
Objektorientierte Programmierung mit C++ Dr. K. Ahrens

210

Mehrfachvererbung (multiple inheritance)

Durch die freie Kombination kann es leicht zu Mehrdeutigkeiten kommen

Falls diese nicht auflösbar sind, liegt ein statischer Fehler vor (s.o. B: A,A)
Aber auch:
class A {public: int i;}; class B: public A{};

class C: public A, public B {}; // ERROR
// i ... which i ? A::i ? which A::i ?

Mehrdeutigkeiten, die durch scope resolution auflösbar sind, sind erlaubt

struct A { int i; }; struct B { int i; };
class C: public A, public B { i=1; // ERROR
 A::i=1; // OK
 B::i=1; // OK
};

2. Klassen in C++

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

211

Mehrfachvererbung (multiple inheritance)

Selbst bei virtuellen Basisklassen kann es auf Grund der Maschenbildung sein, dass
ein Name eines Members auf mehreren "Wegen" auflösbar ist und zu
verschiedenen Membern führt, Eindeutigkeit liegt dann vor, wenn es (genau) einen
kürzesten Weg gibt »Dominanzregel« (ansonsten muss ebenfalls qualifiziert
werden)

class A { public: void f(){cout<<"A::f()\n";} };
class B: public virtual A {
 public: void f(){cout<<"B::f()\n";}
};
class C: public virtual A {
 public: void f(){cout<<"C::f()\n";}
};
class D: public B, public C {};
int main() { D d;
 // d.f(); ERROR: ambiguous access of 'f'
 d.A::f(); // ok
 B *pb = &d; pb->f(); // ok
 C *pc = &d; pc->f(); // ok
}

2. Klassen in C++

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

212

Mehrfachvererbung (multiple inheritance)

Selbst bei virtuellen Basisklassen kann es auf Grund der Maschenbildung sein, dass
ein Name eines Members auf mehreren "Wegen" auflösbar ist und zu
verschiedenen Membern führt, Eindeutigkeit liegt dann vor, wenn es (genau) einen
kürzesten Weg gibt »Dominanzregel« (ansonsten muss ebenfalls qualifiziert
werden)

class A { public: void f(){cout<<"A::f()\n";} };
class B: public virtual A {
 public: void f(){cout<<"B::f()\n";}
};
class C: public virtual A {};
class D: public B, public C {};
int main() { D d;
 d.f();
 d.A::f();
 B *pb = &d; pb->f();
 C *pc = &d; pc->f();
}

2. Klassen in C++

A f

B f

D

C

B::f()
A::f()
B::f()
A::f()

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

213

Mehrfachvererbung (multiple inheritance)

Mehrfachvererbung und virtuelle Funktionen sind miteinander kombinierbar, im
Falle von virtuellen Basisklassen stehen u.U. ebenfalls mehrere Wege der
Auflösung zur Verfügung: falls keine dominate Implementation existiert, muss in
der am weitesten abgeleiteten Klasse eine Redefinition erfolgen

class A {
 public: virtual void f(){cout<<"A::f()\n";}
};
class B: public virtual A { };
class C: public virtual A { };
class D: public B, public C { };
main(){ D d;
 C *pc = &d;
 pc->f();
}

2. Klassen in C++

A v f

B

D

C

A::f()

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

214

Mehrfachvererbung (multiple inheritance)


class A {
 public: virtual void f(){cout<<"A::f()\n";}
};
class B: public virtual A {
 public: void f(){cout<<"B::f()\n";}
 };
class C: public virtual A {
 public: void f(){cout<<"C::f()\n";}
};
class D: public B, public C { };
// ERROR: no unique final overrider for f() in D

2. Klassen in C++

A v f

B v f

D

C v f

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

215

Mehrfachvererbung (multiple inheritance)


class A {
 public: virtual void f(){cout<<"A::f()\n";}
};
class B: public virtual A {
 public: void f(){cout<<"B::f()\n";}
 };
class C: public virtual A {
 public: void f(){cout<<"C::f()\n";}
};
class D: public B, public C {
 public: void f(){cout<<"D::f()\n";}
};
... D d; C *pc = &d; pc->f(); ...

2. Klassen in C++

A v f

B v f

D v f

C v f

D::f()

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

216

Mehrfachvererbung (multiple inheritance)
 Implementation von virtuellen Funktionen wird
 'slightly more complicated'

main(){ D d;
 C *pc = &d;
 pc->f();

}

2. Klassen in C++

A v f

B v f

D

C

B::f 0

B::f - delta(C)

Δ B

(A)
Δ C

Δ D

struct vtbl_entry {
 void (*fct)();
 int delta;
};

B::f - delta(A)

delta(C)

delta(A)

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

217

Mehrfachvererbung (multiple inheritance)
 Implementation von virtuellen Funktionen wird
 'slightly more complicated'

