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Abstract. Disjoint NP-pairs are a well studied complexity-theoretic
concept with important applications in cryptography and propositional
proof complexity. In this paper we introduce a natural generalization of
the notion of disjoint NP-pairs to disjoint k-tuples of NP-sets for k ≥ 2.
We define subclasses of the class of all disjoint k-tuples of NP-sets. These
subclasses are associated with a propositional proof system and possess
complete tuples which are defined from the proof system.

In our main result we show that complete disjoint NP-pairs exist if and
only if complete disjoint k-tuples of NP-sets exist for all k ≥ 2. Further,
this is equivalent to the existence of a propositional proof system in which
the disjointness of all k-tuples is shortly provable. We also show that a
strengthening of this conditions characterizes the existence of optimal
proof systems.

1 Introduction

During the last years the theory of disjoint NP-pairs has been intensively studied.
This interest stems mainly from the applications of disjoint NP-pairs in the field
of cryptography [8, 15] and propositional proof complexity [17, 12]. In this paper
we investigate a natural generalization of disjoint NP-pairs: instead of pairs we
consider tuples of pairwise disjoint NP-sets. This generalization is in accordance
with many applications where not only two but a greater number of different,
mutually exclusive conditions is of interest. In particular, such tuples naturally
emerge from public-key cryptosystems and one-way functions.

One of the major open problems in the field of disjoint NP-pairs is the ques-
tion, posed by Razborov [18], whether there exist disjoint NP-pairs that are
complete for the class of all pairs under suitable reductions. Glaßer et al. [5]
gave a characterization in terms of uniform enumerations of disjoint NP-pairs
and also proved that the answer to the problem does not depend on the reduc-
tions used, i.e., there are reductions for pairs which vary in strength but are
equivalent with respect to the existence of complete pairs.

The close relation between propositional proof systems and disjoint NP-pairs
provides a partial answer to the question of the existence of complete pairs.

⋆ An extended abstract of this paper appeared in the proceedings of the conference
CSR 2006 [2]

⋆⋆ Supported by DFG grant KO 1053/5-1



Namely, the existence of optimal propositional proof systems is a sufficient con-
dition for the existence of complete disjoint NP-pairs. This result is already
implicitly contained in [18]. However, Glaßer et al. [6] construct an oracle rela-
tive to which there exist complete pairs but optimal proof systems do not exist.
Hence, the problems on the existence of optimal proof systems and of complete
disjoint NP-pairs appear to be of different strength.

Our main contribution in this paper is the characterization of these two prob-
lems in terms of disjoint k-tuples of NP-sets. In particular we address the question
whether there exist complete disjoint k-tuples under different reductions. Con-
sidering this problem it is easy to see that the existence of complete k-tuples
implies the existence of complete l-tuples for l ≤ k: the first l components of a
complete k-tuple are complete for all l-tuples. Conversely, it is a priori not clear
how to construct a complete k-tuple from a complete l-tuple for l < k. There-
fore it might be tempting to conjecture that the existence of complete k-tuples
forms a hierarchy of assumptions of increasing strength for greater k. However,
we show that this does not happen: there exist complete disjoint NP-pairs if
and only if there exist complete disjoint k-tuples of NP-sets for all k ≥ 2, and
this is even true under reductions of different strength. Further, we prove that
this is equivalent to the existence of a propositional proof system in which the
disjointness of all k-tuples with respect to suitable propositional representations
of these tuples is provable with short proofs. We also characterize the existence
of optimal proof systems with a similar but apparently stronger condition.

We achieve this by extending the connection between proof systems and NP-
pairs to k-tuples. In particular we define representations for disjoint k-tuples of
NP-sets. This can be done on a propositional level with sequences of tautologies
but also with first-order formulas in arithmetic theories. To any propositional
proof system P we associate a subclass DNPPk(P ) of the class of all disjoint
k-tuples of NP-sets. This subclass contains those k-tuples for which the disjoint-
ness is provable with short P -proofs. We show that the classes DNPPk(P ) possess
complete tuples which are defined from the proof system P . Somewhat surpris-
ingly, under suitable conditions on P these non-uniform classes DNPPk(P ) equal
their uniform versions which are defined via arithmetic representations. This en-
ables us to further characterize the existence of complete disjoint k-tuples by a
condition on arithmetic theories.

The paper is organized as follows. In Sect. 2 we recall some relevant definitions
concerning propositional proof systems and disjoint NP-pairs. We also give a very
brief description of the correspondence between propositional proof systems and
arithmetic theories. This reference to bounded arithmetic, however, only plays
a role in Sect. 5 where we analyse arithmetic representations. The rest of the
paper and in particular the main results in Sect. 6 are fully presented on the
propositional level.

In Sect. 3 we define the basic concepts such as reductions and separators that
we need for the investigation of disjoint k-tuples of NP-sets.

In Sect. 4 we define propositional representations for k-tuples and introduce
the complexity classes DNPPk(P ) of all disjoint k-tuples of NP-sets that are
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representable in the system P . We show that these classes are closed under
our reductions for k-tuples. Further, we define k-tuples from propositional proof
systems which serve as hard languages for DNPPk(P ). In particular we generalize
the interpolation pair from [17] and demonstrate that even these generalized
variants still capture the feasible interpolation property of the proof system.

In Sect. 5 we define first-order variants of the propositional representations
from Sect. 4. We utilize the correspondence between proof systems and bounded
arithmetic to show that a k-tuple of NP-sets is representable in P if and only if
it is representable in the arithmetic theory associated with P . This equivalence
allows easy proofs for the representability of the canonical k-tuples associated
with P , thereby improving the hardness results for DNPPk(P ) from Sect. 4 to
completeness results for proof systems corresponding to arithmetic theories.

The main results on the connections between complete NP-pairs, complete
k-tuples and optimal proof systems follow in Sect. 6.

