
Towards Projectional Editing for Model-Based SPLs

Dennis Reuling
dreuling@informatik.uni-siegen.de

Software Engineering Group, University of Siegen,
Germany

Christopher Pietsch
cpietsch@informatik.uni-siegen.de

Software Engineering Group, University of Siegen,
Germany

Udo Kelter
kelter@informatik.uni-siegen.de

Software Engineering Group, University of Siegen,
Germany

Timo Kehrer
timo.kehrer@informatik.hu-berlin.de

Humboldt-University of Berlin,
Germany

ABSTRACT

Model-based software product lines (MBSPLs) are implemented

using various variability mechanisms. These are commonly catego-

rized whether they separate features virtually (e.g., using annota-

tions) or physically (e.g., using modules). Each of these mechanisms

comprises advantages and disadvantages regardingMBSPL develop-

ment, maintenance and analysis. To date, MBSPL developers have to

choose upfront which variability mechanism to use, and the chosen

mechanism including its drawbacks is bound to the MBSPL’s entire

lifecycle. In contrast, projectional editing has recently shown very

promising potential of making the development of classical SPLs

(e.g., implemented in C/C++) more flexible. User-editable projections

allow developers to switch fluidly between different variability

mechanisms based upon a common internal representation known

as variational abstract syntax tree.

In this paper, we report on ongoing work on the projectional

editing of MBSPLs, which is challenged by a set of additional re-

quirements. We lay the foundation for different editable projections

using a common variational abstract syntax graph (vASG) as inter-

nal representation. This vASG is used for a fine-grained variability

representation of EMOF-based models. We demonstrate the feasi-

bility of our approach by incorporating different variability mecha-

nism projections (150% models and delta modules) and modeling

languages (Ecore class diagrams and UML state machines) used in

existing MBSPL case studies.

CCS CONCEPTS

· Software and its engineering→Model-driven software en-

gineering; Software product lines; Software evolution;

KEYWORDS

Model-based Software Product Line Engineering, Projectional Edit-

ing, Virtual Separation, Physical Separation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

VaMoS ’20, February 5ś7, 2020, Magdeburg, Germany

© 2020 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-7501-6/20/02. . . $15.00
https://doi.org/10.1145/3377024.3377030

ACM Reference Format:

Dennis Reuling, Christopher Pietsch, Udo Kelter, and Timo Kehrer. 2020.

Towards Projectional Editing for Model-Based SPLs. In Proceedings of Pro-

ceedings of the 14th InternationalWorking Conference on Variability Modelling

of Software-Intensive Systems, Magdeburg, Germany, February 5ś7, 2020 (Va-

MoS ’20), 10 pages.

https://doi.org/10.1145/3377024.3377030

1 INTRODUCTION

Software product line engineering (SPLE) tackles the complexity of

variant-rich software systems by handling common and variable

parts in a family of variants using features [9, 11]. In various do-

mains, traditional source code and programming languages (like

C/C++) have been replaced by (executable) models and modeling

languages (like UML or Simulink), leading to model-based software

product lines (MBSPLs) [1]. Different variability mechanisms have

been proposed [2, 10, 14, 29] for implementing MBSPLs.

Annotative approaches mark model elements and their proper-

ties with presence conditions under which they are valid. Hence, all

configurations are superimposed into one so-called 150%model [10],

similar to preprocessor macros (e.g., ifdef directives in C/C++)

known from code-based SPLs [1]. Thus a specific configuration can

be derived by removing all model parts whose presence conditions

are not fulfilled for this configuration. With such a virtual separa-

tion of features, developers can use existing tools and processes

for implementing variability [16, 23], and a superimposed repre-

sentation enables the efficient application of various family-based

quality assurance techniques [33, 42, 43]. Furthermore, annotative

approaches offer a straightforward SPL adoption path by adding

variability to legacy systems without restructuring the core func-

tionality [37].

In contrast, modular variability approaches are based upon struc-

turing the product line implementation along features [1]. Each fea-

ture (combination) is implemented in a separate module, a specific

configuration is composed by integrating [3] or applying [30, 39] its

modules. Such a physical separation offers potential reuse among

modules and fosters feature-oriented development. Furthermore,

due to the tight integration of features as first-class citizens, a

modular representation enables feature-oriented analyses [12] (e.g.,

regarding feature interactions [1] and redundancy among mod-

ules [31]).

