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Abstract. Graph partitioning requires the division of a graph's vertex set into k equally sized subsets

s. t. some objective function is optimized. High-quality partitions are important for many applications,

whose objective functions are often NP-hard to optimize. Most state-of-the-art graph partitioning li-

braries use a variant of the Kernighan-Lin (KL) heuristic within a multilevel framework. While these

libraries are very fast, their solutions do not always meet all user requirements. Moreover, due to its

sequential nature, KL is not easy to parallelize. Its use as a load balancer in parallel numerical appli-

cations therefore requires complicated adaptations. That is why we developed previously an inherently

parallel algorithm, called Bubble-FOS/C (Meyerhenke et al., IPDPS'06), which optimizes partition

shapes by a di�usive mechanism. However, it is too slow for practical use, despite its high solution

quality.

In this paper, besides proving that Bubble-FOS/C converges towards a local optimum of a potential

function, we develop a much faster method for the improvement of partitionings. This faster method

called TruncCons is based on a di�erent di�usive process, which is restricted to local areas of the

graph and also contains a high degree of parallelism. By coupling TruncCons with Bubble-FOS/C in

a multilevel framework based on two di�erent hierarchy construction methods, we obtain our new graph

partitioning heuristicDibaP. Compared to Bubble-FOS/C,DibaP shows a considerable acceleration,

while retaining the positive properties of the slower algorithm. Experiments with popular benchmark

graphs show thatDibaP computes consistently better results than the state-of-the-art librariesMETIS

and JOSTLE. Moreover, with our new algorithm, we have improved the best known edge-cut values

for a signi�cant number of partitionings of six widely used benchmark graphs.
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1 Introduction

Graph partitioning is a widespread technique in computer science, engineering, and related

�elds. The most common formulation of the graph partitioning problem for an undirected

graph G = (V,E) asks for a division of V into k pairwise disjoint subsets (partitions) of size

at most d|V |/ke such that the edge-cut, i.e., the total number of edges having their incident

nodes in di�erent subsets, is minimized. Among others, its applications include dynamical

systems [8], VLSI circuit layout [11], and image segmentation [35]. We mainly consider its use

for balancing the load in numerical simulations (e. g., �uid dynamics), which have become a

classical application for parallel computers. There, our task is to compute a partitioning of

the (dual) mesh derived from the domain discretization [34].

Despite some successes on approximation algorithms (e. g., [1,20]) for this NP-hard prob-

lem, simpler heuristics are preferred in practice. Several di�erent algorithms have been pro-

posed, see Schloegel et al. [34] for an overview. They can be categorized as either global or

local optimizers. Spectral methods [14,38] and space-�lling curves [46] are representatives of

global methods. While space-�lling curves work extremely fast, they do not yield satisfying

partitionings for complicated domains with holes or �ssures. Spectral algorithms have been

widely used, but are relatively slow and thus have been mostly superseded by faster local im-

provement algorithms. Integrated into a multilevel framework, these local optimizers such as

Kernighan-Lin (KL) [19] can be found in several state-of-the-art graph partitioning libraries,

which we describe in more detail in Section 2.

Motivation. Implementations of multilevel KL yield good solutions in very short time,

but the computed partitionings do not necessarily meet the requirements of all users: As Hen-

drickson has pointed out [13], the number of boundary vertices (vertices that have a neighbor

in a di�erent partition) models the communication volume between processors in numerical

simulations more accurately than the edge-cut. Moreover, the edge-cut is a summation norm,

while often the maximum norm is of much higher importance (e. g., for parallel numerical

solvers the worst partition determines the overall application time). Finally, for some applica-
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tions, the shape of the partitions, in particular small aspect ratios [9], but also connectedness

and smooth boundaries, plays a signi�cant role. Nevertheless, most partitioning-based load

balancers do not take these facts fully into account.

While the total number of boundary vertices can be minimized by hypergraph parti-

tioning [4], an optimization of partition shapes requires additional techniques (e. g., [9,27]),

which are far from being mature. Furthermore, due to their sequential nature, the heuris-

tic KL is di�cult to parallelize. Although signi�cant progress has been made [5,33,44], an

inherently parallel graph partitioning algorithm for load balancing can be expected to yield

better solutions, possibly also in shorter time.

These issues have led us to the development of the partitioning heuristic Bubble-FOS/C

in previous work [23] (also see Section 3 of this paper). It is based on a disturbed di�usion

scheme that determines how well connected two nodes are in a graph. Well connected refers to

the property that nodes or regions are connected to each other by many paths of small length.

Using this notion, Bubble-FOS/C aims at the optimization of partition shapes and results

in partitionings with very often connected partitions that have short boundaries, good edge-

cut values and aspect ratios. Moreover, it contains a high degree of natural parallelism and

can be used for parallel load balancing, resulting in low migration costs [25]. Yet, its partly

global approach makes it too slow for practical relevance. It is therefore highly desirable to

develop a signi�cantly faster algorithm retaining the good properties of Bubble-FOS/C.

Contribution. The contribution of this paper consists of both theoretical and practical

advances in graph partitioning with di�usive shape optimization. In order to understand

Bubble-FOS/C better, we prove its convergence in Section 4 as our main theoretical result.

The convergence proof relies on a potential function argument and a load symmetry result

for the disturbed di�usion scheme FOS/C.

Due to Bubble-FOS/C's high running time, its excellent solution quality could pre-

viously not be exploited for large graphs. We present in this work a much faster new dif-

fusive method for the local improvement of partitionings in Section 5. The combination of

3



Bubble-FOS/C and this new di�usive method within a multilevel framework with two

di�erent hierarchy construction algorithms, called DibaP, constitutes our main algorithmic

achievement. This combined algorithm is much faster than Bubble-FOS/C and computes

multi-way graph partitionings of very high quality on large graphs in a very reasonable

amount of time. In Section 6 we show in experiments on well-known benchmark graphs with

small average degree that our algorithm delivers better solutions than the state-of-the-art

partitionersMETIS [17,18] and JOSTLE [43] in terms of edge-cut and number of boundary

vertices, both in the summation and in the maximum norm. Certainly notable is the fact

that DibaP also improves for six benchmark graphs a large number (more than 80 out of

144) of their best known partitionings w. r. t. the edge-cut. These six graphs are among the

eight largest in a popular benchmark set [37,42].

2 Related Work

In this introductory section we focus on practical state-of-the-art general purpose graph par-

titioning algorithms and libraries. General purpose means here that these algorithms and

libraries only require the adjacency information about the graph and no additional problem-

related information. We concentrate on implementations included in the experimental eval-

uation in Section 6 and on methods with related techniques for improving partitions. For

a broader overview the reader is referred to Schloegel et al. [34]. The previous work of the

authors on di�usion-based shape-optimizing graph partitioning is described in Section 3.

It should be noted that a number of metaheuristics have been used for graph partitioning

recently, e. g., [2,6,37]. These algorithms focus on low edge-cuts instead of good partition

shapes and most of them require very high running times to yield high quality results.

