Algorithmische Bioinformatik

Exaktes Stringmatching: Z-Box Algorithmus

Ulf Leser

Wissensmanagement in der Bioinformatik

Ziele für heute

- Analyse des naiven Stringmatching-Algorithmus
- Verständnis der Funktionsweise, Komplexität und Korrektheit des Z-Box Algorithmus
- Ins rechte Licht rücken: Worst case, average case im String Matching

Inhalt dieser Vorlesung

- Naiver Algorithmus f
 ür exaktes Stringmatching
- Z-Box Algorithmus
- Berechnung von Z-Boxen
- Average-Case Komplexitäten

Exaktes Matching

- Gegeben: P (Pattern) und T (Text)
 - Trivialerweise verlangen wir $|P| \le |T|$
- Gesucht: Sämtliche Vorkommen von P in T
- Beispiel: Erkennungssequenzen von Restriktionsenzymen

Eco RV - GATATC

Naiver Ansatz

- P und T an Position 1 ausrichten
- 2. Vergleiche P mit T von links nach rechts (innere Schleife)
 - Zwei ungleiche Zeichen ⇒ Gehe zu 3
 - Zwei gleiche Zeichen
 - P noch nicht durchlaufen ⇒ Verschiebe Pointer nach rechts, gehe zu 2
 - P vollständig durchlaufen ⇒ Merke Vorkommen von P in T
- 3. Verschiebe P um 1 Zeichen nach rechts (äußere Schleife)

gatatc

gatatc

ctgagatcgcgta

Solange Startposition <= |T|-|P|, gehe zu 2

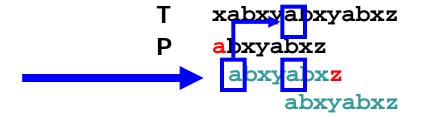
```
P gagatc
gagatc
gagatc
gagatc
gagatc
```


Naiver Ansatz (cont.)

```
for i = 1 to |T| - |P| + 1
       match := true;
       j := 1;
       while ((match) and (j \le |P|))
               if (T[i+j-1] \Leftrightarrow P[j]) then
                      match := false;
               else
                      j++;
       end while;
       if (match) then
               -> OUTPUT i
                                           aaaaaaaaaaaa
end for;
                                           aaaaat
                                            aaaaat
                                             aaaaat
                                               aaaaat
                              Vergleiche : n * (m-n+1) => O(m*n)
```

Optimierungsidee

- Anzahl der Vergleiche reduzieren
 - P um mehr als ein Zeichen verschieben
 - Aber nie soweit, dass ein Vorkommen von P in T nicht erkannt wird
- Idee am Beispiel



- Vorkommen in T muss mit a beginnen
- Nächstes a in T erst an Position 6 springe 4 Positionen
- Vorkommen von Buchstaben in T durch Preprocessing lernen
 - Naiv: Von T
 - Besser: Von P

Erweiterung auf Substrings

- T xabxyabxyabxz
- P abxyabxz

- abx ist doppelt in P interne Struktur von P erkennen
 - P[1..3] = P[5..7]
 - Kein Vorkommen dazwischen
- Vergleich findet: P[1..7] = T[2..8]
- Daher
 - P[1..3] = T[6..8]; zwischen 2 und 6 kann in T kein Treffer liegen
 - 4 Zeichen schieben und erst ab Position 4 in P weiter vergleichen

Inhalt dieser Vorlesung

- Naiver Algorithmus f
 ür exaktes Stringmatching
- Z-Box Algorithmus
- Berechnung von Z-Boxen
- Average-Case Komplexitäten

Z-Box Algorithmus

Grobaufbau

- Konstruktion eines "geeigneten" Strings S aus P und T
- Berechnung von Z-Boxen an jeder Position i von S: Längster Substring, der an Position i startet und auch Präfix von S ist
 - Längstes x mit S[i..i+|x|-1]=S[1..|x|]
- Alle Z-Boxen einer bestimmten Länge sind Matches
- Wichtig: Z-Boxen müssen schnell berechnet werden
 - Lineare Komplexität

Z-Boxen

Definition Z-Box

- Für i>1 sei Z_i (S) die Länge des längsten Substrings x von S mit
 - X = S[i..i + |X| 1]

(x startet an Position i in S)