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Dennis Reuling, Christopher Pietsch, Udo Kelter, and Timo Kehrer

To summarize, each variability mechanism comprises advan-

tages and disadvantages regarding MBSPL development, main-

tenance and analysis. Thus, developers may want to switch be-

tween these mechanisms, depending on the (changing) develop-

ment context during the lifecycle of an MBSPL. Although several

approaches combine different variability mechanisms [15, 17, 22],

this increases the complexity and developers who are not aware of

all the variability mechanisms do not perceive as many benefits as

expected [16, 20, 21]. Instead, projectional editing integrates differ-

ent mechanisms independently and has recently shown promising

results for code-oriented SPLs [5, 28]. The key concept is to use a

common variational structure as internal representation [6] that is

edited using different projections as external representations. De-

velopers may switch between different projections at any time, and

all changes are propagated directly to the internal representation

and thus synchronized among all other projections. In this paper,

we leverage these concepts from code-oriented SPLs and lift them

to model-based SPLs:

ś We analyze the additional challenges and requirements for

projectional editing of MBSPLs regarding a) syntactical well-

formedness and b) available variability mechanisms, as com-

pared to state-of-the-art approaches known from code.

ś We propose a new internal variability representation (vASG)

which adheres to these requirements and which is expressive

enough for supporting a) different variability mechanisms and

granularity levels and b) any EMOF-based modeling language.

ś We demonstrate the feasibility of our approach by implement-

ing different user-editable projections and apply them to realis-

tic MBSPL case studies.

2 BACKGROUND AND MOTIVATION

We first provide the necessary background and discuss require-

ments for projectional editing for MBSPLs. Therefore, we introduce

an MBSPL, called Expression Product Line (EPL), which has been

adapted from [4] and serves as example throughout the paper.

2.1 Running Example

Fig. 1 shows the problem space of the EPL in terms of a feature

diagram. It consists of the two and-groups Data and Operations

and the alternative-group Type. While the first one declares three

kinds of expressions, namely literals (Lit), addition (Add) and nega-

tion (Neg), the second group defines the operations Print and Eval,

which can be performed on an expression. A literal and the return

type of the operation eval can be either an Integer or a Float, as

declared by the alternative-group. Mandatory features represent

the commonalities of the MBSPL, while optional and alternative

features represent the variability of the MBSPL.

In the remainder, we illustrate the realization of the solution

space following an annotative and a modular variability approach.

Annotative VariabilityMechanism. Fig. 2 shows the 150%model

of the EPL as an annotated Ecore class diagram 1, the Ecore an-

notations attached to classes, their properties and references are

used to specify commonalities and variabilities. Model elements

without annotations represent the commonalities consisting of the

1https://www.eclipse.org/modeling/emf/

EPL

Add IntegerNeg Print Float

Type

Lit

Data

Eval

Legend:

Mandatory

Optional

Alternative

Concrete

Operations

Figure 1: Feature model of the problem space of the Expres-

sion Product Line (EPL), slightly adapted from [4].

interface Exp that declares a method print() and the class Lit

implementing this method. The optional and alternative features,

i.e., the variabilities, are realized by model elements annotated with

a presence condition. For instance, the class Lit declares the prop-

erty value two times but with different types, namely Integer and

Float. Given a valid configuration comprising the feature Integer ,

the property annotated with Float is not included in the final model.

As another example, the feature Eval is realized by two variants

of the method eval that differ in their return types (both in the

interface Exp and the implementing class Lit). The respective ele-

ments are annotated with the presence conditions Eval and Integer

as well as Eval and Float.

Note that, in general, the granularity of variability for annotative

approaches depends on syntactical constraints of the domain mod-

eling language. Regarding our example, multiplicity constraints

of the Ecore metamodel (e.g., each method may have at most one

return type) results in duplicated elements for the method eval

and property value, thus limiting re-use among these elements.

Exp

print()

eval() : EInt

eval() : EFloat

Lit

value : EInt

value : EFloat = 0.0

print()

eval() : EInt

eval() : EFloat

Add

print()

eval() : EInt

eval() : EFloat

Neg

print()

eval() : EInt

eval() : EFloat

Eval and

IntegerEval and Float

Add

Add and Eval

and Float

Add and Eval

and Integer

Neg

Neg and Eval

and Integer

Neg and Eval

and Float

[1..1] left
[1..1] right [1..1] expr

Float Integer

Figure 2: Implementation of the EPL as an annotated Ecore

class diagram serving as 150% model.