2 Preliminaries

Propositional Proof Systems. Propositional proof systems were defined in
a very general way by Cook and Reckhow in [4] as polynomial-time functions
P which have as its range the set of all tautologies, which we consider in the
language containing the connectives ¬,∧,∨,→,↔ and constants ⊤ and ⊥. A
string π with P (π) = ϕ is called a P -proof of the tautology ϕ. By P ⊢≤m ϕ we
indicate that there is a P -proof of ϕ of length ≤ m. If Φ is a set of propositional
formulas we write P ⊢∗ Φ if there is a polynomial p such that P ⊢≤p(|ϕ|) ϕ for
all ϕ ∈ Φ. If Φ = {ϕn | n ≥ 0} is a sequence of formulas we also write P ⊢∗ ϕn
instead of P ⊢∗ Φ.

Proof systems are compared according to their strength by simulations intro-
duced in [4] and [13]. Given two proof systems P and S we say that S simulates
P (denoted by P ≤ S) if there exists a polynomial p such that for all tautologies
ϕ and P -proofs π of ϕ there is a S-proof π′ of ϕ with |π′| ≤ p (|π|). If such
a proof π′ can even be computed from π in polynomial time we say that S p-
simulates P and denote this by P ≤p S. A proof system is called (p-)optimal if
it (p-)simulates all proof systems. Whether or not optimal proof systems exist
is an open problem posed by Kraj́ıček and Pudlák [13].

In [1] we investigated several natural properties of propositional proof sys-
tems. We will just define those which we need in this paper. We say that a
propositional proof system P is closed under substitutions by constants if there
exists a polynomial q such that P ⊢≤n ϕ(x̄, ȳ) implies P ⊢≤q(n) ϕ(ā, ȳ) for all

formulas ϕ(x̄, ȳ) and constants ā ∈ {0, 1}|x̄|. We call P efficiently closed under
substitutions by constants if we can transform any P -proof of a formula ϕ(x̄, ȳ) in
polynomial time to a P -proof of ϕ(ā, ȳ). A system P is closed under disjunctions
if there is a polynomial q such that P ⊢≤m ϕ implies P ⊢≤q(m+|ψ|) ϕ ∨ ψ for
arbitrary formulas ψ. Similarly, we say that a proof system P is closed under
conjunctions if there is a polynomial q such that P ⊢≤m ϕ∧ψ implies P ⊢≤q(m) ϕ
and P ⊢≤q(m) ψ, and likewise P ⊢≤m ϕ and P ⊢≤n ψ imply P ⊢≤q(m+n) ϕ ∧ ψ
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for all formulas ϕ and ψ. As with closure under substitutions by constants we
also consider efficient versions of closure under disjunctions and conjunctions.

Propositional Proof Systems and Arithmetic Theories. In Sect. 5 we will
use the correspondence of propositional proof systems to theories of bounded
arithmetic. Here we will just briefly introduce some notation and otherwise re-
fer to the monograph [10]. To explain the correspondence we have to translate
first-order arithmetic formulas into propositional formulas. An arithmetic for-
mula in prenex normal form with only bounded existential quantifiers is called a
Σb

1-formula. These formulas describe NP-predicates. Likewise, Πb
1-formulas only

have bounded universal quantifiers and describe coNP-predicates. A Σb
1- or Πb

1-
formula ϕ(x) is translated into a sequence ‖ϕ(x)‖n of propositional formulas
containing one formula per input length for the number x such that ϕ(x) is true
if and only if ‖ϕ(x)‖n is a tautology where n = |x|. As usual we associate first-
order formulas ϕ(x̄) with free variables with their universally closed counterparts
(∀x̄)ϕ(x̄). Therefore the translation ‖.‖ is not only suitable for Πb

1- but in fact
for ∀Πb

1-formulas. We use ‖ϕ(x)‖ to denote the set {‖ϕ(x)‖n | n ≥ 1}.
The reflection principle for a propositional proof system P states a strong

form of the consistency of the proof system P . It is formalized by the ∀Πb
1-

formula
RFN(P ) = (∀π)(∀ϕ)PrfP (π, ϕ) → Taut(ϕ)

where PrfP and Taut are suitable arithmetic formulas describing P -proofs and
tautologies, respectively. A proof system P has the reflection property if P ⊢∗

‖RFN(P )‖n holds.
In [14] a general correspondence between arithmetic theories T and propo-

sitional proof systems P is introduced. Pairs (T, P ) from this correspondence
possess in particular the following two properties:

1. Let ϕ(x) be a Πb
1-formula such that T ⊢ (∀x)ϕ(x). Then there exists a

polynomial-time computable function f that on input 1n outputs a P -proof
of ‖ϕ(x)‖n.

2. T ⊢ RFN(P ) and if T ⊢ RFN(Q) for some proof system Q, then Q ≤p P .

We call a proof system P regular if there exists an arithmetic theory T such that
properties 1 and 2 are fulfilled for (T, P ). Probably the most important example
of a regular proof system is the extended Frege system EF that corresponds
to the theory S1

2 . The theory S1
2 is one of the most prominent theories from a

whole collection of arithmetic theories, known as bounded arithmetic, that are
defined by adding a controlled amount of induction to a set of basic axioms.
In the case of S1

2 induction on the length of numbers is added for Σb
1-formulas,

which allows the formalization of polynomial-time computations in S1
2 (cf. [10]).

The correspondence between S1
2 and EF was established in [3] and [14].

Disjoint NP-Pairs. A pair (A,B) is called a disjoint NP-pair if A,B ∈ NP and
A∩B = ∅. The pair (A,B) is called p-separable if there exists a polynomial-time
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computable set C such that A ⊆ C and B ∩ C = ∅. Grollmann and Selman
[8] defined the following reduction between disjoint NP-pairs (A,B) and (C,D):
((A,B) ≤p (C,D)) if there exists a polynomial-time computable function f such
that f(A) ⊆ C and f(B) ⊆ D. This variant of a many-one reduction for pairs was
strengthened by Köbler et al. [9] to: (A,B) ≤s (C,D) if there exists a function
f ∈ FP such that f−1(C) = A and f−1(D) = B.

The link between disjoint NP-pairs and propositional proof systems was es-
tablished by Razborov [18], who associated a canonical disjoint NP-pair with
a proof system. This canonical pair is linked to the automatizablility and the
reflection property of the proof system. Pudlák [17] introduced an interpolation
pair for a proof system P which is p-separable if and only if the proof system P
has the feasible interpolation property [11]. In [1] we analysed a variant of the in-
terpolation pair. More information on the connection between disjoint NP-pairs
and propositional proof systems can be found in [1, 7, 17].