2.1 Graph Partitioning by Local Improvement with the Multilevel Paradigm

Re�ning a given partitioning by local considerations usually yields better running times on

large graphs than global approaches. The problem of how to obtain a good starting solution
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is overcome by the multilevel approach [3,15], which consists of three phases. Instead of

computing a partitioning immediately for large input graphs, one computes a hierarchy of

graphs G0, . . . , Gl by recursive coarsening in the �rst phase. Gl is supposed to be very small

in size, but similar in structure to the input graph G0. In the second phase a very good

initial solution for Gl is computed, which is easy due to the small size of Gl. Finally, in

the third phase, the solution is interpolated to the next-�ner graph, where it is improved

using a local improvement algorithm. This process of interpolation and local improvement

is repeated recursively up to G0.

A very common local improvement algorithm is based on the method by Fiduccia and

Mattheyses (FM) [11], a running time optimized version of the Kernighan-Lin heuristic

(KL) [19]. The main idea of both is to migrate nodes between partitions � ordered by the

magnitude of the possible cost reductions � while maintaining (almost) balanced partition

sizes. After every node has been moved once, the best solution found so far is chosen. This

is repeated several times until no further improvements are found.

State-of-the-art graph partitioning libraries such as METIS [17,18] and JOSTLE [43]

use KL/FM for local improvement and edge contractions based on matchings for coarsening.

With this combination these libraries compute solutions of a good quality very fast. However,

as argued in the introduction, for some applications their solutions are not totally satisfactory.

To address the load balancing problem in parallel applications, distributed versions of

the above two libraries [33,44] and parallel hypergraph partitioners such as Zoltan [5] or

Parkway [40] have been developed. This parallelization is very complex due to inherently

sequential parts in KL/FM improvement, e. g., no two neighboring vertices should change

their partitions simultaneously.

2.2 Bubble Framework and Shape-optimizing Graph Partitioning

The Bubble framework is related to Lloyd's k-means algorithm [21] (well-known in cluster

analysis) and transfers its ideas to graphs. Its �rst step is to choose initial partition repre-

sentatives (centers), one for each partition. As illustrated in Figure 1, all remaining vertices
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Fig. 1. Sketch of the main Bubble framework operations: Determine initial centers for each
partition (left), assign each node to the partition of the nearest center (middle), and compute
new partition centers (right).

are assigned to their closest center vertex w. r. t. some distance (or similarity) measure. After

that, each partition computes its new center for the next iteration. The two operations as-

signing vertices to partitions and computing new centers can be repeated alternately a �xed

number of times or until a stable state is reached.

For graph partitioning the algorithm has been introduced under the name Bubble by

Diekmann et al. [9] (which provides references to previous related ideas like Walshaw et

al. [45]). To compute new subdomains, Diekmann et al. lets the smallest subdomain with at

least one adjacent unassigned vertex grab the vertex with the smallest Euclidean distance

to its center. The new center of a partition is computed as the vertex for which the (ap-

proximate) sum of Euclidean distances to all other vertices of the same partition is minimal.

Thus, by including coordinates in the choice of the next vertex, the subdomains are usually

geometrically well-shaped. As a downside, this implementation is only applicable if coordi-

nates are provided. Moreover, the Euclidean distance of two nodes might not coincide with

the graph structure at all, leading to unsatisfactory solutions in case of holes or �ssures. Also

note that a parallelization is not easy due to the strictly serial assignment process. Di�erent

implementations of the framework operations exist, see our previous work [23] for how they

have evolved.

2.3 Di�usive Approaches to Partitioning

In the area of graph clustering there exist techniques for dividing nodes into groups based on

random walks. Their common idea is that a random walk stays a very long time in a dense
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graph region before leaving it via one of the few outgoing edges. Somewhat related to our

new di�usive method is the algorithm by Harel and Koren [12], which computes separator

edges iteratively based on the similarity of their incident nodes. This similarity is derived

from the sum of transition probabilities of random walks with very few steps. The procedure

focuses on clusters of di�erent sizes and we do not know of any attempt to use it for the

graph partitioning problem.

Schamberger [30,31] developed the two di�usive schemes FOS/L and FOS/A. Integrated

into the Bubble framework, both schemes shall re�ect how well-connected vertices of the

graph are to each other. Schamberger's experiments show a promising partitioning quality

of his methods. However, he also points out that the practical relevance of his methods is

very limited. The major drawbacks are either the dependency on a crucial parameter that is

hard to determine or a very high running time.

Recently, Pellegrini [27] has addressed some drawbacks of the KL/FM heuristic. His

approach aims at improved partition shapes, based on a di�usive mechanism used together

with FM improvement. For the di�usion process the algorithm replaces whole partition

regions not close to partition boundaries by one super-node. This reduces the number of

di�usive operations and results in an acceptable overall speed. The implementation described

is only capable of recursive bisection. As Pellegrini points out, a �full k-way algorithm is

therefore required� [27, p. 202] since recursive bisectioning yields in general inferior results

compared to direct k-way methods [36], in particular for large k. In this paper we �ll this

gap by providing a related full k-way partitioning algorithm.

3 Disturbed Di�usion and Bubble-FOS/C

This section describes our own previous work on graph partitioning with di�usive mecha-

nisms. Such a description is necessary to understand the results of this paper. In particular,

we explain the partitioning algorithm Bubble-FOS/C, for which we prove two important

properties regarding convergence and connectedness in Section 4.
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3.1 Disturbed Di�usion FOS/C

Di�usive processes can model transport phenomena such as heat �ow. Another application

is iterative local load balancing in parallel computations [7]. Di�usion is used here within the

Bubble framework as a similarity measure that overcomes drawbacks of previous Bubble

implementations. For this reason a disturbance based on drain [23] has been introduced into

the �rst order di�usion scheme (FOS) [7] for load balancing to yield the FOS/C algorithm

(C for constant drain). FOS/C reaches a non-balanced load distribution in the steady state,

which can represent similarities of graph nodes re�ecting their connectedness.

De�nition 1. [23] Let [x]v denote the component of the vector x corresponding to node v.

Let G = (V,E) be a connected and undirected graph free of self-loops with n nodes and

m edges. Associated to G are a set of source nodes ∅ 6= S ⊂ V and constants 0 < α ≤

(maxdeg(G) + 1)−1 and δ > 0.4 Let the initial load vector w(0) and the drain vector d (which

is responsible for the disturbance) be de�ned as follows:

[w(0)]v =


n
|S| v ∈ S

0 otherwise

and [d]v =


δn
|S| − δ v ∈ S

−δ otherwise

Then, the FOS/C iteration in timestep t ≥ 1 is de�ned as w(t) = Mw(t−1) + d, where

M = I − αL is the doubly-stochastic di�usion matrix [7] and L the Laplacian matrix of G,

de�ned as Lu,u = deg(u), Lu,v = −1 for {u, v} ∈ E and Lu,v = 0 otherwise.