Modular VariabilityMechanism.As a modular variability mech-

anism, we use delta modeling, a language-independent transforma-

tional approach in which the commonalities and variabilities of

an MBSPL are realized by specifying a core model and a set of

delta modules [38]. The core model typically represents a valid

configuration of the MBSPL, while delta modules specify model

transformations using predefined language-specific delta operations

that may add, modify ore remove model elements. Therefore, an

operation supplies several parameters for passing arguments like

context elements and attribute values. For the sake of clarity, we

refer to delta operations with passed arguments as delta actions. To

relate a delta module to one or several features, it is equipped with

an application condition, i.e., a propositional formula over a subset

of all available features.

Towards Projectional Editing for Model-Based SPLs VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

Fig. 3 shows the core model of the EPL realizing all mandatory

features (Lit and Print) as well as the alternative feature Integer .

Exp

print()

Lit

value : EInt
print()

Figure 3: Core

model of a delta-

based EPL imple-

mentation.

Listing 1 shows the delta module DEval

following the textual syntax of the SiPL-

framework [29, 31, 32]. Its application

condition (when-clause) consists of the

feature Eval (line 1), which means that

the delta module is applied when the fea-

ture Eval is selected in a valid configura-

tion. The set of available delta operations

is determined by the document type (line

2), i.e., the namespace uri of the mod-

eling language’s metamodel. The delta

module adds the operation eval to the

interface Exp (lines 4-8) and class Lit

(lines 13-17) with EInt as return type

(lines 9-12, 18-21). Note that in Ecore

class diagrams, operations are referred

to as EOperations, and interfaces are actually classes (referred to

as EClasses) which are declared to be an interface.

The delta module DFloat, which is shown in Listing 2, realizes

the alternative feature Float by modifying the type of the property

value in the class Lit (lines 4-7).

Listing 3 shows the delta module DEvalFloat that realizes the

feature interaction of the feature Eval with Float. Its application

condition is a conjunction of both features (line 1). It changes the

return type of the operation eval in the interface Exp (lines 4-7)

and the class Lit (lines 8-11) from EInt to EFloat.

Listing 1: DEval

1 delta DEval when "Eval" {

2 docType : "http ://www.eclipse.org/emf /2002/ Ecore";

3
4 new_EOperation as expEval =

addEOperationToEOperationsOfEClass(

5 object eClass : epl.Exp ,

6 value name : "eval",

7 ...

8);

9 setETypeOfEOperation(

10 object srcEOperation : expEval ,

11 object tgtEClassifier : ecore.EInt

12);

13 new_EOperation as litEval =

addEOperationToEOperationsOfEClass(

14 object eClass : epl.Lit ,

15 value name : "eval",

16 ...

17);

18 setETypeOfEOperation(

19 object srcEOperation : litEval ,

20 object tgtEClassifier : ecore.EInt

21);

22 }

Listing 2: DFloat

1 delta DFloat when "Float" {

2 docType : "http ://www.eclipse.org/emf /2002/ Ecore";

3
4 changeETypeOfEAttribute(

5 object srcEAttribute : epl.Lit .^value ,

6 object tgtEClassifier : ecore.EFloat

7);

8 }

Listing 3: DEvalFloat

1 delta DEvalFloat when "Eval and Float" {

2 docType : "http ://www.eclipse.org/emf /2002/ Ecore";

3
4 changeETypeOfEOperation(

5 object srcEOperation : epl.Exp.eval ,

6 object tgtEClassifier : ecore.EFloat

7);

8 changeETypeOfEOperation(

9 object srcEOperation : epl.Lit.eval ,

10 object tgtEClassifier : ecore.EFloat

11);

12 }

Note that the delta module DEvalFloat depends on the delta

module DEval, the operation eval must be added before its type

can be set or altered. The SiPL-framework provides several analysis

functions to automatically detect such interrelations between delta

modules, they do not need to be managed manually. Moreover, note

that the level of granularity for specifying variable parts depends

on the available delta operations. In our implementation of the EPL,

we use the approach and supporting tool presented by Kehrer et

al. [19, 36] to derive a basic set of delta operations from the Ecore

metamodel. Since this set includes a delta operation for changing

the return type of the operation of a class in an Ecore class diagram,

no redundant definition of the operation eval is needed in a delta-

oriented implementation of the EPL, as opposed to the annotative

implementation using a 150% model.

