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Hinweise

• Nächste Stunde (10.1.) entfällt
• Am 17.1.19 übernimmt Raik
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Content of this Lecture

• Next Generation Sequencing
• Genome compression 
• Approximate search in compressed genomes
• Using multiple references

• This lecture is not part of the examination
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Large Scale Sequencing Projects

Genomics England … is creating a lasting legacy for 
patients, the NHS and the UK economy through the 

sequencing of 100,000 genomes: the 100,000 
Genomes Project. [finished 5.12.2018]

The Veterans Affairs (VA) Office of Research and 
Development is launching the Million Veteran 

Program (MVP) …. The goal of MVP is to better 
understand how genes affect health and illness in 

order to improve health care. 

50.000 samples: To obtain a comprehensive 
description of genomic, transcriptomic and 

epigenomic changes in 50 different tumor types 
and/or subtypes which are of clinical and societal 

importance across the globe.
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Next Generation Sequencing

• New generation of sequencers since ~2005
– Illumina, Solexa, 454, Solid, …
– Massively parallel sequencing of short reads

• Much higher throughput
– Terabytes of raw data per week
– Cost for sequencing a genome

down to ~1.000 USD
• 3rd generation sequencers

– Single molecule sequencing
– A (human) genome in a day
– Sequence every human
– Sequence different cells in every human

Illumina HiSeq 2000. DNAVision
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2015: High-Seq

• 600GB / day, 18.000 genomes per year
• $1,000 genome at 30x coverage

– Amortized over 18,000 genomes per year over four-year period
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Data Tsunami

Stein, L. D. (2010). Genome Biol
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The „real“ Cost of Genomic Sequencing

Sboner, A. (2011). The real cost of sequencing: higher than you think! Genome Biology 2011
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New Problems

• Need to process huge amounts of data
– Single genome at 30 fold coverage with read length 100bp: 

900.000.000 reads
– Single genome at 60 fold coverage with read length 100bp: 1.8E9 

reads
– 10.000 genomes per year ~ 30 genomes per day ~ processing of 

60E9 reads per day
• Need to store huge amounts of sequence data

– (Hundreds of) thousands of genomes



Ulf Leser: Algorithms for Bioinformatics 10

Content of this Lecture

• Next Generation Sequencing
• Genome compression 

– Referential compression
– Four issues

• Approximate search in compressed genomes
• Using multiple references
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Compressing Genomes

• Four basic techniques (lossless)
– Bit packing
– Statistical compression
– Dictionary-based compression
– Referential compression

• Criteria for compression methods
– Compression ratio
– Compression speed / decompression speed
– Analyzing (searching) compressed data

• Compressing reads is another topic
– Quality information, non-standard bases, short strings, …

• Another big topic: Lossy compression
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1. Bit Packing

• A genome consists of 4 (5, 7, …) different bases
• Representing one bases thus requires 2 bits only
• One byte – four bases
• Compression ratio (compared to ASCII / FASTA): 1:4
• Advantages: Fast, universal, simple, all search operations 

can be easily adapated
• Disadvantage: Low compression ratio
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2. Statistical Compression

• Idea: Don’t use the same number of bits for every char
• Frequent characters are represented with less bits

– Example: Huffman coding, arithmetic coding
• Useful for larger alphabets with large differences in 

character frequencies
– Can be applied to q-grams 

• But: Even DNA q-gram are 
roughly equally frequent

• Disadvantage: 
Low compression ratio (~1:5)
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3. Dictionary-based Compression

• Idea: Represent frequent substrings with short codes
• Ziv-Lempel-Welch: Find most frequent substrings online

– Stored in a dictionary
– Index in dictionary is used as code 
– Trade-Off: Dictionary-size, 

compression speed, 
compression ratio

• Useful when large diffs in 
frequency of substrings exist 
– Recurring patterns: Images, language, tables, …

• Disadvantage: Low compression ratio (for DNA, ~1:4-6)
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4. Referential Compression

• When sequencing humans, we know the reference genome
• Idea: Use reference as predefined “dictionary”
• Genomes are represented as lists of referential match 

entries (rme): (start, length, first mismatch)
• Issues

– Find long matches fast
• Trade-off: Long matches: ratio++; faster compression: ratio—

– Efficient coding of RMEs
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Greedy Algorithm

• Compression rate for human chromosomes: ~1:60
• Compression speed for human chromosomes : 80 MB/s
• Main memory usage during compression: ~4*|ref|+|s|

– Using DNA-optimized compressed suffix trees
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Content of this Lecture

• Next Generation Sequencing
• Genome compression 

– Referential compression
– Four issues in referential compression

• Approximate search in compressed genomes
• Using multiple references
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Issues

• Compact encoding of RMEs
• Main memory usage
• Faster compression / decompression
• Which reference?