Note that the extension of FOS/C to edge-weighted graphs (with edge weight function ω :

E → R) is straightforward. One simply uses the edge-weighted variant of the Laplacian

matrix, i. e., Lu,v = −ω(u, v) for {u, v} ∈ E, Lu,u =
∑

v 6=u Lu,v, and Lu,v = 0 otherwise. Node

weights can be incorporated by a proportional weighting of the drain vector entries.

4 Here, the maximum degree of G is de�ned as maxdeg(G) := maxu∈V deg(u).

8



Theorem 2. [23] The FOS/C iteration reaches a steady state for any d ⊥ (1, . . . , 1)T . This

steady state can be computed by solving the linear system Lw = d for w and normalizing w

such that
∑

v∈V [w]v = n.

De�nition 3. If |S| = 1 (|S| > 1), we call the FOS/C iteration to the steady state or its

corresponding linear system a single-source (multiple-source) FOS/C procedure. Also, let

[w(t)]uv ([w]uv) denote the load on node v in timestep t (in the steady state) of a single-source

FOS/C procedure with node u as source.

De�nition 4. A random walk on a graph G = (V,E) is a discrete time stochastic process,

which starts on an initial node and performs the following step in each iteration. It chooses

one of the neighbors of the current node randomly and then proceeds to the neighbor just

chosen to start the next iteration. The transition probabilities are given by a stochastic tran-

sition matrix P, whose entry (u, v) denotes the probability to move from node u to node v.

The random walk may stay on the current node v with positive probability if Pvv > 0.

Remark 5. Note: [w]uv = limt→∞([Mtw(0)]uv + nδ(
∑t−1

l=0 Ml
v,u) − tδ) [24], where Ml

v,u is the

probability of a random walk (de�ned by the stochastic di�usion matrix M) starting at v to

be on u after l steps. Since [Mtw(0)]uv converges towards the balanced load distribution [7],

the important part of a FOS/C load in the steady state is
∑∞

l=0 Ml
v,u, which is the sum of

transition probabilities of random walks with increasing lengths.

3.2 Bubble-FOS/C with Algebraic Multigrid

Bubble-FOS/C implements the operations of the Bubble framework with FOS/C

procedures, single-source ones for AssignPartition and multiple-source ones for

ComputeCenters. Its outline is shown in Figure 2, where Π = {π1, . . . , πk} denotes the

set of partitions and Z = {z1, . . . , zk} the set of the corresponding center nodes. First, the

algorithm determines pairwise disjoint initial centers (line 1), which can be done in an ar-

bitrary manner. After that, with the new centers at hand, the main loop is executed. It

determines in alternating calls a new partitioning (AssignPartition, lines 3-6) and new
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Algorithm Bubble-FOS/C(G, k) → Π

01 Z = InitialCenters(G, k) /* Arbitrary disjoint initial centers */

02 for τ = 1, 2, . . . until convergence

/* AssignPartition */

03 parallel for each partition πc

04 Initialize dc (S = {zc}), solve and normalize Lwc = dc

/* after synchronization: update Π */

05 for each node v ∈ πc
06 Π(v) = p : [wp]v ≥ [wq]v ∀q ∈ {1, . . . , k}

/* ComputeCenters */

07 parallel for each partition πc

08 Initialize dc (S = πc) and solve Lwc = dc

09 zc = argmaxv∈πc
[wc]v

10 return Π

Fig. 2. Sketch of the main Bubble-FOS/C algorithm.

centers (ComputeCenters, lines 7-9). The loop can be iterated until convergence is reached

or, if running time is important, a constant number of times.

It turns out that this iteration of two alternating operations yields very good partitions.

The ability of distinguishing sparsely from densely connected components can be explained

by FOS/C's connection to random walks pointed out above. As random walks tend to stay a

long time within a dense region once they have reached it, Bubble-FOS/C usually obtains

partition centers in dense regions and boundaries tend to be in sparse ones (as desired).

Moreover, since the isolines of the FOS/C load in the steady state tend to have a circular

shape, the �nal partitions are very compact and have short boundaries. Additional operations

not originating from the Bubble framework (such as balancing procedures and tie breaking5)

can be integrated into Bubble-FOS/C [25], but are omitted here for ease of presentation.

5 Ties within AssignPartition and ComputeCenters are handled as follows. If a node has received the same highest
load from more than one FOS/C procedure within AssignPartition, it chooses the subdomain it already belongs
to, or � if the current subdomain is not among the candidates � the one with the smallest index. In case more
than one node is a candidate for the new center within ComputeCenters, we proceed analogously.
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Most work performed by Bubble-FOS/C consists in solving linear systems. It is there-

fore necessary to employ a very e�cient solver. Multigrid methods [41] are among the fastest

algorithms for preconditioning and solving linear systems of equations arising from certain

partial di�erential equations. Algebraic multigrid (AMG) [39] is an extension to cases where

no problem-related information such as geometry is available. It constructs a multilevel hi-

erarchy based on weighted interpolation with a carefully chosen set of nodes for the coarser

level. The actual solution process is performed by iterative algorithms traversing this hier-

archy, e. g., V-cycles or FMV-cycles [41, p. 46�.]. We use AMG as a linear solver since the

same system matrix L is used repeatedly, so that the hierarchy construction is amortized.

Furthermore, as an AMG hierarchy is also a sequence of coarser graphs retaining the struc-

ture of the original one, we use it in our Bubble-FOS/C implementation for providing a

multilevel hierarchy (instead of the standard matching approach). For Bubble-FOS/C this

alternative hierarchy construction method hardly in�uences the solution quality, but speeds

up computations signi�cantly [22, p. 79].

4 Convergence and Connectedness Results for Bubble-FOS/C

4.1 Convergence towards a Local Optimum

In this section we settle the question if the algorithm Bubble-FOS/C depicted in Figure 2

converges, in the a�rmative. The proof relies on load symmetry and a potential function,

which provide a solid characterization of our algorithm and the solutions it computes.

De�nition 6. Let the function F (Π,Z, τ) for timestep τ be de�ned as follows:

F (Π,Z, τ) :=
k∑
c=1

∑
v∈πc(τ)

[w]zc(τ)
v ,

where πc(τ) and zc(τ) denote the c-th partition and center node in iteration τ , respectively.
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Observe that [w]
zc(τ)
v acts as a similarity measure, i.e., it represents how well-connected the

vertices v ∈ πc(τ) and their respective center zc(τ) are. Hence, each partition contributes to

F a sum of similarities between all nodes of a partition and its center node.

Our objective is now to maximize F . It is obvious that F has a �nite upper bound on any

�nite graph. Thus, in order to prove convergence of Bubble-FOS/C, it is su�cient to show

that the operations AssignPartition and ComputeCenters each maximize the value of F

w. r. t. their input. This is clear for AssignPartition since nodes are assigned to partitions

sending the highest amount of load. Yet, it is not obvious for ComputeCenters, so that we

require �rst the following result on the load symmetry between two single-source FOS/C

procedures.