3 Basic Definitions and Properties

Definition 1. Let k ≥ 2 be a number. A tuple (A1, . . . , Ak) is a disjoint k-tuple
of NP-sets if all components A1, . . . , Ak are nonempty languages in NP which
are pairwise disjoint.

To require the nonemptiness of the components Ai is not essential, but it sim-
plifies the statement of some results (like e.g. Theorem 5 below). We generalize
the notion of a separator of a disjoint NP-pair as follows:

Definition 2. A function f : {0, 1}∗ → {1, . . . , k} is a separator for a dis-
joint k-tuple (A1, . . . , Ak) if a ∈ Ai implies f(a) = i for i = 1, . . . , k and all
a ∈ {0, 1}∗. For inputs from the complement A1 ∪ · · · ∪Ak the function f may
answer arbitrarily. If (A1, . . . , Ak) is a disjoint k-tuple of NP-sets that has a
polynomial-time computable separator we call the tuple p-separable, otherwise
p-inseparable.

Whether there exist p-inseparable disjoint k-tuples of NP-sets is certainly a
hard problem that cannot be answered with our current techniques. At least we
can show that this question is not harder than the previously studied question
whether there exist p-inseparable disjoint NP-pairs.

Theorem 3. The following are equivalent:

1. For all numbers k ≥ 2 there exist p-inseparable disjoint k-tuples of NP-sets.
2. There exists a number k ≥ 2 such that there exist p-inseparable disjoint

k-tuples of NP-sets.
3. There exist p-inseparable disjoint NP-pairs.

Proof. The implications 1 ⇒ 2 and 3 ⇒ 1 are immediate. To prove 2 ⇒ 3
let us assume that all disjoint NP-pairs are p-separable. To separate a k-tuple
(A1, . . . , Ak) for some k ≥ 2 we evaluate all separators fi,j for all disjoint NP-
pairs (Ai, Aj) and output the number i such that we received 1 at all evaluations
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fi,j . If no such i exists, then we know that the input is outside A1 ∪ · · · ∪ Ak,
and we can answer arbitrarily. ⊓⊔

Let us pause to give an example of a disjoint k-tuple of NP-sets that is derived
from the Clique-Coloring pair (cf. [17]). The tuple (C1, . . . , Ck) has components
Ci that contain all i + 1-colorable graphs with a clique of size i. Clearly, the
components Ci are NP-sets which are pairwise disjoint. This tuple is also p-
separable, but to devise a separator for (C1, . . . , Ck) is considerably simpler than
to separate the Clique-Coloring pair: given a graph G we output the maximal
number i between 1 and k such that G contains a clique of size i. For graphs
with n vertices this number i can be computed in time O(nk).

Candidates for p-inseparable tuples arise from one-way functions. Let Σ =
{a1, . . . , ak} be an alphabet of size k ≥ 2. To an injective one-way function
f : Σ∗ → Σ∗ we assign a disjoint k-tuple (A1(f), . . . , Ak(f)) of NP-sets with
components

Ai(f) = {(y, j) | (∃x)f(x) = y and xj = ai}

where xj is the j-th letter of x. This tuple is p-inseparable if f has indeed the
one-way property.

Next we define reductions for k-tuples. We will only consider variants of
many-one reductions which are easily obtained from the reductions ≤p and ≤s
for pairs.

Definition 4. A k-tuple (A1, . . . , Ak) is polynomially reducible to a k-tuple
(B1, . . . , Bk), denoted by (A1, . . . , Ak) ≤p (B1, . . . , Bk), if there exists a polynomial-
time computable function f such that f(Ai) ⊆ Bi for i = 1, . . . , k. If additionally
f(A1 ∪ · · · ∪Ak) ⊆ B1 ∪ · · · ∪Bk holds, then we call the reduction performed by
f strong. Strong reductions are denoted by ≤s.

From ≤p and ≤s we define equivalence relations ≡p and ≡s and call their
equivalence classes degrees.

Following common terminology we call a disjoint k-tuple of NP-sets ≤p-complete
if every disjoint k-tuple of NP-sets ≤p-reduces to it. Similarly, we speak of ≤s-
complete tuples.

In the next theorem we separate the reductions ≤p and ≤s on the domain of
all p-separable disjoint k-tuples of NP-sets:

Theorem 5. For all numbers k ≥ 2 the following holds:

1. All p-separable disjoint k-tuples of NP-sets are ≤p-equivalent. They form the
minimal ≤p-degree of disjoint k-tuples of NP-sets.

2. If P 6= NP, then there exist infinitely many ≤s-degrees of p-separable disjoint
k-tuples of NP-sets.

Proof. Part 1 is easy. For part 2 we use the result of Ladner [16] that there exist
infinitely many different ≤pm-degrees of NP-sets assuming P 6= NP. Therefore
Ladner’s theorem together with the following claim imply part 2.

Claim: Let (A1, . . . , Ak) and (B1, . . . , Bk) be p-separable disjoint k-tuple of NP-
sets. Let further B1 ∪ · · · ∪Bk 6= ∅. Then (A1, . . . , Ak) ≤s (B1, . . . , Bk) if and
only if Ai ≤pm Bi for all i = 1, . . . , k. ⊓⊔
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4 Disjoint k-Tuples from Propositional Proof Systems

In [1] we defined propositional representations for NP-sets as follows:

Definition 6. Let A be a NP-set over the alphabet {0, 1}. A propositional rep-
resentation for A is a sequence of propositional formulas ϕn(x̄, ȳ) such that:

1. ϕn(x̄, ȳ) has propositional variables x̄ and ȳ such that x̄ is a vector of n
propositional variables.

2. There exists a polynomial-time algorithm that on input 1n outputs ϕn(x̄, ȳ).
3. Let ā ∈ {0, 1}n. Then ā ∈ A if and only if ϕn(ā, ȳ) is satisfiable.