• General: Balancing the trade-off between compression 
ratio and compression speed
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1. Encoding RME’s

• Very frequent: Series of consecutive matches with short 
SNVs in between

(1000,5,A), (1006,12,C), (1019,4,A), (1024,20,C), (1045,8,B), (9453,25,C), …

• Improvement: Delta encoding (with/out default stepsize)

(1000,5,A), (1006,12,C), (1019,4,A), (1024,20,C), (1045,8,B), (9453,25,C), …
(1000,5,A), (+6,12,C),    (+13,4,A),  (+5,20,C),    (+21,8,B), (9453,25,C), …
(1000,5,A), (+0,12,C),    (+0,4,A),  (+0,20,C),    (+0,8,B),  (9453,25,C), …

• Large impact on compression ratio

Rare!
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2. Improving Main Memory Usage

• Best (compressed) suffix tree libraries need ~4*|ref| space
• Observation: We often find consecutive matches in 

consecutive regions 

• Can be exploited to save main memory
– Partition reference and input into blocks (e.g. 5MB)
– Keep one (indexed) block at a time in main memory
– Search other reference blocks only when no good match is found

• Switching blocks is costly: Avoid
– Even if this means less optimal compression
– Typical: Threshold on minimal length of RMEs; otherwise switch
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• Evaluation for human chromosome 1
– Small blocks: Frequent block changes, bad ratio
– Blocks larger than ~100MB: No further improvements of ratio
– Compression/decompression requires only ~500MB for dictionary

Memory / compression speed / compression ratio
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3. Improving compression speed

• Runtime dominated by looking up prefixes in the 
compressed suffix tree
– Decoding the compressed suffix tree structure costs time
– Maximal throughput: ~50.000 lookups / sec

• Improvement: Local matching
– Search next RME near previous RME directly in the reference

• Ignoring the index
– Accept best next match iff RME sufficiently long
– Speed-up by a factor of ~5-10

• Also improves compression ratio
– Next matches close to previous ones – effective delta encoding
– But may not find longest RME
– Evaluation: Overall space reduction
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Results: Ratio (Data: 1000 Genomes project)

Overall compression ratio: ~1:400
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Results: Speed
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4. Which reference to use?

• Given a set of genomes: Which should be the reference?
• Similarity to reference is key to high compression rates

– Compressing Human against Mouse: Disaster
– Similarity in non-coding region is low

• Exhaustive reference selection is very time consuming 
(took 6 days for 1092 * 1091 H-22)
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Two Alternatives

• Idea: Chose as reference the genome with highest average 
similarity to all other genomes

• Heuristic-based reference selection
– Define a heuristic for the similarity of two sequences

• For instance: Compute best reference based on small sample
• Use any other fast similarity estimation method

– Pick the sequence most similar to all other sequences according to 
this heuristic

• Better: Build your own reference
– Reference rewriting
– Given a reference, rewrite it in order to obtain higher compression 

ratios
• Note: It doesn’t matter if the reference is a “real” genome
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Selection versus Rewriting
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Selection versus Rewriting
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Fresco: Comparative Evaluation

• Second Order Compression: Compress RME sets
– All sequences are similar to each other
– Thus, different sequences produce very similar RME lists
– Idea: Compress (using “meta” referential compression)

• Best algorithms as of 2015 [Deorowisc 2015, GDC-2]
– Compression ratio 1:9500
– 7TB FASTA compressed to 700MB
– Speed: 200MB/sec (beware: measured on different hardware)
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Content of this Lecture

• Next Generation Sequencing
• Sequence compression 

– Referential compression
– Four issues

• Approximate search in compressed genomes
• Using multiple references
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K-Approximate Matching (k-difference Mathcing)

• Given a collection of referentially compressed genomes S, 
find all k-approximate matches of a query q
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Example Application: Personalized Medicine

• Modern cancer drugs depend on 
genotype of patients

• Genotype: Mutations in certain 
cancer genes

• Clinics sequence thousands of 
human genomes

• Given a set of patient genomes S 
with known outcome and the 
sequence of a cancer gene g in a 
new patient q – what is the most 
similar occurrence of g in S?
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Storing Similar Strings

• Referential Compression
– Choose a reference string p from S
– When adding a new string s, only 

store differences between s and p

0123456789012345678
p: Kohala Coast-Hawaii
s2: Kohala Cost
s3: Koala Coast/Hawaii

s2: (p,0,9,s),(p,11,1,_)
s3: (p,0,2,a),(p,4,8,/),(p,13,6,_)

RME: Referential
Match Entries
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• Key idea: Find matches in all compressed sequences 
simultaneously by searching the reference
– Store reference as suffix tree
– Search using standard BYP-algorithm
– For every match, find all RME completely containing that match

• Build an interval tree over all RMEs
• If RME X contains match, only children of X may contain other matches

• Problem: Matches not contained in the reference

RCSI: Referentially Compressed Search Index

CGGACAAACTGACGTTCGACG

ACAAACTG

ACAA AAACT

AAA
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RCSI Approach

• Fix maximal query length qmax and maximal kmax
• Compute overlap sequences

– One for every mismatch leading to two consecutive RMEs
• How long must these overlaps be?