Lemma 7. For any undirected graph G = (V,E) and two arbitrary nodes u, v ∈ V holds

[w]uv = [w]vu.

Proof. Consider an FOS/C procedure with source node u. Recall that its drain vector d is

de�ned as d = (−δ, . . . ,−δ, δ(n − 1),−δ, . . . ,−δ)T , where δ(n − 1) appears in row u. The

FOS/C iteration scheme in timestep t+ 1 for node v and source u can be written as [24]:

[w(t+1)]uv = [Mt+1w(0)]uv + [(I + M1 + · · ·+ Mt)d]uv

= [Mt+1w(0)]uv + nδ
∑t

l=0
Ml

v,u − (t+ 1)δ.

Observe that Mt+1w(0) converges towards w = (1, . . . , 1)T , the balanced load distribution

[7], even in the edge-weighted case [10]. Hence, we obtain:

[w]vu − [w]uv = nδ
(∑t

l=0
Ml

u,v −Ml
v,u

)
.

Since M and therefore also its powers are symmetric, all summands vanish. ut

The generality of this load symmetry is somewhat surprising, because one would not expect

such a property in graphs without any symmetry. Consider for example a lollipop graph L,
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i. e., a clique with n/2 vertices attached to a path of n/2 vertices. Let u be any vertex in the

clique and v be the end-point of this path. Although L is far from being symmetric, Lemma 7

implies that the load of v of a FOS/C procedure with single source u is the same as the load

of u after a FOS/C procedure with single source v. In that regard Lemma 7 seems to be of

independent interest for the disturbed di�usion scheme FOS/C. Here it allows us to prove

the next crucial lemma.

Lemma 8. The output of ComputeCenters maximizes the value of F for a given k-

partitioning Π.

Proof. Let Π be the current partitioning. ComputeCenters solves for each partition πc, c ∈

{1, . . . , k}, a multiple-source FOS/C procedure, where the whole respective partition acts as

source. Consider one of these partitions πc and its multiple-source FOS/C procedure, which

computes w in Lw = d with its respective drain vector d. Our aim is to split this procedure

into subprocedures that solve Lwi = di, i ∈ πc, and that satisfy
∑

i∈πc
di = d. Such a

splitting L(w1 + w2 + · · · + w|πc|) = d1 + d2 + · · · + d|πc| indeed exists; each subprocedure

Lwi = di corresponds to a single-source procedure, where the drain vector is scaled by 1
|πc|

(cf. De�nition 1 with |S| replaced by 1):

[di]v =


δn
|πc| −

δ
|πc| v ∈ πc, v source of subprocedure i

− δ
|πc| otherwise

It is easy to verify that
∑

i∈πc
di = d and di ⊥ (1, . . . , 1)T hold, so that each subprocedure

has a solution. Due to this and the linearity of L, we also have
∑

i∈πc
wi = w. Recall

that the new center of partition πc is the node with the highest load of the considered

multiple-source FOS/C procedure. From the above it follows that this is the node u for

which [w]u =
∑

i∈πc
[w]iu is maximal. Due to Lemma 7 we have

∑
i∈πc

[w]iu =
∑

i∈πc
[w]ui , so

that the new center zc is the node u for which the most load remains within partition πc in
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a single-source FOS/C procedure. Consequently, the contribution
∑

v∈πc
[w]zc

v of each πc to

F is maximized. ut

Proposition 9. Consider the load vector w in the steady state of FOS/C. The maximum

load value in w belongs to the set of source nodes S. Consequently, after selecting k pairwise

disjoint initial center nodes, there are always exactly k di�erent center nodes and exactly k

partitions during the execution of Bubble-FOS/C.

Proof. The �rst statement can be veri�ed by taking into account that the steady state of

FOS/C is equivalent to a ‖ · ‖2-minimal-�ow problem where the source nodes send load to

the remaining nodes (see [24, p. 431]) and must therefore have a higher load. For the second

statement "≤" is obvious, so that it remains to show that there are at least k di�erent center

nodes and partitions in each iteration.

The initial placement of centers can ensure easily that k di�erent nodes are selected. In

any case the centers determined by ComputeCenters belong to their own partition and must

therefore be di�erent. Also, AssignPartition keeps each center in its current partition:

Consider two arbitrary, but distinct centers zi and zj. Due to Lemma 7 we know that [w]
zj
zi =

[w]zi
zj
. As [w]zi

zi
> [w]zi

zj
, we obtain [w]zi

zi
> [w]

zj
zi . Hence, the claim follows. ut

The main theorem follows now directly from the results above.

Theorem 10. Bubble-FOS/C converges and produces a k-way partitioning. This parti-

tioning is a local optimum of the potential function F .

If Bubble-FOS/C is used for partitioning within a multilevel hierarchy, it converges very

quickly. Our experiments indicate that usually three to �ve iterations of the main loop are

su�cient to reach convergence on each level.

Maximizing F has the following connection to the minimization of the traditional edge-cut

metric. Recall from Remark 5 that each entry [w]su of the load vector [w]s can be interpreted

as the sum over the l-step transition probabilities from source s to node u, where l ranges from

0 to in�nity. Moreover, observe again that random walks stay in densely connected regions
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for a long time before they leave them via one of the few external edges. This observation

indicates why in most cases higher values occur in [w]s for nodes within the same dense

region as s than for nodes of di�erent regions. The process of locally maximizing F leads to

the identi�cation of such dense regions and thus implicitly yields partitions with few external

edges, i. e., with a low edge-cut. However, as no explicit edge-cut minimization takes place,

additional iterations of Bubble-FOS/C do not necessarily improve the edge-cut every time.

5 Accelerating Bubble-based Di�usive Partitioning

Our previous work on shape-optimizing graph partitioning [23,25] has already indicated that

shape optimization is able to compute high-quality partitionings meeting the requirements

mentioned in the introduction. The main reason for Bubble-FOS/C's very high running

time is the repeated solution of linear systems on the whole graph (or at least on an approx-

imation of the whole graph, as in [26]). Yet, once a reasonably good solution has been found,

alterations during an improvement step take place mostly at the partition boundaries. That

is why we introduce in the following a local approach considering only these boundary re-

gions. Our idea is to use the high-quality but slow algorithm Bubble-FOS/C on the coarse

levels of a multilevel hierarchy and a faster local scheme on its �ner levels.

5.1 A New Local Improvement Method: TruncCons

As a mixture of AssignPartition and ComputeCenters, the Consolidation operation is

used to determine a new partitioning from a given one. The operation is illustrated in Fig-

ure 3 (a) with an example of a path graph, its partitioning and k = 3 (topmost row). Note

that di�erent colors indicate di�erent partition assignments and that in the second and third

row of the �gure the input graph is shown k times to illustrate that the corresponding oper-

ations are performed independently on each partition πc. One starts with the initialization

of the source set S with πc. The nodes of πc receive an equal amount of initial load n/|S|,

while the other nodes' initial load is set to 0 (second row). Then, a di�usive method (FOS/C
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is possible, but should be avoided for large graphs due to its high running time) is used

to distribute this load within the graph (third row). To restrict the computational e�ort to

areas close to the partition boundaries, we use a small number ψ of FOS [7] iterations.