Once we have propositional descriptions of NP-sets we can now represent
disjoint k-tuples of NP-sets in propositional proof systems.

Definition 7. Let P be a propositional proof system. A k-tuple (A1, . . . , Ak) of
NP-sets is representable in P if there exist propositional representations ϕin(x̄, ȳi)
of Ai for i = 1, . . . , k such that for each 1 ≤ i < j ≤ k the formulas ϕin(x̄, ȳi)
and ϕjn(x̄, ȳj) have only the variables x̄ in common, and further

P ⊢∗

∧

1≤i<j≤k

¬ϕin(x̄, ȳi) ∨ ¬ϕjn(x̄, ȳj) .

By DNPPk(P ) we denote the class of all disjoint k-tuples of NP-sets which
are representable in P .

For DNPP2(P ) we will also write DNPP(P ). In [1] we have analysed this
class for some standard proof systems. As the classes DNPPk(P ) provide natural
generalizations of DNPP(P ) we have chosen the same notation for the classes
of k-tuples. The next proposition shows that these classes are closed under the
reductions ≤p and ≤s.

Proposition 8. Let P be a proof system that is closed under conjunctions and
disjunctions and that simulates resolution. Then for all numbers k ≥ 2 the class
DNPPk(P ) is closed under ≤p.

Proof. Let (A1, . . . , Ak) and (B1, . . . , Bk) be disjoint k-tuples of NP-sets such
that f is a ≤p-reduction from (A1, . . . , Ak) to (B1, . . . , Bk). Let further P be a
propositional proof system satisfying the above conditions and let (B1, . . . , Bk) ∈
DNPPk(P ).

Closure of P under conjunctions implies that for all 1 ≤ i < j ≤ k each
of the disjoint NP-pairs (Bi, Bj) is contained in DNPP(P ). In [1] we proved
that DNPP(P ) is closed under ≤p, if P simulates resolution and is closed under
disjunctions. As f is a ≤p-reduction between the pairs (Ai, Aj) and (Bi, Bj) we
infer that all pairs (Ai, Aj) are in DNPP(P ). In fact, P proves the disjointness
of these pairs with respect to the representations

A′
i = {x | x ∈ Ai and f(x) ∈ Bi} .
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In particular, the representation of Ai is always the same when proving the
disjointness of Ai and Aj for different j. Therefore we can combine these proofs
of disjointness by conjunctions and obtain a P -proof of a suitable propositional
description of

∧

1≤i<j≤k A
′
i ∩A

′
j = ∅. This shows (A1, . . . , Ak) ∈ DNPPk(P ). ⊓⊔

Now we want to associate tuples of NP-sets with proof systems. It is not clear
how the canonical pair could be modified for k-tuples but the interpolation pair
[17] can be expanded to a k-tuple (I1(P ), . . . , Ik(P )) by

Ii(P ) = {(ϕ1, . . . , ϕk, π) | Var(ϕj) ∩ Var(ϕl) = ∅ for all 1 ≤ j < l ≤ k,

¬ϕi ∈ SAT and P (π) =
∧

1≤j<l≤k

ϕj ∨ ϕl}

for i = 1, . . . , k, where Var(ϕ) denotes the set of propositional variables occurring
in ϕ. This tuple still captures the feasible interpolation property of the proof
system P as the next theorem shows.

Theorem 9. Let P be a propositional proof system that is efficiently closed
under substitutions by constants and conjunctions. Then (I1(P ), . . . , Ik(P )) is
p-separable if and only if P has the feasible interpolation property.

Proof. Pudlák [17] showed that proof systems with efficient closure under sub-
stitutions by constants have the feasible interpolation property if and only if
the interpolation pair (I1(P ), I2(P )) is p-separable. It is therefore sufficient to
show for every k ≥ 2 that the pair (I1(P ), I2(P )) is p-separable if and only if
(I1(P ), . . . , Ik(P )) is p-separable.

For the first direction assume that (I1(P ), I2(P )) is separated by the polynomial-
time computable function f , i.e.

(ϕ, ψ, π) ∈ I1(P ) =⇒ f(ϕ, ψ, π) = 1

(ϕ, ψ, π) ∈ I2(P ) =⇒ f(ϕ, ψ, π) = 0 .

We separate the tuple (I1(P ), . . . , Ik(P )) by the following algorithm: at input
(ϕ1, . . . , ϕk, π) we test whether π is indeed a P -proof of

∧

1≤i<j≤k

ϕi ∨ ϕj .

If this is the case we can use the assumption that P is efficiently closed under
conjunctions to compute P -proofs πi,j of ϕi∨ϕj for all i, j ∈ {1, . . . , k}, i 6= j. We
then test whether there exists an i ∈ {1, . . . , k} such that for all j ∈ {1, . . . , k} \
{i} we have f(ϕi, ϕj , πi,j) = 1. If such i exists, then we output this number i.

It is clear that this algorithm runs in polynomial time. To see the correctness
of the algorithm assume that (ϕ1, . . . , ϕk, π) ∈ Ii(P ). Then ¬ϕi is satisfiable and
hence ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕk are tautologies. Therefore f(ϕi, ϕj , πi,j) always
outputs 1. As this can happen for at most one i we give the correct answer.
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For the converse direction assume that (I1(P ), . . . , Ik(P )) is separated by the
polynomial-time computable function f , i.e.

(ϕ1, . . . , ϕk, π) ∈ Ii(P ) =⇒ f(ϕ, . . . , ϕk, π) = i

for i = 1, . . . , k. Let (ϕ, ψ, π) be given. We first check whether P (π) = ϕ ∨ ψ. If
this is fulfilled we expand (ϕ, ψ) to the k-tuple

(ϕ1, . . . , ϕk) = (ϕ, ψ,⊤, . . . ,⊤) .

