine dominate Implementation existiert, muss in
der am weitesten abgeleiteten Klasse eine Redefinition erfolgen
LX)

class A {

public: virtual void £ () {cout<<"A::£()\n";

};
class B: public virtual A {

}i
class C: public virtual A { };
class D: public B, public C { }; A |vf
main () { D d4d;
C *pc = &d;
pc->£ () ; (B) C)

| e

213

Objektorientierte Programmierung mit C++ Dr. K. Ahrens .

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)

DA
class A {
public: virtual void £ () {cout<<"A::£()\n";

};
class B: public wvirtual A ({ A lvf
public: void £ () {cout<<"B::£f()\n";}
};
class C: public virtual A { (B |vf) (C |vf)
public: void £ () {cout<<"C::£()\n";}
@
class D: public B, public C { }; P

// ERROR: no unique final overrider for £() in D

stemanalyse 214

Objektorientierte Programmierung mit C++ Dr. K. Ahrens =

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)

:‘\'
class A {
public: virtual void f () {cout<<"A::£()\n";}
};
class B: public wvirtual A ({
public: void £ () {cout<<"B::£f()\n";}
};
class C: public wvirtual A {
public: void £ () {cout<<"C::£()\n";}

};

class D: public B, public C { A |vf
public: void £ () {cout<<"D::£f()\n";}

};

... Dd; C *pc = &d; pc—>£(); ... <E{:::> <§z:§E>

stemanalys. 215

Objektorientierte Programmierung mit C++ Dr. K. Ahrens .
!mntll(

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)
Implementation von virtuellen Funktionen wird D\
'slightly more complicated’

B (¢)

S e

pc->£f();
} O Q. struct vtbl entry ({
| o void (*fct) () ;
% % int delta;
= A B -~ }:
g o
P B.:f 0
—
AC B::f - delta(C)
(A) © B::f - delta(A)
AD

cremanatres 216

Objektorientierte Programmierung mit C++ Dr. K. Ahrens .
niversitét

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)
Implementation von virtuellen Funktionen wird

'slightly more complicated’ typedef struct vtbl entry {
void (*fct) () ;
D d; int delta;
A* pa = &d; B* pb = &d; C* gl &7 __
pa->£f();

// VE* vt = &pa->vtbl[index(f)];

// (*vt->fct) ((B*) ((void*)pa + vt-
>delta)) ;

pb->£() ;

// VE* vt = &pb->vtbl[index(f)];

// (*vt->fct) ((B*) ((void*)pb + vt-
>delta)) ;

pc->£f();

// VE* vt = &pc->vtbl[index(f)];

stemanalyse

Objektorientierte Programmierung mit C++ Dr. K. Ahrens M

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)

Konstruktoren virtueller Basisklassen mussen in der am
weitesten abgeleiteten Klasse direkt gerufen werden !

class A { public: A(int); };
class B: public wvirtual A ({
public: B(): A(1){ }
};
class C: public wvirtual A {
public: C(): A(2){ }
};

class D: public B, public C {
// pUbliCZ D () { 50 0O } // ERROR: no matching function for call to "A::A ()'

public: D(): A(3) { }
};

stemanalys: 218

Objektorientierte Programmierung mit C++ Dr. K. Ahrens M

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)

Potentielle Mehrdeutigkeiten werden unabhangig von
Zugriffsrechten lokalisiert !

class A {
private: void m() ;
I 6
class B {
public: void m() ;
I 6
class C: public A, public B {
void £() {
// m(); // Fehler: Mehrdeutigkeit
A::m(); // Fehler: kein Zugriff
B::m(); // ok
}
I 6

stemanalys: 219

Objektorientierte Programmierung mit C++ Dr. K. Ahrens ' :

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)

Wird eine virtuelle Basisklasse sowohl private als auch public vererbt,
so dominiert public ! Bei nicht virtueller Vererbung gilt flr jedes