The �nal load of a node v for πc is then just [w
(ψ)
c ]v = [Mψ · w(0)

c ]v, where M and w(0)

are as in De�nition 1. This can be computed by iterative load exchanges:

[w(t)
c ]v = [w(t−1)

c ]v − α
∑
{u,v}∈E

([w(t−1)
c ]v − [w(t−1)

c ]u) for 1 ≤ t ≤ ψ.

After the load is distributed this way for all k partitions, we assign each node v to the

partition from which it has obtained the highest load (bottommost row of Figure 3 (a)). This

completes one Consolidation operation, which can be repeated several times to facilitate

su�ciently large movements of the partitions. We denote the number of repetitions by Λ

and call the whole method with this particular di�usive process TruncCons (truncated

di�usion consolidations), see Figure 3 (b). This new approach makes Schamberger's idea to

use a di�usive scheme within a Bubble related framework [30] robust, practicable, and fast.

Moreover, although showing some di�erences, our new algorithm can be viewed as a k-way

extension of Pellegrini's work [27] mentioned in Section 2.3.

To understand why TruncCons works well, consider the following analogy. Recall that

the stochastic di�usion matrix M can be seen as the transition matrix of a random walk.

For each node v ∈ πc we have one random walk starting on v. Then, the �nal load on node

u is proportional to the sum of the probabilities for each random walk to reach u after ψ

steps. Since random walks need relatively long to leave dense regions, each node should be

assigned to the partition with the highest load because it is most densely connected with it.

Another important observation is that nodes of the same dense region are connected to each

other by many paths of small length. This notion of connectivity is re�ected by transition

probabilities of random walks with small lengths.

Since an actual load exchange happens only at the partition boundary, not all nodes have

to take part in this process. Instead, one keeps track of active nodes.
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(a)

Algorithm TruncCons(M, k, Π, Λ, ψ) → Π

01 for τ = 1 to Λ

02 parallel for each partition πc

03 S = πc; wc = (0, . . . , 0)T /* initial load */

04 for each v ∈ S /* initial load */

05 [wc]v = n/|S|

06 for t = 1 to ψ /* FOS iterations */

07 wc = M · wc
/* after synchronization: update Π */

08 for each v ∈ πc
09 Π(v) = argmax1≤c′≤k[wc′ ]v

10 return Π

(b)

Fig. 3. (a) Schematic view of one Consolidation and (b) Algorithmic sketch of Trunc-
Cons

De�nition 11. A node v ∈ V is called active in FOS iteration t > 0 if it has a neighbor

u ∈ V with the property: [w(t−1)]u 6= [w(t−1)]v. Nodes that are not active are called inactive.

All load exchanges of an inactive node result in a �ow of 0 on its incident edges. Hence, they

do not change the load situation at all and can be ignored. Clearly, in iteration t all nodes with

distance more than t to the boundary of the current partition are inactive. This observation

might not give away all inactive nodes, but one can expect that exceptions to this rule are

rare. So, by keeping track of active and inactive nodes using the above observation, we are

able to ignore nearly all load exchange computations that do not change the respective loads

on the incident nodes. In this way, the di�usive process of partition improvement is restricted

to local areas close to the subdomain boundaries and its complexity is greatly reduced in

practice. The e�ectiveness of the reduction depends on several factors such as the iteration

number t, the number of subdomains k, and graph properties such as size, sparseness, and

general structure.
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5.2 The New Algorithm DibaP: Combining Bubble-FOS/C and TruncCons

Now that we have a slow, but high-quality par-

Fig. 4. Sketch of the combined multi-

level hierarchy and the corresponding

algorithms used within DibaP.

titioner and a faster local improvement algorithm,

we combine them to obtain an e�cient multilevel

graph partitioning algorithm that we call DibaP

(Di�usion-based Partitioning), see Figure 4. The �ne

levels of its multilevel hierarchy are constructed by

approximate maximum weight matchings [28]. Once

the graphs are su�ciently small, we switch the con-

struction mechanism to the more expensive AMG

coarsening. This is advantageous because we use

Bubble-FOS/C as the improvement strategy on the

coarse levels and employ AMG to solve the occurring

linear systems. That is why such a hierarchy needs to

be built anyway. On the �ner parts of the hierarchy,

the faster TruncCons is used as the local improve-

ment algorithm. Since this does not involve the solution of linear systems, AMG is not

required, so that it is much cheaper to use a matching hierarchy instead.

It is highly doubtful that a multilevel approach solely based on TruncCons can be

adapted to partition graphs from scratch with an equally high quality as Bubble-FOS/C

and DibaP. Our experiments clearly indicate that the partition shapes and other impor-

tant properties of the solutions (such as edge-cut and the number of boundary vertices)

su�er in quality if TruncCons is used on too coarse levels or even exclusively. The quality

also declines if Bubble-FOS/C is replaced by kMETIS for providing initial solutions for

TruncCons. One reason is that TruncCons's starting solution should have compact and

connected partitions with low diameter. If the initial solution does not ful�ll these require-

ments, elongated or disconnected partitions with an inferior solution quality occur much
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more often. Furthermore, replacing Bubble-FOS/C on the coarse levels by some faster

method yields only very small performance increases. The reason for this is simply that on

large enough graphs (such as the benchmark graphs in Section 6) most of DibaP's running

time is spent on the �ne levels.

Initial Centers and Initial Bubble-FOS/C Solutions. Instead of selecting all ini-

tial center vertices randomly or to coarsen the graph until the number of nodes is k, we

employ the following procedure to distribute the centers while taking the graph structure

into account. After choosing only one center randomly, we select new centers one after an-

other, where the newest one is chosen farthest away (i. e., with minimum FOS/C loads:

argminv{
∑

z∈Z [w]zv}) from all already chosen centers in the set Z. On a very coarse graph of

a multilevel hierarchy, this is inexpensive and can even be repeated to choose the best set of

centers from a sample. By this repetition, outliers with a rather poor solution quality hardly

occur in our experiments.

The same idea of multiple initial solutions is pursued on a �ner level as well. Before start-

ing multilevel partitioning with TruncCons, we call Bubble-FOS/C a number of times

and keep only the best of the solutions. Since the graph on the coarsest TruncCons level

(the �nest Bubble-FOS/C level) is relatively small, Bubble-FOS/C returns a solution

quite fast. Besides a higher average quality our experiments reveal also a lower variance (and

hence a higher reliability) in the solution quality.