3 BASIC REQUIREMENTS

Following the ideas presented in [6], projectional editing relies

on a common variational structure over a set of projections. In

order to support projectional editing for MBSPLs, such a variational

structure needs to fulfill the following criteria:

C1 - Representation. The variational structure must support any

kind of variability representation used for MBSPLs. This in-

cludes positive and negative variability in the sense that any

model element can be explicitly declared to be absent or

present in the final model, according to its condition. Fur-

thermore, combinatorial variability (e.g, feature interactions

or derivatives [1]) must be supported.

C2 - Consistency. In contrast to [5], syntactical constraints de-

fined by the metamodel of the underlying domain modeling

language must be considered in the variational structure, espe-

cially in the context of visual models [18]. This ensures that all

valid configurations (according to the variability model) are ei-

ther syntactically well-formed or that invalid model fragments

violating metamodel constraints are marked accordingly.

C3 - Granularity. The granularity of variability must be indepen-

dent of the modeling language and its syntactical constraints.

This is crucial for supporting fine-granular reuse and/or vari-

ability among features. In fact, this may not be possible with-

out relaxation of some syntactical constraints of the modeling

language (e.g., upper bounds of multiplicity constraints).

4 APPROACH

We now describe our approach for projectional editing of MBSPLs,

which addresses the requirements presented in the previous section.

Following the notions introduced in [5], we differentiate between

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Dennis Reuling, Christopher Pietsch, Udo Kelter, and Timo Kehrer

vASG

Annota�ve

...

Modular

Domain Internal External

typed over

consistent to

EMOF-based

Model

Domain Language

Metamodel

Figure 4: Overview of themodel representations used by our

approach.

internal and external representations of variability. A conceptual

overview of our approach is shown in Fig. 4, which we will describe

in more detail in the remainder of this section.

4.1 Internal Representation

Abstract SyntaxGraph.Weassume EMOF-based representations 2

of models, using the Eclipse Modeling Framework (EMF) as an

implementation technology that serves as the de-facto standard

implementation of EMOF. EMF models (referred to as EMOF-based

model in Fig. 4) are basically object graphs whose objects and refer-

ences are typed over a metamodel (referred to as domain language

metamodel in Fig. 4).

Since references in EMF object graphs are only implicitly repre-

sented by their source and target objects (and thus can neither be

identified nor annotated), our notion of an Abstract Syntax Graph

(ASG) used as basis for our internal representation differs from

the usual EMF representation by treating references as first class

citizens. Such an ASG can be decomposed into atomic model entities

(AME) [27], namely Elements, Attributes and References:

ś Elements represent the objects of an EMF object graph. Their

type is drawn from the language metamodel (i.e., an instance

of EClass), and they may contain other elements.

ś Attributes of model elements represent the properties (referred

to as structural features in EMF) of an element. Their type is

declared by the language metamodel (i.e., by an instance of

EAttribute), and they have a value drawn from the domain of

the corresponding type declaration.

ś References between elements represent the references of an

EMF object graph as a first class citizen. Their type is drawn

from the language metamodel (i.e., an instance of EReference),

and they have a source and a target Element. A Reference may

have an opposite Reference in order to represent bidirectional

references.

Fig. 5 shows an excerpt of the ASG of our example model intro-

duced in Fig. 3. The class Exp is decomposed into 7 atomic model

entities. It contains three Attribute entities name, abstract and

interface as well as one Reference eOperations that references

another Element print. In turn, the element print has oneAttribute

specifying its name. Since we work with Ecore class diagrams in this

example, types are drawn from the Ecore metamodel, e.g., element

print if of type EOperation (not shown in Fig. 5).

2https://www.omg.org/spec/MOF/2.5.1

Figure 5: AMEs of the element Exp.

Variational Abstract Syntax Graph (vASG).We now extend our

notion of an ASG to support variability. The conceptual structure

of our Variational Abstract Syntax Graph (vASG) is shown in Fig. 6.