- S[i..i+|x|-1] = S[1..|x|] (x ist auch Präfix von S)
- Dann nennen wir x die Z-Box von S an Position i mit Länge Z_i (S)

Anmerkung

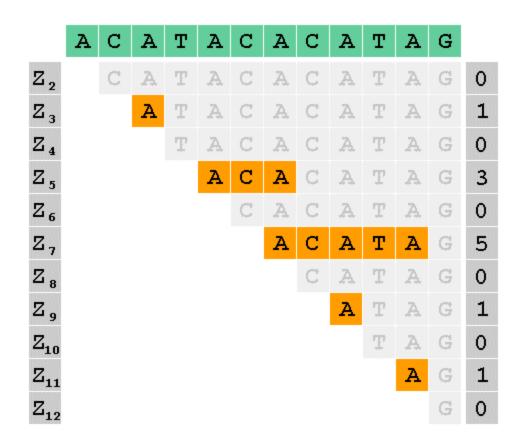
 Wir bezeichnen mit Z-Box oft auch den String x selber (statt seiner Länge)

Beispiele

```
S = aabcaabxaaz
     1(a)
         3(aab)
          1(a)
             2(aa)
              1(a)
```

$$S = aaaaaa$$

Beispiel 2



Linearer Stringmatching Algorithmus

- Annahme: Z-Boxen lassen sich in O(|S|) berechnen
 - Wie? Später
- Verwendung der Z-Boxen für exaktes Stringmatching
 - Wie muss S aussehen, um unser Problem zu lösen?

```
\begin{array}{lll} S:=P\big|\, \text{`$`}\big|\, T; & //\ (\$\not\in\Sigma) \\ \text{compute Z-Boxes for S;} \\ \text{for i}=|P|+2 \text{ to }|S|-|P|-1 \\ & \text{ if }(Z_i(S)=|P|) \text{ then} \\ & & \text{ print i-}|P|-1; \ //\ P \text{ in T at position i end if;} \\ \text{end if;} \end{array}
```

- Komplexität?
 - Berechnung Z-Boxen: Unklar
 - Schleife wird |T|-|P|-mal durchlaufen => O(m)

Inhalt dieser Vorlesung

- Naiver Algorithmus f
 ür exaktes Stringmatching
- Z-Box Algorithmus
- Berechnung von Z-Boxen
- Average-Case Komplexitäten

Berechnung der Z-Boxen

Naiver Algorithmus: O(|S|²)

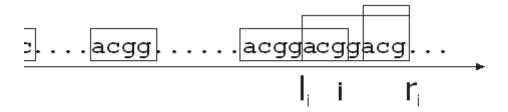
```
for i = 2 to |S|
Z_i := 0;
j := 1;
while (((S[j] = S[i + j - 1])) \text{ and } (i+j <= |S|))
Z_i := Z_i + 1;
j := j + 1;
end while;
end for;
```

Das wäre schlechter als der naive Algorithmus

$$- O((m+n)^2) + O(m) \sim O(m^2)$$

Vorarbeiten

- Definition
 - Für i > 1 ist
 - r_i der rechteste Endpunkt aller Z-Boxen, die bei oder vor i beginnen
 - I_i ist die Startposition der längsten Z-Box, die bei r_i endet
- I_i eindeutig, da an jeder Position nur eine Z-Box beginnt
- S[I_i..r_i] ist die Z-Box, die die Position i von S enthält, am weitesten nach rechts reicht und am längsten ist



Berechnung der Z_i Werte

- Idee: Verwende bekannte Z_i zur Berechnung von Z_k (k > i)
- Grundaufbau
 - Einmaliges Durchlaufen von S (Laufvariable k)
 - Kontinuierliches Vorhalten der aktuellen Werte I=I_k und r=r_k
 - Größe der Z-Box an Position k ergibt sich mit einigen Tricks in insgesamt linearer Zeit
- Induktive Erklärung
 - Induktionsanfang: Position k=2
 - Berechne Z₂
 - Wenn $Z_2 > 0$, setze $r = r_2 (=2 + Z_2 1)$ und $I = I_2 (=2)$,
 - sonst r=l=0
 - Induktionsschritt: Position k>2
 - Bekannt sind r, I und ∀j<k: Z_i