We then use the assumption that P is efficiently closed under conjunctions
to generate a P -proof π′ of

∧

1≤i<j≤k ϕi ∨ ϕj from π. Finally, we evaluate
f(ϕ, ψ,⊤, . . . ,⊤, π′). We use this answer to decide (ϕ, ψ, π), i.e., on output 1
we also answer with 1 and on output 2 we answer with 0. ⊓⊔

Searching for canonical candidates for hard tuples for the classes DNPPk(P )
we modify the interpolation tuple to the following tuple (U1(P ), . . . , Uk(P )) with

Ui(P ) = {(ϕ1, . . . , ϕk, 1
m) | Var(ϕj) ∩ Var(ϕl) = ∅ for all 1 ≤ j < l ≤ k,

¬ϕi ∈ SAT and P ⊢≤m

∧

1≤j<l≤k

ϕj ∨ ϕl}

for i = 1, . . . , k. The next theorem shows that for all reasonable proof systems
P these tuples are hard for the classes DNPPk(P ).

Theorem 10. Let P be a proof system that is closed under substitutions by
constants. Then (U1(P ), . . . , Uk(P )) is ≤s-hard for DNPPk(P ) for all k ≥ 2.

Proof. Let (A1, . . . , Ak) be a disjoint k-tuple of NP-sets and let ϕin(x̄, ȳi) be
propositional representations of Ai for i = 1, . . . , k such that we have polynomial-
size P -proofs of

∧

1≤i<j≤k

¬ϕin(x̄, ȳ
i) ∨ ¬ϕjn(x̄, ȳj) .

Then the ≤s-reduction from (A1, . . . , Ak) to (U1(P ), . . . , Uk(P )) is performed by

a 7→ (¬ϕ1
|a|(ā, ȳ

1), . . . ,¬ϕk|a|(ā, ȳ
k), 1p(|a|))

for some suitable polynomial p. ⊓⊔

For technical reasons we now introduce a modification (V1(P ), . . . , Vk(P )) of
the U -tuple for which we will also show the hardness for DNPPk(P ). Instead of
k-tuples the components Vr(P ) now consist of sequences of (k − 1)k formulas
together with an unary coded parameter m. For a propositional proof system P
we define the k-tuple (V1(P ), . . . , Vk(P )) as:

Vr(P ) = {((ϕi,j | 1 ≤ i, j ≤ k, i 6= j), 1m) |

Var(ϕi,j) ∩ Var(ϕl,n) = ∅ for all i, j, l, n ∈ {1, . . . , k}, i 6= l,

¬ϕr,i ∈ SAT for i ∈ {1, . . . , k} \ {r} and

P ⊢≤m

k
∧

i=1

k
∧

j=i+1

ϕi,j ∨ ϕj,i}
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for r = 1, . . . , k. Let us verify that we have defined a disjoint k-tuple of NP-
sets. It is clear that all components Vr(P ) are in NP. To prove their disjointness
assume that the tuple ((ϕi,j | 1 ≤ i, j ≤ k, i 6= j), 1m) is contained both in Vr(P )
and Vs(P ) for r, s ∈ {1, . . . , k}, r < s. The definition of Vr guarantees that

k
∧

i=1

k
∧

j=i+1

ϕi,j ∨ ϕj,i

is a tautology. Therefore in particular ϕr,s ∨ϕs,r is a tautology and because ϕr,s
and ϕs,r have no common variables either of these formulas must be tautological.
In the definition of Vr(P ) this is excluded for ϕr,s and in the definition of Vs(P )
this is excluded for ϕs,r which gives a contradiction.

As this V -tuple is a generalization of the previously defined U -tuple we can
reduce the U -tuple to the V -tuple, thereby also showing the hardness result for
the V -tuple.

5 Arithmetic Representations

In [18] and [1] arithmetic representations of disjoint NP-pairs were investigated.
These form a uniform first-order counterpart to the propositional representations
introduced in the previous section. We now generalize the notion of arithmetic
representations to disjoint k-tuples of NP-sets.

Definition 11. A Σb
1-formula ϕ is an arithmetic representation of an NP-set

A if for all natural numbers a we have N |= ϕ(a) if and only if a ∈ A.
A disjoint k-tuple (A1, . . . , Ak) of NP-sets is representable in an arithmetic

theory T if there are Σb
1-formulas ϕ1(x), . . . , ϕk(x) representing A1, . . . , Ak such

that T ⊢ (∀x)
∧

1≤i<j≤k ¬ϕi(x) ∨ ¬ϕj(x). The class DNPPk(T ) contains all dis-
joint k-tuples of NP-sets that are representable in T .

We now show that the classes DNPPk(T ) and DNPPk(P ) coincide for regular
proof systems P corresponding to the theory T .

Theorem 12. Let P ≥ EF be a regular proof system which is closed under
substitutions by constants and conjunctions and let T ⊇ S1

2 be a theory corre-
sponding to T . Then we have DNPPk(P ) = DNPPk(T ) for all k ≥ 2.

Proof. We reduce the proof of the theorem to the case k = 2 which we proved
in [1].

To show DNPPk(P ) ⊆ DNPPk(T ) let (A1, . . . , Ak) be a disjoint k-tuple of
NP-sets in DNPPk(P ) and let ϕin be propositional representations of the sets Ai
for i = 1, . . . , k, such that

P ⊢∗

∧

1≤i<j≤k

¬ϕin ∨ ¬ϕjn . (1)

Because P is closed under conjunctions this in particular means P ⊢∗ ¬ϕin ∨
¬ϕjn for all 1 ≤ i < j ≤ k, i.e., all disjoint NP-pairs (Ai, Aj) are contained in

10



DNPP(P ). By the mentioned result from [1] this implies that for all 1 ≤ i < j ≤ k
we have (Ai, Aj) ∈ DNPP(T ) where the disjointness of (Ai, Aj) is T -provable via
arithmetic representations ψi(x) for Ai depending only on the set Ai and the
polynomial in (1). Hence we get

T ⊢ (∀x)
∧

1≤i<j≤k

¬ψi(x) ∨ ¬ψj(x) (2)

and therefore (A1, . . . , Ak) ∈ DNPPk(T )
For the other inclusion let ψ1(x), . . . , ψk(x) be arithmetic representations of

A1, . . . , Ak such that (2) holds. Then the translations ‖ψi(x)‖
n of the arith-

metic representations ψi provide propositional representations of Ai for i =
1, . . . , k. In these translations we choose the auxiliary variables disjoint. Because
∧

1≤i<j≤k ¬ψi(x) ∨ ¬ψj(x) is a Πb
1-formula we get from (2)

P ⊢∗ ‖
∧

1≤i<j≤k

¬ψi(x) ∨ ¬ψj(x)‖
n .