For a given MBSPL, the SuperimposedModel contains all AMEs

(see abstract Entity in the center), each being one of the three

kinds of entities described earlier in this section.

According to criterion C1 (see Section 3), our vASG additionally

introduces an Annotation object that may be attached to any AME.

In case of simple boolean conditions, one may use the body to

denote the presence of an AME in case of a selected feature (e.g., the

AME representing class Neg in Fig. 2 for feature Neg). Additionally,

arbitrary formulas over features may be expressed as well, and we

distinguish among presence and absence conditions, the latter are

needed for explicitly excluding certain entities from a projection

(e.g., deletions in delta modules) as we will later discuss in more

detail in Sec. 4.2.

Regarding criterion C2, we enforce certain syntactic consistency

constraints to be fulfilled by a vASG. The minimum level of con-

sistency required by projections is that models are at least editable

in their external representation [18]. Thus, mandatory properties

of model elements (e.g., multiplicities with a lower bound greater

than 0) as well as elementary EMF constraints (e.g., each element

except the root element has exactly one container) are enforced by

our vASG representation.

To accommodate for criterion C3, in contrast to lower bounds of

multiplicity constraints, we do not enforce the vASG to comply to

upper bounds defined by a metamodel’s reference types and follow

the idea of superimposing [3] similar elements to a single unified

one. To achieve this, our vASG incorporates a local signature for

uniquely identifying equal and similar entities using (exchangeable)

SignatureCalculators. This way, a SuperimposedElement fos-

ters reuse by subsuming redundant entities, i.e., their properties and

annotations are unified. In contrast, each SuperimposedElement

may contain arbitrary many entities with different properties, e.g.,

different values for a łnamež attribute. This allows for fine-granular

variability even for single-valued properties, independently of the

underlying domain modeling language. For example, one may de-

fine the signature of an Attribute as the signature of its container

SuperimposedELement, its type and its value. The computation

of a meaningful signature is a complex problem itself, similar to

matching problems known from model version and variant man-

agement (see [41] for a survey regarding model comparison). In our

approach, the computation algorithm is an exchangeable compo-

nent that can be used to adapt the vASG representation to a given

modeling language.

Towards Projectional Editing for Model-Based SPLs VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

Annotation

body : EString

kind : Presence/Absence

 formula : Formula

[0..*] entities

[1..*] annotations

[0..*] entities

[0..*] attributes
Reference SuperimposedElement

 objects : EObject

Entity

signature : EString

SuperimposedModel

signatureCalculators : ISignatureCalculator

calculateSignature(Entity e) : EString

Attribute

value : EString
[1..1] container

[1..1] source

[1..1] target

[0..*] out

[0..*] in

[0..1] opposite

isContainment : EBoolean

type : EClass

type : EPackage

type : EReference type : EAttribute

Figure 6: Conceptual structure of the vASG.

Figure 7 shows an excerpt of the vASG for the EPL introduced

in Sec. 2. The SuperimposedElement Lit represents the respec-

tive class along with its contained elements, namely the opera-

tions print and eval that are connected via the Reference of type

eOperations, and the Element called value that is connected via

the Reference of type eStructuralFeature. The annotations con-

sist of a set of presence conditions, that is a disjunction of propo-

sitional formulas that specify to which features or combinations

thereof an element is connected. For instance, the reference of type

eType from the SuperimposedElement eval to the element EInt

is annotated with Eval and Integer , while the element eval is an-

notated with Eval as well as Eval and Integer , which can be read

as (Eval) or (Eval and Integer). Although operations may have only

one return type according to the Ecore metamodel, our variational

structure integrates two dedicated eType references for element

eval, thus ensuring both re-use and consistency.

4.2 External Representations

We now demonstrate the feasibility of our approach by implement-

ing two different user-editable projections, either virtually or phys-

ically separating features. To this end, we describe how to project

variability from the vASG to the respective external representations

and vice versa.

Annotative Projection. Basically, transforming the internal rep-

resentation to an external 150% model proceeds as follows: Each

superimposed element yields an element in the the domain model,

Figure 7: Excerpt of the vASG for the EPL.

i.e., an object in the EMF object graph of the 150%model. Reference

and Attribute entities result in references and object attributes of

the EMF object graph of the 150% model. For attaching variability

information in the 150% model, we use an exchangeable annotation

mechanism. In our example, we use EAnnotations as described in

Sect. 2. In case of UML models, annotations may be implemented

based on Comment objects (see Sect. 5).