Z-Algorithmus, Fall 1

- Möglichkeit 1: k > r
 - D.h., dass es keine Z-Box vor k gibt, die k überdeckt
 - Wir wissen also nichts über den Bereich ab k
 - Dann gehen wir naiv vor
 - Berechne Z_k durch Zeichen-für-Zeichen Matching
 - Wenn $Z_k>0$, setze $r=r_k$ und $I=I_k$

Beispiel

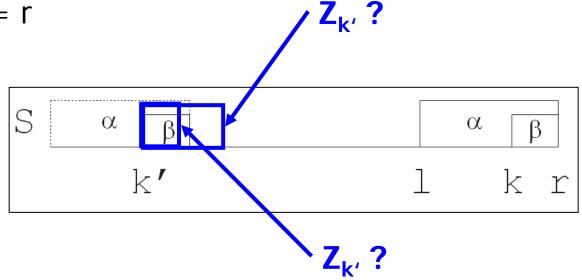
```
k
CT<mark>C</mark>GAGTTGCAG
0
1
0
```

Gegenbeispiel

```
lk r
CTACTTTGCAG
0
0
5
```


Z-Algorithmus, Fall 2

- Möglichkeit 2: k <= r
 - Die Situation

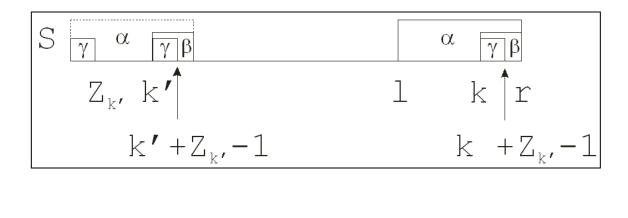


Also

- Z-Box Z₁ ist Präfix von S
- Substring β =S[k..r] kommt auch an Position k'=k-I+1 vor
- Was wissen wir über S[k'..]? Natürlich: Z_{k'}
- $Z_{k'}$ und Z_{k} können aber länger oder kürzer als $|\beta| = r k + 1$ sein
- S[r+1..] kennen wir noch nicht; S[k'+1..] schon

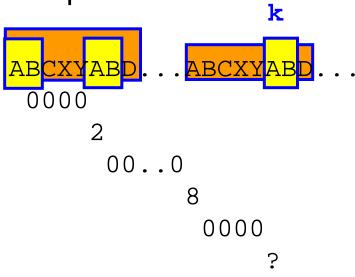
Z-Algorithmus, Fall 2.1

- Möglichkeit 2.1: Z_{k'} < |β|=r-k+1
 - Also ist das Zeichen an k'+Z_{k'} ein Mismatch bei der Präfixverlängerung
 - Da $S[k+Z_{k'}]=S[k'+Z_{k'}]$, erzeugt $S[k+Z_{k'}]$ den gleichen Mismatch
 - Also muss gelten: $Z_k = Z_{k'}$; r und I unverändert



Beispiel

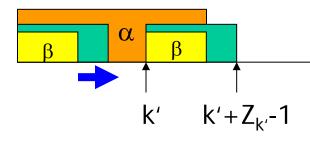
Beispiel

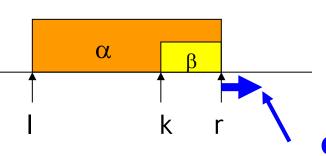


 $\beta = ABD$; k' = 6; $Z_6 = 2 < |\beta|$

Z-Algorithmus, Fall 2.2

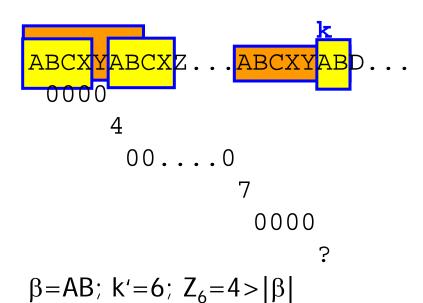
- Möglichkeit 2.2: $Z_{k'}$ ≥ $|\beta|$
 - β ist Präfix von S, das sich vielleicht (hinter r) verlängern lässt
 - Wenn $Z_{k'} > |\beta|$, dann wissen wir: $S[|\beta|+1]=S[k'+|\beta|]$
 - Wir wissen aber wenig über S[r+1]
 - Wurde bisher höchstens in Mismatches betrachtet
 - Also
 - Matche Zeichen für Zeichen S[r+1..] mit S[$|\beta|$ +1..]
 - Sei der erste Mismatch an Position q
 - Dann: $Z_k=q-k$; r=q-1; wenn $q\neq r+1$: l=k