Auftreten einer Basisklasse das Zugriffsrecht entsprechend der direkten
Vererbung

class B: private virtual A {}; class A { public: int 1i; };
class C: public virtual A {};
class D: public B, public C {
void £() { i++; /* erlaubt, da B: public A */ }
};
class B: private A {};

class C: public A {};

class D: public B, public C {

void £() {

// i++; // Fehler: Mehrdeutigkeit

C::i++; // ok

// B::i++; // Fehler: kein Zugriff

};

stemanalyse 220

Objektorientierte Programmierung mit C++ Dr. K. Ahrens =

2. Klassen in C++

Namespaces

Problem: Namenskollision im globalen Namensraum, Klassen sind zwar
ein Hilfsmittel zur Entlastung des globalen Namensraumes, Klassennamen

sind ihrerseits jedoch (zumeist) wiederum globale Bezeichner string,
String, XtString, QtString, Matrix

Losung namespace: Deklaration wie Klassen, Verschachtelung
erlaubt (aber keine Vererbung, Zugriffsrechte, ...)
namespace Humboldt Universitaet ({

class Fachbereich { //...

};

class Student;

void registriere (Fachbereiché&, Studentg);

} // ; muss hier nicht stehen im Gegensatz zu class !

221

stemanalys:

Objektorientierte Programmierung mit C++ Dr. K. Ahrens M

2. Klassen in C++

Namespaces durfen beliebige Deklarationen und Definitionen enthalten (auch
Namespaces), Klassen dirfen lokale Klassen enthalten aber keine Namespaces,
Typen (Klassen) dirfen nach ihrer Verwendung nicht lokal neu definiert werden

namespace X {
namespace Y ({
typedef int B;
class A {

B i;
// ERROR: class B {}; // changes meaning of 'B' from
// 'typedef int X::Y::B'
class C {};
public:
class D {};
};
}
}
// ERROR: X::¥Y::A::C c; // 'X::¥::A::C' is not accessible

X::Y::A::D d; // OK

stemanalyse 222

Objektorientierte Programmierung mit C++ Dr. K. Ahrens ' ~~- :

2. Klassen in C++

namespace reopening erlaubt zusatzliche Deklarationen,
fehlende Definitionen, logische Verteilung Uber separate
Dateien (nicht fUr namespace std erlaubt)

namespace Humboldt Universitaet { // ...
void registriere (Fachbereiché& £, Studenté& s)

{

// how this is done ...

}

} // gehort zum gleichen namespace

Definitionen auch im umhullenden namespace moglich

class Humboldt Universitaet::Student {

//. ..
};

223

stemanalyse

Objektorientierte Programmierung mit C++ Dr. K. Ahrens o
Informatik

2. Klassen in C++

Namen von auBeren namespaces sind wiederum
globale Gebilde

--> spricht fur lange (und damit) eindeutige Namen

praktische Verwendung
--> spricht fur kurze Namen

LOsung: namespace Aliashamen

namespace HU = Humboldt Universitaet;
// as I'll refer it further

224

Objektorientierte Programmierung mit C++ Dr. K. Ahrens o
Informatik

2. Klassen in C++

Es gibt zwei Moglichkeiten der "Bereitstellung” von
Elementen aus namespaces

1. Mit einer using- Deklaration wird ein Name aus einem
Namensbereich direkt in den Geltungsbereich eingefiihrt,
in dem die using - Deklaration erfolgt (als ware es dort
deklariert worden).

void doit() {
using HU: :registriere;
registriere (Informatik, Markus Mustermann) ;

}
225

Objektorientierte Programmierung mit C++ Dr. K. Ahrens s 7
Informatik

2. Klassen in C++

2. Durch eine using- Direktive konnen samtliche Namen
des angegebenen Namensbereichs fur den
Geltungsbereich zugreifbar gemacht werden, in dem die
using - Direktive enthalten ist. Die using -Direktive
wirkt sich dabei so aus, als seien alle Elemente auBerhalb
ihres Namensbereichs deklariert, und zwar an der Stelle,
an der die Namensbereich-Definition tatsachlich steht.

using namespace Humboldt Universitat;
Fachbereich Informatik;
Student *Markus Mustermann;

225