However, in contrast to source code-based SPLs [5], we may not

be able to apply a one-to-one transformation from the vASG to

the 150% model. Due to criterion C3, our internal representation

allows for violating metamodel constraints regarding upper bounds

of multiplicity constraints and thus cannot be projected without

preprocessing.. First, we analyze if any entitiy violates such a con-

straint. If so, we duplicate the łconflictingž entities and all their

properties as well as incoming references, similar to the variability

normalization concept presented in [34]. As duplicating elements

may introduce further constraint violations (e.g., multiplicities are

violated for the container), this process is repeated until no con-

straint violations are found. Regarding our example vASG from

Fig. 7, element eval needs to be duplicated due to the two eType

references. This yields two superimposed elements for eval having

an eType reference to EInt and EFloat, respectively. Furthermore,

the incoming eOperations Reference is duplicated as well, thus

element Lit owns two operations named eval.

Importing an 150% model into our vASG essentially creates one

superimposed element for each object in the EMF object graph

of the 150% model, each of which is annotated according to the

external annotations. Usually, not all external elements are anno-

tated, either by developers’ intention or due to an implementation

bug [1, 16]. As our approach and its analyses require all entities to

be annotated in the vASG (e.g, for ensuring criteria C2), we addi-

tionally propagate annotations along AMEs based upon syntactical

constraints defined by the metamodel (similar to [13]). For example,

the vASG element representing class Add in Fig. 2 is enriched with

all annotations of contained elements (both eval operations), i.e.,

Add and Eval and Integer as well as Add and Eval and Float. Such

propagation is also done for all contained entities, including ref-

erences (based upon their source and target) as well as attributes

(based upon their container elements). The final vASG contains

all elements from the original 150% model, enriched with variabil-

ity information for all AMEs. Finally, the vASG is postprocessed

automatically for ensuring criterion C3, using a given signature

calculator as described in Sect. 4.1. This is necessary as the original

150% model may contain (needed) duplicates, which can be elimi-

nated in our vASG representation for more fine-granular re-use. For

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Dennis Reuling, Christopher Pietsch, Udo Kelter, and Timo Kehrer

addEOperationTo...(...)

setETypeOfEOp...(...)

changeETypeOf...(...)

DEval

DEvalFloat

import

Figure 8: Illustration of importing the delta modules DEval

and DEvalFloat into the vASG of the EPL.

example, both attributes value in class Lit in Fig. 2 can be super-

imposed due to their similarity, thus resulting in one superimposed

element in the vASG (see Fig. 7, left).

Modular Projection. For importing a delta module into the vASG,

each delta action is analyzed regarding its effect onto the ASG. Here,

we make use of the graph-based specification of delta operations

provided by SiPL [30]. A delta operation is specified declaratively

by a parameterized graph transformation rule. Rule graph elements

may be attached with a change action (add or remove), elements

without change action are considered to be preserved. Context ele-

ments and attribute values may be passed as parameters. Figure 8

illustrates the import of the delta modules DEval and DEvalFloat

into the vASG of the EPL (attributes are omitted for the sake of

readability). We use colors to highlight change actions of delta op-

erations, green marked rule elements represent additions, while red

marked elements represent removals. The other elements represent

context elements. The delta module DEval adds the operation eval

to the class Lit and sets its type to EInt, while the delta module

DEvalFloat changes the type of the added operation from EInt to

EFloat.

In a first step, we import the core model and annotate each entity

with a conjunction of all features realized by the core model. After

that, we check if the delta module to be imported depends on other

delta modules. The depending delta module may require the pres-

ence or absence of entities that are added or removed by other delta

modules. In this case, the required delta modules must be imported

first in order to resolve all context elements for depending delta

actions. For instance, the delta module DEvalFloat requires that the

element eval exists and that its type is set to EInt. This is done

by the delta module DEval, which in turn requires the element Lit

being part of the core model. Thus, the delta module DEval must be

imported before DEvalFloat. To import a delta module, we iterate

over all its delta operations’ change actions, a suitable order in

which these change actions are applicable can be inferred from the

delta operations’ declarative specification [18]. Graph elements that

are to be created by a delta action are annotated with the delta mod-

ule’s application condition serving as presence condition. Graph

elements that are to be removed by a delta action are annotated by

the delta module’s negated application condition serving as absence

condition. Imported graph elements are illustrated by unidirectional

arrows in Figure 8. For ensuring criterion C2, analogously to the

import of a 150% model, the new annotations are propagated to

all contained elements along all attributes and outgoing references

having the same annotation as the containing element .