 D d;
 A* pa = &d; B* pb = &d; C* pc = &d;
 pa->f();
 // VE* vt = &pa->vtbl[index(f)];
 // (*vt->fct)((B*)((void*)pa + vt-
>delta));
 pb->f();
 // VE* vt = &pb->vtbl[index(f)];
 // (*vt->fct)((B*)((void*)pb + vt-
>delta));
 pc->f();
 // VE* vt = &pc->vtbl[index(f)];
 // (*vt->fct)((B*)((void*)pc + vt->delta));

2. Klassen in C++

typedef struct vtbl_entry {
 void (*fct)();
 int delta;
} VE;

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

218

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)

Konstruktoren virtueller Basisklassen müssen in der am
weitesten abgeleiteten Klasse direkt gerufen werden !
class A { public: A(int); };
class B: public virtual A {
 public: B(): A(1){ }
};
class C: public virtual A {
 public: C(): A(2){ }
};

class D: public B, public C {
// public: D() { } // ERROR: no matching function for call to `A::A ()'
 public: D(): A(3) { }
};

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

219

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)

Potentielle Mehrdeutigkeiten werden unabhängig von
Zugriffsrechten lokalisiert !
class A {
 private: void m();
};
class B {
 public: void m();
};
class C: public A, public B {
 void f() {
 // m(); // Fehler: Mehrdeutigkeit
 A::m(); // Fehler: kein Zugriff
 B::m(); // ok
 }
};

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

220

2. Klassen in C++

Mehrfachvererbung (multiple inheritance)
Wird eine virtuelle Basisklasse sowohl private als auch public vererbt,
so dominiert public ! Bei nicht virtueller Vererbung gilt für jedes
Auftreten einer Basisklasse das Zugriffsrecht entsprechend der direkten
Vererbung

class B: private virtual A {};
class C: public virtual A {};
class D: public B, public C {
 void f() { i++; /* erlaubt, da B: public A */ }
};
--
class B: private A {};
class C: public A {};
class D: public B, public C {
void f() {
 // i++; // Fehler: Mehrdeutigkeit
 C::i++; // ok
 // B::i++; // Fehler: kein Zugriff
};

class A { public: int i; };

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

221

2. Klassen in C++

Namespaces

Problem: Namenskollision im globalen Namensraum, Klassen sind zwar
ein Hilfsmittel zur Entlastung des globalen Namensraumes, Klassennamen
sind ihrerseits jedoch (zumeist) wiederum globale Bezeichner string,
String, XtString, QtString, Matrix

Lösung namespace: Deklaration wie Klassen, Verschachtelung
erlaubt (aber keine Vererbung, Zugriffsrechte, ...)
namespace Humboldt_Universitaet {
 class Fachbereich { //...
 };
 class Student;
 void registriere(Fachbereich&, Student&);
} // ; muss hier nicht stehen im Gegensatz zu class !

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

222

2. Klassen in C++

Namespaces dürfen beliebige Deklarationen und Definitionen enthalten (auch
Namespaces), Klassen dürfen lokale Klassen enthalten aber keine Namespaces,
Typen (Klassen) dürfen nach ihrer Verwendung nicht lokal neu definiert werden

namespace X {
 namespace Y {
 typedef int B;
 class A {
 B i;
// ERROR: class B {}; // changes meaning of 'B' from
 // 'typedef int X::Y::B'
 class C {};
 public:
 class D {};
 };
 }
}
// ERROR: X::Y::A::C c; // 'X::Y::A::C' is not accessible
 X::Y::A::D d; // OK

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

223

2. Klassen in C++

namespace reopening erlaubt zusätzliche Deklarationen,
fehlende Definitionen, logische Verteilung über separate
Dateien (nicht für namespace std erlaubt)
namespace Humboldt_Universitaet { // ...
 void registriere (Fachbereich& f, Student& s)
 {
 // how this is done ...
 }
} // gehört zum gleichen namespace

Definitionen auch im umhüllenden namespace möglich
class Humboldt_Universitaet::Student {
 //...
};

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

224

2. Klassen in C++

Namen von äußeren namespaces sind wiederum
globale Gebilde
 --> spricht für lange (und damit) eindeutige Namen

praktische Verwendung
 --> spricht für kurze Namen

Lösung: namespace Aliasnamen

namespace HU = Humboldt_Universitaet;
// as I'll refer it further

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

225

2. Klassen in C++

 Es gibt zwei Möglichkeiten der "Bereitstellung" von
Elementen aus namespaces

1. Mit einer using- Deklaration wird ein Name aus einem
Namensbereich direkt in den Geltungsbereich eingeführt,
in dem die using - Deklaration erfolgt (als wäre es dort
deklariert worden).

void doit(){
 using HU::registriere;
 registriere(Informatik, Markus_Mustermann);
}

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

226

2. Klassen in C++

2. Durch eine using- Direktive können sämtliche Namen
des angegebenen Namensbereichs für den
Geltungsbereich zugreifbar gemacht werden, in dem die
using - Direktive enthalten ist. Die using -Direktive
wirkt sich dabei so aus, als seien alle Elemente außerhalb
ihres Namensbereichs deklariert, und zwar an der Stelle,
an der die Namensbereich-Definition tatsächlich steht.

using namespace Humboldt_Universität;
Fachbereich Informatik;
Student *Markus_Mustermann;