Using elementary properties of the translation ‖.‖ this yields (A1, . . . , Ak) ∈
DNPPk(P ). ⊓⊔

Theorem 12 states the somewhat unusual fact that the non-uniform and
uniform concepts equal when representing disjoint k-tuples of NP-sets in regular
proof systems. We now observe that the k-tuples that we associated with a proof
system P are representable in P if the system is regular.

Lemma 13. Let P be a regular proof system. Then for all numbers k ≥ 2 the
tuples (I1(P ), . . . , Ik(P )), (U1(P ), . . . , Uk(P )) and (V1(P ), . . . , Vk(P )) are repre-
sentable in P .

Proof. We choose straightforward arithmetic representations for the components
Ii(P ), Ui(P ) and Vi(P ). Using the reflection principle of P we can prove the
disjointness of the components of the respective tuples in the theory T associated
with P , from which the lemma follows by Theorem 12. ⊓⊔

With this lemma we can improve the hardness result of Theorem 10 to a
completeness result for regular proof systems. Additionally, we can show the
≤s-completeness of the interpolation tuple for DNPPk(P ):

Theorem 14. Let P ≥ EF be a regular proof system that is efficiently closed
under substitutions by constants. Then for all k ≥ 2 the tuples (U1(P ), . . . , Uk(P ))
and (I1(P ), . . . , Ik(P )) are ≤s-complete for DNPPk(P ). In particular we have
(U1(P ), . . . , Uk(P )) ≡s (I1(P ), . . . , Ik(P )).

Proof. Completeness of the U -tuple follows from Theorem 10 together with the
previous lemma. As by Lemma 13 also (I1(P ), . . . , Ik(P )) is representable in
P it remains to show that (I1(P ), . . . , Ik(P )) is ≤s-hard for DNPPk(P ). For
this let (A1, . . . , Ak) be a disjoint k-tuple of NP-sets that is representable in P .

11



By Theorem 12 we know that (A1, . . . , Ak) is also representable in the theory T
corresponding to P . Let ϕi(x) be arithmetic representations of Ai for i = 1, . . . , k
such that

T ⊢ (∀x)
∧

1≤i<j≤k

¬ϕi(x) ∨ ¬ϕj(x) .

Because this is a ∀Πb
1-formula and P is regular there exists a polynomial-time

computable function f that on input 1n produces a P -proof of

‖
∧

1≤i<j≤k

¬ϕi(x) ∨ ¬ϕj(x)‖
n .

Further, because by assumption P is efficiently closed under substitutions by
constants we can use f to obtain a polynomial-time computable function g that
on input ā ∈ {0, 1}n outputs a P -proof of

‖
∧

1≤i<j≤k

¬ϕi(x) ∨ ¬ϕj(x)‖
n(p̄x/ā)

where the propositional variables p̄x for x are substituted by the bits of a.
Then the ≤s-reduction from (A1, . . . , Ak) to (I1(P ), . . . , Ik(P )) is given by

a 7→ ((‖¬ϕi(x)‖
|a|(p̄x/ā) | 1 ≤ i ≤ k), g(ā))

where the auxiliary variables of ‖¬ϕi(x)‖
|a| are all chosen disjoint. ⊓⊔

This corollary is true for EF as well as for all extensions EF + ‖Φ‖ of the
extended Frege system for polynomial-time sets Φ of true Πb

1-formulas. The
equivalence of the interpolation tuple and the U -tuple for strong systems as
stated in Theorem 14 might come unexpected as the first idea for a reduction
from the U -tuple to the I-tuple probably is to generate proofs for

∧

1≤j<l≤k ϕj ∨
ϕl at input (ϕ1, . . . , ϕk, 1

m). This, however, is not possible for extensions of EF ,
because a reduction from (U1(P ), . . . , Uk(P )) to (I1(P ), . . . , Ik(P )) of the form
(ϕ1, . . . , ϕk, 1

m) 7→ (ϕ1, . . . , ϕk, π) implies the automatizability of the system P .
But it is known that automatizability fails for strong systems P ≥ EF under
cryptographic assumptions [15, 17].

6 On Complete Disjoint k-Tuples of NP-Sets

In this section we will study the question whether there exist complete disjoint
k-tuples of NP-sets under the reductions ≤p and ≤s. We will not be able to
answer this question but we will relate it to the previously studied questions
whether there exist complete disjoint NP-pairs or optimal propositional proof
systems. The following is the main theorem of this section:

Theorem 15. The following conditions are equivalent:

1. For all numbers k ≥ 2 there exists a ≤s-complete disjoint k-tuple of NP-sets.

12



2. For all numbers k ≥ 2 there exists a ≤p-complete disjoint k-tuple of NP-sets.
3. There exists a ≤p-complete disjoint NP-pair.
4. There exists a number k ≥ 2 such that there exists a ≤p-complete disjoint

k-tuple of NP-sets.
5. There exists a propositional proof system P such that for all numbers k ≥ 2

all disjoint k-tuples of NP-sets are representable in P .
6. There exists a propositional proof system P such that all disjoint NP-pairs

are representable in P .
7. There exists a propositional proof system P and a number k ≥ 2 such that

all disjoint k-tuples of NP-sets are representable in P .

Proof. The proof is structured as follows: 1 ⇒ 2 ⇒ 3 ⇒ 6 ⇒ 1 and 3 ⇔ 4, 5 ⇔
6, 6 ⇔ 7. Apparently, items 1 to 4 and items 5 to 7 are conditions of decreasing
strength. For the implication 3 ⇒ 6 assume that (A,B) is a ≤p-complete pair.
We choose some representations ϕn and ψn for A and B, respectively. Consider
the proof system P = EF +{¬ϕn∨¬ψn |n ≥ 0}, which simulates resolution and
is closed under disjunctions. Because (A,B) is representable in P and DNPP(P )
is closed under ≤p by Proposition 8, it follows that all disjoint NP-pairs are
representable in the system P .