To export a delta module from the vASG, we exploit SiPL’s facil-

ity to derive a delta module from a model difference [29, 32]. Given

the application condition of the delta module to be derived, we

export an original and a modified model from the vASG, serving

as input for the difference calculation that yields the delta module.

The modified model comprises all entities annotated with the ap-

plication condition. For instance, given the application condition

Eval and Float, the modified model contains the elements Lit, eval

and the references eOperations from Lit to eval as well as eType

from eval to EFloat 3 (see Figure 8). To obtain the original model,

we start from the modified one and (i) drop those elements that are

exclusively annotated by the application condition and (ii) include

those elements that are annotated by the negated application condi-

tion. When deriving the difference from the original to the changed

model, elements dropped in step (i) result in creations while ele-

ments included in step (ii) result in deletions, all retained elements

serve as context for the respective delta actions. For instance, for

exporting the original model for DEvalFloat, we start with the mod-

ified model as described above, discard the reference eType from

eval to EFloat (exclusively annotated with Eval and Float), and

include the reference eType from eval to EInt (annotated with

not(Eval and Float)). The resulting difference between the original

and modified model for DEvalFloat consists of an eType reference

from eval to EInt that is to be deleted and an eType reference from

eval to EFloat that is to be created. These changes are specified

by the delta actions of DEvalFloat shown in Figure 8.

5 EXPERIMENTAL EVALUATION

We evaluate our approach w.r.t. the following research questions:

(RQ1) Feasibility. Is the internal representation suitable to fulfill

all criteria for projectional editing of MBSPLs?

(RQ2) Implications.Howdoes switching between variabilitymech-

anisms impact the implementation characteristics of the MBSPL?

(RQ3) Fluidity. Can variability mechanisms be changed fluidly by

a developer in the case of larger MBSPLs?

5.1 Study Subjects

In our experiments, we work with two MBSPLs that are imple-

mented using different modeling languages and variability mecha-

nisms. We selected these subjects as they are publicly available and

have been originally developed significantly differently by either

separating features physically or virtually.

EPL. The EPL, introduced in Sect. 2.1, is based upon Ecore class

diagrams and has been originally developed using a modular ap-

proach [4]. Additionally, we have re-implemented the EPL using

an annotative approach (see Fig. 2) for comparison purposes. The

problem space specifies 16 valid configurations. The solution space

3Note that the elements EInt and EFloat represent łremotež elements from another
model (in this case, the Ecore metamodel). Elements from another model are not
annotated, they are always present as long as they are referenced by a non-remote
entity.

Towards Projectional Editing for Model-Based SPLs VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

PPU

PPUEPL

EPL

Delta-based

150% Model

Transforma�on

Internal (vASG)

Legend

EPL PPU

Experiment 1:

Domain Model

Experiment 2:

Figure 9: Study design of our experiments.

of the annotative implementation comprises a 150% model consist-

ing of 55 elements. The modular realization includes the core model

and 9 delta modules. The core model comprises 5 elements, while

the delta modules consist of 2.4 delta actions on average.

PPU. The Pick and Place Unit (PPU) MBSPL [25, 44] is extracted

from a case study for embedded software in industrial automation.

The PPU manipulates work pieces of different materials by either

transporting them to their destination or additionally handling

them in some ways (e.g., sorting or stamping). The problem space

is defined by a feature model specifying 69 valid configurations.

The solution space consists of a 150% UML state machine model

comprising 1178 elements.

5.2 Study Design and Methodology

We conducted two different experiments depicted in Fig. 9. Ex-

periment 1 addresses research questions RQ1 and RQ2 using the

EPL. We transformed the EPL from both original implementations

(top and bottom) into our internal vASG representation (center)

and projected them into the other variability mechanism (red and

green arrows). To ensure correctness, we generated all valid con-

figurations (left) using both representations. For reasoning about

implementation characteristics, we compared the different internal

and external representations with each other.