Beispiel

Beispiel



Algorithmus

```
match Z<sub>2</sub>; set 1,r;
for k = 3 to |S|
        if k>r then
                 match Z,;
                 set r,1;
        else
                 k' := k-1+1;
                 b := r-k+1;
                                                   // This is |\beta|
                 if Z_k < b then
                         Z_k := Z_k;
                 else
                         match S[r+1..] with S[b+1..] until q;
                         if q!=r+1 then
                                  Z_k := q-k; r := q-1; l := k;
                         else
                                  Z_k := Z_k,;
                 end if;
        end if;
end for;
```

Komplexität

- Theorem
 - Der Z-Box Algorithmus berechnet alle Z-Werte in O(/S/)
- Beweis
 - Wir z\u00e4hlen a= "Anz. Matches" und a'= "Anz. Mismatches"
 - Erst a'. Wie viele Mismatches gibt es pro k?
 - Induktionsanfang Maximal einen
 - Fall 1: Maximal einen
 - Fall 2.1: 0; Es werden überhaupt keine Zeichen verglichen
 - Fall 2.2: Maximal einen
 - Also kann pro Position in S maximal ein Mismatch auftreten
 - Also gilt: $a' \le |S|$

Komplexität 2

Fortsetzung

- Jetzt a. Wann führt der Algorithmus Matches aus?
 - Induktionsanfang maximal |S|-1 Matches
 - Fall 1: Maximal |S|-2
 - Fall 2.1: Es werden keine Zeichen verglichen
 - Fall 2.2: Maximal |S|-2
- Aber
 - Jeder Match verschiebt r
 - Wir vergleichen immer nur rechts von r
- Also kann ein Zeichen von S höchstens einen Match erzeugen
- Also gilt: $a \le |S|$
- Also gilt: $a+a' \le 2^*|S| = O(|S|)$
- Qed.

Alles zusammen

- Z-Boxen kann man in O(|S|)=O(m+n) berechnen
- Danach in O(|S|) alle passenden Z-Boxen suchen
- Damit löst der Z-Box Algorithmus das exakte Stringmatchingproblem in O(m+n)

123456789012345678901 abxyabxz\$xabxyabxyabxz

$$k' := k-l+1; b := r-k+1;$$
 $Z_k := q-k; l := k; r := q-1;$

k	Bemerkung	Z _k	T	r
2	Induktionsanfang	0	0	0
3	k>r; Neues Matching, 1 Mismatch	0	0	0
4	k>r; Neues Matching, 1 Mismatch	0	0	0
5	k>r; Neues Matching, 3 Matches, 1 Mismatch	3	5	7
6	$6 \le 7$; k'=2;b=2; Z ₂ =0; Also Z _{k'} <b, damit="" z<sub="">k=Z_{k'}</b,>	0	5	7
7	$7 \le 7$; k'=3;b=1; Z ₃ =0; Also Z _{k'} <b, damit="" z<sub="">k=Z_{k'}</b,>	0	5	7
8	8>7; Neues Matching, 1 Mismatch	0	5	7
9	9>7; Neues Matching, 1 Mismatch	0	5	7
10	10>7; Neues Matching, 1 Mismatch	0	5	7
11	11>7; Neues Matching, 7 Matches, 1 Mismatch	7	11	17
12	$12 \le 17$; $k'=2$; $b=6$, $Z_2=0$; $Z_{k'} < b$, damit $Z_k = Z_{k'}$	0	11	17
13	$13 \le 17, k'=3; b=5; Z_3=0; Z_{k'} < b, damit Z_k = Z_{k'}$	0	11	17
14	$14 \le 17, k'=4; b=4; Z_4=0; Z_{k'} < b, damit Z_k = Z_{k'}$	0	11	17
15	$15 \le 17$; $k'=5$; $b=3$; $Z_5=3$; Also $Z_k \ge b$; matche S[18] mit S[4]; 5 Matches und Erfolg			