Next we prove the implication 6 ⇒ 1. Let P be a propositional proof system
such that all disjoint NP-pairs are representable in P . We choose a proof system
Q ≥ P that is closed under conjunctions and substitutions by constants. As Q
simulates P also the class DNPP(Q) contains all disjoint NP-pairs. We claim that
for all k ≥ 2 the pair (V1(Q), . . . , Vk(Q)) is ≤s-complete for the class of all disjoint
k-tuples of NP-sets. To verify the claim let (A1, . . . , Ak) be a disjoint k-tuple of
NP-sets. In particular, for all 1 ≤ i < j ≤ k the pair (Ai, Aj) is a disjoint NP-
pair. By assumption all these pairs are representable in Q. However, we might
need different representations for the sets Ai to prove the disjointness of all
these pairs. For example proving A1∩A2 = ∅ and A1∩A3 = ∅ might require two
different propositional representations for A1. For this reason we cannot simply
reduce (A1, . . . , Ak) to (U1(Q), . . . , Uk(Q)). But we can reduce (A1, . . . , Ak) to
(V1(Q), . . . , Vk(Q)) which was designed for this particular purpose.

For 1 ≤ i < j ≤ k let ϕi,jn (x̄, ȳi,j) and ϕj,in (x̄, ȳj,i) be propositional repre-
sentations of Ai and Aj , respectively, such that all tuples of variables ȳi,j are
chosen distinct and

Q ⊢∗ ¬ϕi,jn (x̄, ȳi,j) ∨ ¬ϕj,in (x̄, ȳj,i) .

Because Q is closed under conjunctions we can combine all these proofs to obtain

Q ⊢∗

k
∧

i=1

k
∧

j=i+1

¬ϕi,jn (x̄, ȳi,j) ∨ ¬ϕj,in (x̄, ȳj,i) . (3)

The reduction from (A1, . . . , Ak) to (V1(Q), . . . , Vk(Q)) is given by

a 7→ ((¬ϕi,jn (ā, ȳi,j) | 1 ≤ i, j ≤ k, i 6= j), 1p(m))
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for some appropriate polynomial p which comes from (3) and the closure of Q
under substitutions by constants. To prove the correctness of the reduction let a
be an element from Ar for some r ∈ {1, . . . , k}. As for all j ∈ {1, . . . , k}\{r} the
sequences ϕr,jn are representations for Ar all formulas ϕr,jn (ā, ȳr,j) are satisfiable.
By substituting the bits ā of a for the variables x̄ we get from (3) polynomial-size
Q-proofs of

k
∧

i=1

k
∧

j=i+1

¬ϕi,jn (ā, ȳi,j) ∨ ¬ϕj,in (ā, ȳj,i) .

This shows ((¬ϕi,jn (ā, ȳi,j) | 1 ≤ i, j ≤ k, i 6= j), 1p(m)) ∈ Vr(Q).

If a is in the complement ofA1∪· · ·∪Ak, then none of the formulas ϕi,jn (ā, ȳi,j)
is satisfiable and hence a is mapped to a tuple from the complement of V1(Q) ∪
· · · ∪ Vk(Q).

We proceed with the proof of the implication 4 ⇒ 3. Assume that the tuple
(A1, . . . , Ak) is ≤p-complete for all disjoint k-tuples of NP-sets. We claim that
(A1, A2) is a ≤p-complete disjoint NP-pair. To prove this let (B1, B2) be an
arbitrary disjoint NP-pair. Without loss of generality we may assume that the
complement of B1∪B2 contains at least k−2 distinct elements b3, . . . , bk, because
otherwise we can change from (B1, B2) to a ≤p-equivalent pair with this property.
Since (A1, . . . , Ak) is ≤p-complete for all k-tuples there exists a reduction f from
(B1, B2, {b3}, . . . , {bk}) to (A1, . . . , Ak). In particular f is then a reduction from
(B1, B2) to (A1, A2).

Next we prove the implication 6 ⇒ 5. Let P be a proof system such that
all disjoint NP-pairs are representable in P . We choose a regular proof system
Q that simulates P and is closed under conjunctions, disjunctions and sub-
stitutions by constants, for example Q = EF + ‖RFN(P )‖ is such a system.
Clearly, every disjoint NP-pair is also representable in Q. Going back to the
proof of 6 ⇒ 1 we see that condition 6 implies that for all k ≥ 2 the k-tuple
(V1(Q), . . . , Vk(Q)) is ≤s-complete for the class of all disjoint k-tuples of NP-sets.
By Lemma 13 (V1(Q), . . . , Vk(Q)) is representable in Q and by Proposition 8 the
class DNPPk(Q) is closed under ≤s. Hence for all k ≥ 2 all disjoint k-tuples of
NP-sets are representable in Q.

The last part of the proof is the implication 7 ⇒ 6. For this let P be a
proof system and k be a number such that all disjoint k-tuples of NP-sets are
representable in P . We choose some proof system Q that simulates P and is
closed under conjunctions. As Q ≥ P all disjoint k-tuples of NP-sets are rep-
resentable in Q. To show that also all disjoint NP-pairs are representable in
the system Q let (B1, B2) be a disjoint NP-pair. As in the proof of 4 ⇒ 3 we
stretch (B1, B2) to a disjoint k-tuple (B1, B2, {b3}, . . . , {bk}) with some elements
b3, . . . , bk ∈ B1 ∪B2. By assumption (B1, B2, {b3}, . . . , {bk}) is representable in
Q via some representations ϕ1

n, . . . , ϕ
k
n. Because Q is closed under conjunctions

this implies that Q proves the disjointness of B1 and B2 with respect to ϕ1
n and

ϕ2
n, hence (B1, B2) is representable in Q. ⊓⊔
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Using Theorem 12 we can also characterize the existence of complete disjoint
k-tuples of NP-sets by a condition on arithmetic theories, thereby extending the
list of characterizations from Theorem 15 by the following items:

Theorem 16. The following conditions are equivalent:

1. For all numbers k ≥ 2 there exists a ≤s-complete disjoint k-tuple of NP-sets.
2. There exists a finitely axiomatized arithmetic theory T such that for all num-

bers k ≥ 2 all disjoint k-tuples of NP-sets are representable in T .
3. There exists an arithmetic theory T with a polynomial-time set of axioms

such that for some number k ≥ 2 all disjoint k-tuples of NP-sets are repre-
sentable in T .