– Answer: 2*|qmax + kmax|
– Very conservative estimation, guaranteed to not loose any match

• Index set of overlap 
sequences 

• This index can be 
searched using BYP
– Additional to searching the 

reference
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RCSI: Architecture
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Evaluation: Indexing time

• Indexing one genome: ~30 sec
• Indexing 1000 genomes: ~8 hours  
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Evaluation: Approx. search in 1000 genomes

• Until k=5, almost all queries finish in <10ms
• For k=1, almost all queries finish in <1ms
• Outliers: Queries matching repetitive regions

(|q|∈[120,170])
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Competitors

• GC open source code lacks important preprocessing step
– We could only compare using the data from GC paper

• RCSI between 10 and 100 times faster
– And computes all results
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Content of this Lecture

• Next Generation Sequencing
• Sequence compression 

– Referential compression
– Four issues

• Approximate search in compressed genomes
• Using multiple references
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Collections of Similar Strings

• Often (not always): Strings are similar to each other
– All human genomes are 99% identical 
– All mammal genomes are >90% identical
– All elements of a Wikipedia revision histories are highly similar
– Elements of version histories are very similar (SVN, subversion, …)
– …
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Heterogeneous String Collections

p: Kohala Coast-Hawaii
s2: Kohala Cost
s3: Koala Coast/Hawaii Islands
s4: Kohala Coast-Hawaii Islands
s5: Orchid Island
s6: Orchied Island

Kohala Coast-Hawaii

Kohala Cost

Kohala Coast/Hawaii Islands

Koala Coast/Hawaii Islands

„compressed against“
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Heterogeneous String Collections

p: Kohala Coast-Hawaii
s2: Kohala Cost
s3: Koala Coast/Hawaii Islands
s4: Kohala Coast-Hawaii Islands
s5: Orchid Island
s6: Orchied Island

Kohala Coast-Hawaii

Kohala Cost

Kohala Coast/Hawaii Islands

Koala Coast/Hawaii Islands

Orchid Island

Orchied Island
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Novel Idea: Use Multiple References

Strings are compressed against different references

Challenge: Which are the best references?

Kohala Coast-Hawaii

Kohala Cost

Kohala Coast/Hawaii 
Islands

Koala Coast/Hawaii 
Islands

Orchid Island

Orchied Island
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Novel Idea: Allow Hierarchical Compressions

Compression dependencies can form hierarchies

Challenge: Which is the best parent?

Orchid Island

Orchied Island

Kohala Coast-Hawaii

Kohala Cost

Kohala Coast/Hawaii 
Islands

Koala Coast/Hawaii 
Islands
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Novel Idea: Compress against Multiple References

Strings are compressed against multiple other strings

Challenge: Which is the best set of parents?

Orchid Island

Orchied Island

Kohala Coast-Hawaii

Kohala Cost

Kohala Coast/Hawaii 
Islands

Koala Coast/Hawaii 
Islands
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MRSCI: Multiple Reference Compression

• Challenges during compression
– Which strings should be references – and how many?
– How can we efficiently find good parents?
– What is the optimal compression hierarchy?

• How to perform k-approximate search in a multi-reference 
compression hierarchy?

• Findings
– Proof that finding an optimal compression hierarchy is NP-hard
– Three heuristics to build increasingly complex CHs 

• Increasingly better compression rates 
• Moderate increase in indexing time, roughly same search speed
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Overview

RCSI: VLDB 2014 CPart

CForest CDAG

disallowed; 
heuristic
solutions
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CPart: Using Multiple References

• Iteratively and greedily compress strings from S
– Choose first string as first reference p, set P={p}
– Compress all other strings s one-by-one

• Find reference p’ from P “most similar” to s
• If p’ and s are sufficiently similar – compress s against p’
• If not, add s to P (new reference, new root)

• Needs fast method for assessing string similarity
• Essentially performs a greedy clustering of C
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Competitors

• Sweet spot: Strong and fast compression, fast search
• Two classes of competitors

– Pure indexer: ESA, CST: Large memory footprint, fast search
– Pure compressors: Strong compression, slow search
– Variations we built: Compressors with additional search indexes

• RLZ / Tong after modification: iRLZ, iTong
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Evaluation: Indexing WikiPedia Revisions 

• CDAG strongest of index-based, almost as small as best
• CDAG (or CPart) are fastest (2-4 times faster than iTong) 

Wikipedia Helsinki, ~3K versions
577 MB

Wikipedia GW Bush, ~45K versions
1400 MB
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Evaluation: Searching (HEL)

• ESA fastest in search
• All compressing methods perform roughly the same

5000 random queries, length 12-18 char
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Evaluation: Large Datasets

Human chromosome 21, up to 640 versions, up to 51GB
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Conclusions

• Referential compression beats standard compression tools 
by orders of magnitude for highly-similar sequences (w.r.t. 
storage and speed)

• Inherent trade-off between compression ratio and de-
/compression speed 

• Given a referential index, some (many?) string matching 
problems can be solved much more efficiently – ample 
room for further research
– “Compressive genomics”
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