Wintersemester 2011/12 22. November 2011

Übungsblatt 6

Aufgabe 25 mündlich

(a) Bestimmen Sie in Abhängigkeit von der Redundanz R_L der Klartextsprache und der Größe m des Alphabets A näherungsweise die Eindeutigkeitsdistanz

- einer einfachen Substitutionschiffre,
- einer Hill-Chiffre mit Blocklänge l,
- \bullet einer Blocktransposition mit Blocklänge l und
- einer Blockchiffre, in der jede Bijektion auf $M=A^l$ durch (genau) einen Schlüssel $k \in K$ realisiert wird.

Hinweis: Benützen Sie zur Abschätzung von n! die Stirling-Formel $n! \approx \sqrt{2\pi n} (n/e)^n$.

(b) Geben Sie für jede dieser Chiffren einen möglichst langen Kryptotext y mit ||K(y)|| > 1 an, falls Deutsch als Klartextsprache benutzt wird. (Die Blocklänge l kann beliebig zwischen 2 und 5 gewählt werden).

Aufgabe 26 mündlich

Sei S=(M,C,E,D,K) ein Kryptosystem und bezeichne α_{\max} den maximalen Vorteil, den ein Gegner (mit unbeschränkten Rechenressourcen) erzielen kann. Zeigen Sie:

- (a) Wenn ||K|| < ||M|| ist, dann ist $\alpha_{\text{max}} > 0$.
- (b) Wenn ||K|| (||K|| 1) < ||M|| 1 ist, dann ist $\alpha_{\text{max}} = 1/2$.
- (c) Über welche Rechenressourcen muss ein optimaler Gegner in Teilaufgabe (b) höchstens verfügen, wenn die Verschlüsselungsfunktion E effizient berechenbar ist?

Aufgabe 27 Zeigen Sie:

miindlich

- (a) In einem absolut sicheren Kryptosystem hängt die Kryptotextverteilung nicht von der Verteilung der Klartexte ab.
- (b) Ein Kryptosystem ist genau dann unter allen Klartextverteilungen absolut sicher, wenn es unter jeder Klartextverteilung p mit $p(x) \in \{0, 1/2\}$ für alle $x \in M$ absolut sicher ist.
- (c) Ein Kryptosystem ist absolut sicher, falls kein Gegner mit einem Vorteil $\alpha(G, V) > 0$ existiert.

Aufgabe 28 mündlich

(a) Definieren Sie formal, wann zwei Kryptosysteme als gleich (besser: äquivalent) anzusehen sind. Betrachten Sie auch den Fall, dass Wahrscheinlichkeitsverteilungen auf den Schlüsselräumen gegeben sind.

(b) Zeigen Sie, dass die affine Chiffre idempotent ist.

Aufgabe 29 $m \ddot{u}ndlich$ Seien S_1 und S_2 Vigenère-Chiffren mit fester Schlüsselwortlänge d_1 bzw. d_2 .

- (a) Zeigen Sie: Ist d_1 ein Teiler von d_2 , so ist $S_1 \times S_2 = S_2$.
- (b) Lässt sich Teilaufgabe (a) verallgemeinern zu $S_1 \times S_2 = S_3$, wobei S_3 die Vigenère-Chiffre mit Schlüsselwortlänge $d = \text{kgV}(d_1, d_2)$ ist?

Aufgabe 30 mündlich

Seien H_1, H_2 und H_3 Hill-Chiffren mit Blocklängen l_1, l_2 und l_3 .

- (a) Zeigen Sie, dass $H_1 \times H_1 = H_1$ ist.
- (b) Was muss für l_1, l_2 und l_3 gelten, damit $H_1 \times H_2 = H_3$ ist? Hierbei bezeichne $H_1 \times H_2$ (abweichend vom Skript) die Chiffre mit Blocklänge $kgV(l_1, l_2)$, die erst H_1 und dann H_2 blockweise anwendet.

Aufgabe 31 mündlich

Überlegen Sie, wie sich ein durch ein SPN verschlüsselter Kryptotext $y = E_{f,\pi_s,\pi_P}(K,x)$ wieder zu x entschlüsseln lässt.

Aufgabe 32 mündlich

Bestimmen Sie für die durch folgende Permutation $\pi_{S'}$ definierte S-Box S' sämtliche Werte L(a,b) für $a,b\in\{0,1\}^4$.

Aufgabe 33 10 Punkte

Seien X_1, X_2, X_3 unabhängige Zufallsvariablen mit Wertebereich $W(X_i) = \{0, 1\}$ und Bias $\varepsilon(X_i)$ für i = 1, 2, 3. Zeigen Sie, dass die Zufallsvariablen $X_1 \oplus X_2$ und $X_2 \oplus X_3$ genau dann unabhängig sind, wenn $\varepsilon(X_1) = 0$ oder $\varepsilon(X_3) = 0$ oder $\varepsilon(X_2) = \pm 1/2$ ist.