Proof. We start with the proof of the implication 1 ⇒ 2. By Theorem 15 we
know already that condition 1 implies the existence of a proof system P in
which all disjoint k-tuples of NP-sets are representable. Because P is simulated
by the proof system EF +‖RFN(P )‖ all k-tuples are also representable in EF +
‖RFN(P )‖. This system is regular and corresponds to the theory S1

2 +RFN(P ).
Therefore all disjoint k-tuples of NP-sets are representable in S1

2 + RFN(P ) by
Theorem 12. As the theory S1

2 is finitely axiomatizable (cf. [10]) we have proven
condition 2.

As condition 3 obviously is a weakening of condition 2 it remains to prove
3 ⇒ 1. For this let k ≥ 2 be a natural number and T be an arithmetic theory
such that DNPPk(T ) contains all disjoint k-tuples of NP-sets. Consider the theory
T ′ = T ∪ S1

2 . As T ′ is an extension of T all k-tuples are also representable in
T ′. As in [13] we define from the theory T ′ a propositional proof system P as
follows:

P (π) =

{

ϕ if π is a T ′-proof of Taut(ϕ)
⊤ otherwise.

Because T ′ has a polynomial-time axiomatization this defines indeed a proposi-
tional proof system. We claim that all k-tuples are representable in P . To verify
this claim let (A1, . . . , Ak) be a disjoint k-tuple of NP-sets. By hypothesis there
exist arithmetic representations ϕ1, . . . , ϕk of A1, . . . , Ak such that

T ⊢ (∀x)
∧

1≤i<j≤k

¬ϕi(x) ∨ ¬ϕj(x) . (4)

For Πb
1-formulas ψ we have S1

2 ⊢ (∀x)ψ(x) → (∀y)Taut(‖ψ‖|y|), thereby getting
from (4)

T ′ ⊢ (∀y)Taut(‖
∧

1≤i<j≤k

¬ϕi(x) ∨ ¬ϕj(x)‖
|y|) .

By the construction of P this implies

P ⊢∗ ‖
∧

1≤i<j≤k

¬ϕi(x) ∨ ¬ϕj(x)‖
n . (5)

The translations ‖ϕi‖n are propositional representations for Ai for i = 1, . . . , k.
By the definition of the translation ‖.‖ we conclude from (5) the representability
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of (A1, . . . , Ak) in P . Therefore all disjoint k-tuples of NP-sets are representable
in P , which by Theorem 15 implies condition 1. ⊓⊔

In Theorem 15 we stated that the existence of complete disjoint NP-pairs
is equivalent to the existence of a proof system P in which every NP-pair is
representable. By definition this condition means that for all disjoint NP-pairs
there exists a representation for which the disjointness of the pair is provable
with short P -proofs. If we strengthen this condition by requiring that this is
possible for all disjoint NP-pairs and all representations we arrive at a condition
which is strong enough to characterize the existence of optimal proof systems.

Theorem 17. The following conditions are equivalent:

1. There exists an optimal propositional proof system.
2. There exists a propositional proof system P such that for all k ≥ 2 the system

P proves the disjointness of all disjoint k-tuples of NP-sets with respect to all
representations, i.e., for all disjoint k-tuples (A1, . . . , Ak) of NP-sets and all
representations ϕ1

n, . . . , ϕ
k
n of A1, . . . , Ak we have P ⊢∗

∧

1≤i<j≤k ¬ϕ
i
n∨¬ϕ

j
n.

3. There exists a propositional proof system P that proves the disjointness of
all disjoint NP-pairs with respect to all representations.

Proof. For the implication 1 ⇒ 2 let P be an optimal proof system. For all
choices of representations of k-tuples the sequence of tautologies expressing the
disjointness of the tuple can be generated in polynomial time. Therefore these
sequences have polynomial-size P -proofs.

Item 3 is a weakening of 2. For 3 ⇒ 1 we use the following fact (cf. [10]):
if optimal proof systems do not exist, then every proof system P admits hard
sequences of tautologies, i.e., the sequence can be generated in polynomial time
but does not have polynomial-size P -proofs.

Let us assume now that optimal proof system do not exist and let P be an
arbitrary proof system. We choose some proof system Q ≥ P with sufficient
closure properties, for instance Q = EF + ‖RFN(P )‖. By the mentioned result
from [10] there exists a sequence τn(ū) of hard tautologies for Q. Given an NP-
pair (A,B) and arbitrary propositional representations ϕn(x̄, ȳ) and ψn(x̄, z̄) of
A and B, respectively, we code these hard tautologies into the representations
ϕn and ψn, obtaining representations

ϕ′
n(x̄, ȳ, ū) = ϕn(x̄, ȳ) ∨ ¬τn(ū)

ψ′
n(x̄, z̄, v̄) = ψn(x̄, z̄) ∨ ¬τn(v̄)

for which Q does not prove the disjointness of (A,B). Assume on the contrary
that Q ⊢∗ ¬ϕ′

n ∨ ¬ψ′
n. By definition this means

Q ⊢∗ ¬(ϕn(x̄, ȳ) ∨ ¬τn(ū)) ∨ ¬(ψn(x̄, z̄) ∨ ¬τn(v̄)) .

Using basic manipulations of formulas, which can be efficiently performed in Q,
we get polynomial-size Q-proofs of τn(ū), contradicting the choice of τn as hard
tautologies for Q. ⊓⊔
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As an immediate corollary to Theorems 15 and 17 we get a strengthening of a
theorem of Köbler, Messner and Torán [9], stating that the existence of optimal
proof systems implies the existence of ≤s-complete disjoint NP-pairs:

Corollary 18. If there exist optimal propositional proof systems, then there ex-
ist ≤s-complete disjoint k-tuples of NP-sets for all numbers k ≥ 2.
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