1234567890123456 aaaat\$aaaaaaaa

$$k' := k-l+1; b := r-k+1;$$
 $Z_k := q-k; l := k; r := q-1;$

k	Bemerkung	Z _k	ı	r
2	Induktionsanfang	3	2	4
3	$k < r; k' = 2; b = 2; Z_2 = 3; Z_k \ge b; matche S[5] mit S[3]; 1 Mismatch; q = 5$	2	3	4
4	$k \le r$; $k'=3$; $b=1$; $Z_3=2$; $Z_{k'} \ge b$; matche S[5] mit S[3]; 1 Mismatch; $q=5$	1	4	4
5	k>r; Neues Matching, 1 Mismatch	0	4	4
6	k>r; Neues Matching, 1 Mismatch	0	4	4
7	k>r; Neues Matching, 4 Matches, 1 Mismatch	4	7	10
8	$8 \le 10$; k'=2;b=3;Z ₂ =3; Z _k ≥b; matche S[11] mit S[4];1 / 1;q=12	4	8	11
9	$9 \le 11$; k'=2;b=3;Z ₂ =3; Z _k ≥b; matche S[12] mit S[4];1 / 1;q=12	4	9	12
10	10 ≤ 12;	4	10	13

Inhalt dieser Vorlesung

- Naiver Algorithmus f
 ür exaktes Stringmatching
- Z-Box Algorithmus
- Berechnung von Z-Boxen
- Average-Case Komplexitäten

Komplexitäten des Z-Box Algorithmus

- Bisher haben wir nur den Worst-Case betrachtet
- Was ist die Average-Case Komplexität?
 - Auch O(m+n), weil die äußere Schleife S komplett durchläuft
 - Algorithmus ist $\Omega(|S|)$
 - Der Z-Box Algorithmus kennt keine "guten" oder "schlechten"
 Stringpaare

Naiver Algorithmus: Average-Case

```
1. for i = 1..|T|-|P| do
     match := true;
     i := 1;
    while match
5.
       if T[i+j-1]=P[j] then
6.
         if j=|P| then
           print i;
7.
8.
           match := false;
9.
         end if;
10.
         j := j+1;
11.
     else
12.
         match := false,
13.
       end if:
14.
     end while;
15. end for;
```

- Worst-Case ist O(n*m)
 - Z.B. $T=a^m$; $P=a^n$
- Was ist der Average-Case?
 - Äußere Schleife wird immer m mal durchlaufen
 - Innere Schleife: Hängt von P bzw. T ab
- Annahme: Zufällige Strings über ∑
 - Test in L5 geht mit $p=1/|\Sigma|$ gut aus
 - Erwartete Zahl Vergleiche:

•
$$1(1-p)+2*p^{1}(1-p)+...+n*p^{n-1}(1-p)=$$

 $1-p+2p-2p^{2}+...n*p^{n-1}-n*p^{n}=$
 $1+p+p^{2}+...+p^{n-1}-n*p^{n}=$
 $-np^{n}+\sum_{i=0}^{n-1}p^{i}$

Beispiele

- Deutsche Texte: |T|=50.000, P=|8|, $|\Sigma|=28$
 - Worst-case: 400.000
 - Average-case: ~51.851
 - Mismatch nach durchschnittlich ~1,03 Vergleichen
 - − Z-Box: ~50008
- DNA: |T|=50.000, P=|8|, $|\Sigma|=4$
 - Worst-case: 400.000
 - Average-case: 65.740
 - Mismatch nach durchschnittlich ~1,35 Vergleichen
 - − Z-Box: ~50.008
- Vorsicht
 - Wir ignorieren konstante Faktoren
 - Sind deutsche Wörter / DNA Sequenzen zufällige Strings?

Fazit

- Z-Box Algorithmus
 - Berechnung der Z Werte für P\$T in linearer Zeit
 - Danach alle Vorkommen von P in T in linearer Zeit
 - Komplexität O(m+n)
- Als Worst-Case ist das bereits optimal
- Folgende Verfahren
 - Boyer-Moore: Average Case sublinear
 - Knuth-Morris-Pratt: Elegant erweiterbar zu vielen P

Selbsttest

- Erklären Sie den Z-Box Algorithmus Schritt für Schritt
- Beweisen Sie die Komplexität des Z-Box Algorithmus
- Warum sind Average Case Analysen beim String-Matching fragwürdig?
- Was unterscheidet natürliche Sprache von zufälligen Strings?
- Wie könnte man das zum Stringmatching ausnutzen?