Repartitioning. For cases where a partitioning is part of the input and needs to be repar-

titioned (e. g., to restore its balance), we propose the following procedure. The initial parti-

tioning is sent down the multilevel hierarchy, where the maximum hierarchy depth depends

on the input quality. If the input is not too bad, Bubble-FOS/C does not need to be used

and we can solely employ the faster TruncCons with a matching hierarchy. Experiments

show that repartitioning this way is about three times faster than partitioning from scratch.

On the other hand, if the quality of the input requires larger movements of the partitions,

Bubble-FOS/C is necessary since TruncCons does not generate such large movements.
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Implementation Details. The Consolidation operation can also be used with FOS/C in

lines 6 and 7 instead of a few FOS iterations. This again global operation can be optionally

integrated into Bubble-FOS/C after an AssignPartition operation.

To ensure that the balance constraints are de�nitely met by DibaP, explicit balancing

procedures are integrated into the improvement process. They are mostly based on our

previous implementation [25], but are slightly adapted to TruncCons. This also holds for

the smoothing operation, which improves partitions by moving current boundary vertices

once if this results in fewer cut-edges. Keeping track of active nodes is currently done with

an array in which we store for each node its status. This could be improved by a faster data

structure considering only the active nodes.

There are several important parameters controlling the quality and running time of

DibaP; their values have been determined experimentally. Multilevel hierarchy levels with

graphs of more than switch nodes are coarsened by matchings and improved with Trunc-

Cons (switch is a user-de�nable parameter). Once they are smaller than this threshold,

we switch to Bubble-FOS/C with AMG coarsening. Details about the implementation of

Bubble-FOS/C and the AMG implementation (which does not use any external libraries)

can be found in our previous work [23]. It should be noted, however, that we have made

some changes to our AMG implementation. A detailed description of these modi�cations is

outside the scope of this paper. One change to mention is the choice of the interpolation

scheme, which is now classical interpolation as in Safro et al. [29].

In the experiments presented in this paper,Bubble-FOS/C has performed two iterations

of ComputeCenters and AssignPartition, followed by two Consolidations with FOS/C

as similarity measure. The AMG coarsening is stopped when the graph has at most 24k

nodes to compute an initial set of centers. The most important parameters for the �ner

parts of the multilevel hierarchy are Λ (the number of Consolidations) and ψ (the number

of FOS iterations). As most other parameters, they can be speci�ed by the user, whose

choice should consider the time-quality trade-o�. Two possible choices (6/9 and 10/14) are
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used in the experiments presented next. Experimental observations suggest that values larger

than 20 for Λ and ψ hardly yield any further improvements. Whether an automatic choice

depending on graph properties can be made, remains an object of further investigation.

Computational Complexity. For su�ciently large graphs it is clear that the running time

of DibaP is dominated by that of TruncCons. The reason is simply that the size of the

hierarchy level on which the algorithm switch takes place can be �xed with a constant. That

is why the Bubble-FOS/C part of DibaP requires nearly always a very similar amount of

time for the same amount of subdomains, regardless of the input graph size.

Within TruncCons one performs for each subdomain Λ times ψ FOS iterations. In the

(unrealistic) worst case, for each edge of the graph a load exchange takes place in every

iteration. Hence, in this case the running time is proportional to k ·Λ ·ψ · |E|. The a�liation

of nodes to subdomains requires O(n · k) operations. If Λ and ψ are seen as constants, the

asymptotic running time is bounded by O(k · |E|). The linear dependence on the factor k

� instead of an additive penalty for increasing the number of subdomains � can be seen as

the major drawback in the running time of TruncCons compared to optimized KL/FM

partitioners.

Furthermore, the product Λ · ψ might be quite large, depending on the user choice. On

the other hand, due to the notion of (in)active nodes, the number of operations actually

performed will be much smaller in practice. Since the savings depend on many factors that

di�er from input to input, a theoretical worst-case analysis is not likely to predict the �nal

running time accurately.

6 Experimental Results

In this section we present some of our experiments with the new DibaP implementation.

After comparing it toMETIS and JOSTLE, two state-of-the-art partitioning tools, we show

that DibaP performs extremely well on six popular benchmark graphs. For these graphs,
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DibaP has computed a large number of partitionings with the best known edge-cut values,

improving records derived from numerous algorithms.

Settings. The experiments have been conducted on a desktop computer equipped with

an Intel Core 2 Duo 6600 CPU and 1 GB RAM. The operating system is Linux (openSUSE

10.2, Kernel 2.6.18) and the main code has been compiled with Intel C/C++ compiler 10.0

using level 2 optimization. We distinguish DibaP-short (Λ = 6, ψ = 9) and DibaP-long

(Λ = 10, ψ = 14) to determine how the quality is a�ected by di�erent settings in the new

method. Bubble-FOS/C is used to compute three coarse solutions on the �rst level with

less than switch=5,000 nodes. The best solution w. r. t. the edge-cut is used as input for the

multilevel improvement process with TruncCons.

6.1 Comparison of Partitioning Quality

For the further presentation we utilize
Size Degree

Graph |V | |E| min max avg Origin

tooth 78,136 452,591 3 39 11.59 FEM 3D

rotor 99,617 662,431 5 125 13.30 FEM 3D

598a 110,971 741,934 5 26 13.37 FEM 3D

ocean 143,437 409,593 1 6 5.71 FEM 3D

144 144,649 1,074,393 4 26 14.86 FEM 3D

wave 156,317 1,059,331 3 44 13.55 FEM 3D

m14b 214,765 1,679,018 4 40 15.64 FEM 3D

auto 448,695 3,314,611 4 37 14.77 FEM 3D

Fig. 5. Benchmark graphs.

the eight widely used benchmark graphs

shown in Figure 5. We have chosen them

because they are publicly available from

Chris Walshaw's well-known graph parti-

tioning archive [37,42] and are the eight

largest therein w. r. t. the number of nodes.

More importantly, they represent the gen-

eral trends in our experiments for graphs

with low average degree (< 20) and consti-

tute a good sample since they model large enough problems from 3-dimensional numerical

simulations (e. g., according to [16], 598a and m14b are meshes of submarines and auto of a

GM Saturn). Graphs with larger average degrees such as bcsstk32 (avg. degree 44.16) (also

available from the same archive) are excluded since DibaP's implementation needs more

tuning to handle graphs with larger average degrees equally well.
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We compare our algorithm DibaP to JOSTLE [43] and METIS (more precisely

kMETIS6 [18], which implements direct k-way KL/FM improvement) because these two

are the most popular sequential general purpose graph partitioners due to their speed and

adequate quality. Detailed comparisons to the library Scotch are not included since both

the average quality and the running time of Scotch are consistently worse than kMETIS's.

JOSTLE and kMETIS are used with default settings so that their optimization objective

is the edge-cut. We allow all four programs to generate partitionings with at most 3% im-

balance, i. e., whose largest partition is at most 3% larger than the average partition size. To

specify this is important because a higher imbalance can result in better partitionings.

The order in which the vertices of the graph are stored has a great impact on the par-

titioning quality of KL/FM partitioners because it a�ects the order of the node exchanges.

Hence, METIS and JOSTLE are run ten times on the same graph, but with a randomly

permuted vertex set. For DibaP the order of the vertices is insigni�cant. This is because the

di�usive partitioning operations are only a�ected by it in the rare case of ties in the load

values. That is why we perform ten runs on the same graph with di�erent random seeds,

resulting in di�erent choices for the �rst center vertex.

Evaluation Methodology. How to measure the quality of a partitioning, depends

mostly on the application. Besides the edge-cut, we also include the number of boundary

nodes since this measures communication costs in parallel numerical simulations more accu-

rately [13]. To assess the partition shapes, we also include results on the partition diameter.

The measures for a partition p are de�ned as:

ext(p) := |{e = {u, v} ∈ E : Π(u) = p ∧Π(v) 6= p}| (external edges or cut-edges),

bnd(p) := |{v ∈ V : Π(v) = p ∧ ∃{u, v} ∈ E : Π(u) 6= p}| (boundary nodes),

diam(p) := max {dist(u, v) : Π(u) = Π(v) = p} (diameter).

6 The variant of METIS which yields shorter boundaries than kMETIS is not chosen because its results are still
worse than those of DibaP regarding boundary length and they show much higher edge-cut values than kMETIS.
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Table 1. Average edge-cut (EC) and number of boundary nodes (BN) for ten randomized
runs on the eight benchmark graphs in the summation norm (EC, the edge-cut, denotes half
the `1-norm value); the values for JOSTLE, DibaP-short, and DibaP-long are relative to
the respective value obtained by kMETIS.

kMETIS JOSTLE DibaP-short DibaP-long

k EC BN EC (rel.) BN (rel.) EC (rel.) BN (rel.) EC (rel.) BN (rel.)

4 13836.9 7486.9 1.014 1.025 0.971 0.937 0.926 0.928
8 24079.0 13032.8 1.021 1.030 0.945 0.960 0.952 0.938
12 32605.2 17486.9 0.987 0.996 0.910 0.937 0.931 0.919
16 39013.7 20895.1 0.977 0.988 0.927 0.934 0.924 0.914
20 44952.6 23953.8 0.980 0.991 0.923 0.938 0.931 0.917
32 58275.7 30858.0 0.971 0.981 0.909 0.939 0.939 0.918
64 82292.8 42766.7 0.971 0.978 0.980 0.940 0.948 0.919

avg (rel) 1.0 1.0 0.989 0.998 0.938 0.941 0.936 0.922

Note that the edge-cut is the summation norm of the external edges divided by 2 to

account for counting each edge twice. For some applications not only the summation norm

`1 of ext and bnd over all k partitions has to be considered, but also the maximum norm

`∞. This is particularly the case for parallel simulations, where all processors have to wait

for the one computing longest. That is why we record ext and bnd in both norms.

For a succinct presentation Tables 1 (`1-norm) and 2 (`∞-norm) show the results in a

very condensed form. For all values obtained for a graph (external edges and boundary

nodes in both norms) we use the results of kMETIS as standard of reference to simplify the

evaluation. This means that each value of the other partitioners is divided by the respective

value of kMETIS. Then, an average value of these ratios over all ten runs and all graphs

is computed and displayed in the two tables. Larger values of k are not included since such

large partitionings are typically computed by parallel partitioners. If the latter are based on

KL techniques (as ParMETIS and parallel JOSTLE), they tend to have a worse solution

quality than their sequential counterparts, while DibaP's solution quality is not a�ected by

parallel execution.

Results. Table 1 shows that, in the summation norm, DibaP-short improves on

kMETIS in all cases and on JOSTLE in all cases but one (EC for k = 64). It is re-
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Table 2. Average number of external edges (EE) and of boundary nodes (BN) for ten
randomized runs on the eight benchmark graphs in the maximum norm; the values for
JOSTLE, DibaP-short, and DibaP-long are relative to the respective value obtained by
kMETIS.

kMETIS JOSTLE DibaP-short DibaP-long

k EE BN EE (rel.) BN (rel.) EE (rel.) BN (rel.) EE (rel.) BN (rel.)

4 8793.4 2381.0 1.027 1.034 0.968 0.937 0.949 0.948
8 8220.0 2238.1 1.096 1.097 0.950 0.971 0.934 0.922
12 7662.6 2070.2 1.006 1.008 0.910 0.943 0.909 0.902
16 6826.2 1824.4 1.037 1.040 0.931 0.940 0.907 0.895
20 6457.0 1718.1 1.056 1.051 0.929 0.949 0.918 0.903
32 5436.3 1425.9 1.085 1.075 0.924 0.954 0.953 0.926
64 3835.4 968.1 1.096 1.079 1.002 0.957 1.018 0.990

avg (rel) 1.0 1.0 1.058 1.055 0.945 0.950 0.941 0.927

markable that DibaP-short even computes better edge-cut values than DibaP-long in four

cases. The computationally more expensive DibaP-long is always better than kMETIS and

JOSTLE in the `1-norm and thus achieves the remaining best values for all k and both

measures. A comparable improvement obtained by DibaP over kMETIS and JOSTLE can

be observed for the maximum norm in Table 2. In this norm DibaP-short and DibaP-long

are again superior to the other two partitioners with one exception only (EE for k = 64).

Note that additional iterations of TruncCons do not always lead to better solutions as

DibaP-short computes the best solutions in several cases. The main reason is that the im-

plicit optimization process of TruncCons does not correspond directly to the optimization

of the metrics under consideration. Furthermore, the rebalancing process and the fact that

TruncCons might have been stopped during hill-climbing before a better local optimum is

reached play also an important role.

The average improvement to kMETIS w. r. t. the number of boundary nodes in the

maximum norm � which can be considered a more accurate measure for communication

in parallel numerical solvers than the edge-cut � is 5.5% for DibaP-short and 7.3% for

DibaP-long. The gain on JOSTLE is even more than 10%. Given that DibaP's running

time is reasonable (see Section 6.2) and that JOSTLE and particularly kMETIS are well-
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(a) kMETIS (b) JOSTLE (c) DibaP-long

Fig. 6. Partitionings of the graph t60k (|V | = 60005, |E| = 89440) into k = 12 subdomains
with the three partitioners.

established partitioning tools, these improvements are quite remarkable. Note that if we are

willing to invest more running time, we can often improve DibaP's average solution quality

by computing more initial solutions with Bubble-FOS/C or by using higher values of ψ

and Λ to circumvent the premature stop of the hill-climbing process [22, Ch. 5.4.1].

A detailed comparison of the diameter values reveals similar results on our benchmark

graphs for k = 16. DibaP-long is on average 4.4% (`1-norm) and 5.9% (`∞-norm) better

than JOSTLE, respectively. On kMETIS the improvements are slightly larger. Since dis-

connected subdomains (whose diameter is set to ∞) do not enter into these comparisons,

the real values of kMETIS and JOSTLE tend to be worse than those computed and used

for the comparison above. Moreover, our algorithm yields disconnected subdomains in only

2.1% of the experiments, while kMETIS exhibits a more than doubled ratio of 4.4%. Much

worse is JOSTLE, which produces disconnected subdomains in 22.3% of the runs.

Visual Comparison. To provide the reader with a visual impression on how DibaP's re-

sults di�er from those of METIS and JOSTLE, we include a 12-partitioning of the 2D graph

t60k (also available from Walshaw's archive; our benchmark set contains only 3D graphs) as

Figure 6. The partitioning computed by DibaP (Λ = 12, ψ = 18) has not only fewer cut-

edges and boundary nodes in both norms than the other libraries. Its partition boundaries
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also appear to be smoother and the subdomains have a smaller maximum diameter (165,

compared to 253 (kMETIS) and 179 (JOSTLE)).

(a) kMETIS (b) JOSTLE (c) DibaP-long

Fig. 7. Partitionings of biplane9 (|V | = 21701, |E| = 42038) into k = 8 subdomains with
the three partitioners.

Figure 7 � an 8-partitioning of the smaller graph biplane9 � con�rms the above obser-

vation on the diameter, resulting from a di�erent consideration of partition shapes. While

the maximum diameter values of DibaP-long and of JOSTLE are close together, the value

of kMETIS is worse. Also note the again smoother boundaries produced with DibaP-long

and that both other libraries generate a partition with two large disconnected node sets.

6.2 Running Times

The average running times required by the implementations to partition the �average

graph� of the benchmark set are given in Figure 8. Clearly, kMETIS is the fastest and

JOSTLE a factor of roughly 2.5 slower. Compared to this, the running times of DibaP-

short and DibaP-long are signi�cantly higher. This is in particular true for larger k, which

is mainly due to the fact that k enters into the running time of DibaP� in contrast to

kMETIS and JOSTLE, where the e�ect of k on the running time is rather small. The

running time dependence of DibaP on k is nearly linear since doubling k also means doubling

the number of di�usion systems to solve. Signi�cantly sublinear time increases are due to

an overproportionally large number of inactive nodes. A remedy of the dependence on k
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is part of future work. Nonetheless, DibaP constitutes a vast improvement over previous

implementations that use only Bubble-FOS/C for partitioning ([23], [32, p. 112]). The

acceleration factor lies around two orders of magnitude for the benchmark graphs used here.

Parallel DibaP. The use of POSIX
k kMETIS JOSTLE DibaP-short DibaP-long

4 0.33 0.62 4.31 9.80

8 0.34 0.70 7.42 17.66

12 0.35 0.77 10.18 24.86

16 0.36 0.83 12.91 31.67

20 0.37 0.89 15.55 38.32

32 0.39 1.04 20.28 53.64

64 0.43 1.35 34.15 92.76

avg 0.37 0.89 14.97 38.39

Fig. 8. Average non-threaded running times

(in seconds) on Intel Core 2 Duo 6600

threads for the three most time-consuming

tasks (AMG hierarchy construction, solving

linear systems for Bubble-FOS/C, and the

FOS di�usion calculations within Trunc-

Cons) in our DibaP implementation yields

on average a speedup of 1.55 on the em-

ployed dual-core processor. This means that

using both cores makes the execution of the

program 55% faster compared to the non-

threaded version. (Hence, the running times of DibaP in Figure 8 have to be divided by

1.55 to obtain their approximate parallel counterparts.) Experiments on advanced SMP ma-

chines with more cores are planned to investigate the scalability of the thread parallelization.

As the FOS di�usion calculations within TruncCons are independent for each partition,

we expect a reasonable scalability.

While the speed gap compared to the established partitioners is still quite high, the

absolute running times of DibaP are already quite satisfactory (a few seconds to a few

minutes for the benchmark graphs). Among other improvements, we plan for an even higher

exploitation of the algorithm's natural parallelism. This includes a distributed-memory

parallelization and the use of accelerators such as general purpose graphics hardware for the

simple di�usive operations within TruncCons. If one assumes a parallel load balancing

scenario with k processors for k partitions, one may divide the sequential running times of

DibaP by k · e (where 0 < e ≤ 1 denotes the e�ciency of the parallel program). Hence,

its parallel running time on k processors can be expected (and is observed in preliminary
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experiments) to be in the order of seconds, which is certainly acceptable.

6.3 Best Known Edge-Cut Results

Walshaw's benchmark archive also collects the best known partitionings for each of the 34

graphs contained therein, i. e., partitionings with the lowest edge-cut. Currently, results of

more than 20 algorithms are considered. Many of these algorithms are signi�cantly more

time-consuming than METIS and JOSTLE used in our experiments above.

With each of the 34 graphs 24 partitionings are recorded, one for six di�erent numbers of

subdomains (k ∈ {2, 4, 8, 16, 32, 64}) in four di�erent imbalance settings (0%, 1%, 3%, 5%).

Using DibaP in various parameter settings (Λ ≤ 15, ψ ≤ 20), we have been able to improve

more than 80 of these currently best known edge-cut values for six of the eight largest graphs

in the archive. The complete list of improvements with the actual edge-cut values and the

corresponding partition �les are available from Walshaw's archive [42].

Note that none of our records is for k = 2. We conjecture that this is the case because

the starting solutions computed by Bubble-FOS/C are often not really good for k = 2.

Moreover, these records are mostly held by very time-consuming tailor-made bipartitioning

algorithms. Unless they are extended to k > 2, their high quality is not likely to sustain for

larger k because recursive bipartitioning typically yields inferior results compared to direct

k-way methods for large k [36].

7 Conclusions

In this paper we have developed the new heuristic algorithm DibaP for multilevel graph par-

titioning. Based on an accelerated di�usion-based local improvement procedure, it attains

a very high quality on widely used benchmark graphs: For six of the eight largest graphs

of a well-known benchmark set, DibaP improves the best known edge-cut values in more

than 80 (out of 144) settings. Additionally, the very high quality of our new algorithm has

been veri�ed in extensive experiments, which demonstrate that DibaP delivers better parti-
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tionings than METIS and JOSTLE � two state-of-the-art sequential partitioning libraries

using the KL heuristic. These results show that di�usive shape optimization is a successful

approach for providing partitionings of superior quality and very promising to overcome the

drawbacks of traditional KL-based algorithms. It should therefore be explored further, both

in theory and in practice.

Future Work. To improve the speed of DibaP, a remedy for the nearly linear depen-

dence of the running time on k is of utmost importance. A future MPI parallelization and

an implementation of TruncCons on very fast general purpose graphics hardware can be

expected to exploit our algorithm's inherent parallelism better and thereby accelerate it

signi�cantly in practice. Moreover, it would be interesting to examine how DibaP acts as

a load balancer compared to related libraries. Theoretically, starting from our convergence

result of this paper, it would be interesting to obtain more knowledge on the relation of the

Bubble framework and disturbed di�usion schemes. Of particular concern is how to enforce

connected partitions with TruncCons.
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