Regarding RQ3, we performed experiment 2 that measures the

time consumption needed to switch between different projections

of the PPU (which is substantially larger than the EPL). This in-

cludes the time needed for unifying equal elements in the vASG

during import from an 150% model as well as the duplication of

elements needed for exporting the vASG (see orange arrows). In

case of our delta-based projection, we measure the time needed for

generating/deriving delta-modules as well the transformation to the

vASG (see blue arrows). The overall runtimes are split into loading

and serializing EMF models as well as the actual transformation.

All subject systems and experimental data are available for re-

producibility at the accompanying webpage [35].

5.3 Results & Discussion

RQ1: Feasibility. In our experiments, we have worked with differ-

ent modeling languages (Ecore class diagrams and UML statema-

chines) and variability mechanisms (150% models and delta mod-

ules). Furthermore, both subject systems are using different kinds of

variabilities (e.g., presence and/or absence conditions). Additionally,

our subject systems contain feature interactions, which are realized

by elements (resp. delta modules) annotated with complex formulas

(resp. application conditions), e.g., a conjunction of several features.

This provides confidence that our approach can be applied to fur-

ther EMOF-based modeling languages and variability mechanisms

as well (as required by criterion C1).

The same set of valid configurations can be generated from all

the four external representations of the EPL, and each of these

configurations yields a valid model. In other words, each of the

generated models is consistent w.r.t. to the consistency constraints

defined by the Ecore metamodel. This provides confidence that our

approach respects consistency constraints that must be fulfilled in

our context of projectional editing (as required by criterion C2).

Finally, the two imports conducted in terms of our first experi-

ment yield the same vASG (cf. Table 1 columns 3 and 5), although

both external representations used in the EPL case study support re-

use at different levels of granularity. This provides confidence that

our internal representation supports fine-granular re-use, even if

the modeling language’s consistency constraints would prevent the

re-use of certain elements in external representations (as required

by criterion C3).

RQ2: Implications. The most interesting implementation char-

acteristics of the EPL in its different external representations are

summarized in Tables 1, 2 and 3.

As expected, the internal representation allows for more re-

use than the external representation of a 150% model (cf. Table 1

columns 2 and 3). This is due to the fact that certain consistency

constraints of the language’s metamodel are not enforced by our

vASG. Furthermore, we see that the exported 150% model may

contain (substantially) more annotations as compared to the original

150% model (cf. Table 1 columns 2 and 4). This is due to the fact that

we propagate łmissingž annotations during import into the vASG,

thus they are included in the resulting external representation after

exporting. To avoid this effect, however, core feature annotations

may be suppressed during export if desired by the developer.

As for the delta-based representation, the core model as well

as delta modules may differ depending on the transformation di-

rection (see Fig. 9, red vs. green arrow). When creating an MBSPL

from scratch, the core model may be chosen freely, which then

impacts all delta modules as well. Table 2 gives an overview of the

solution space of the original delta-oriented EPL implementation.

We chose a core model comprising all mandatory features, the al-

ternative feature Integer and the optional feature Neg. For realizing

the remaining features, we implemented 9 delta modules, most of

them only add or modify elements. Only the delta module DNotNeg

removes all elements related to the feature Neg. Removals are one

of the unique characteristics of delta modeling [38, 39]. When im-

porting this implementation into the vASG (s. Fig. 9, red arrow), we

get the same vASG as when importing the 150% model (cf. Table 1

columns 3 and 5). The only difference is the amount of annotations,

as some elements are annotated with absence conditions due to the

removals. Although our approach also supports absence conditions

as annotations (see Sect. 4.2), these kinds of annotations were not

used in the original 150% model of the EPL. Hence, when exporting

the vASG obtained from the 150% model to delta modules (s. Fig. 9,

green arrow), the core model consists of all core elements of the

150% model (all elements that are part of all configurations) and 10

delta modules without removals (see Table 3).

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Dennis Reuling, Christopher Pietsch, Udo Kelter, and Timo Kehrer

Table 1: Original 150% model of the EPL and vASG represen-

tations obtained from different external representations.

Representation
Type 150% 150%→ vASG vASG→ 150% ∆→ vASG

Annotation 17 10 71 14

EAttribute 2 1 2 1

EClass 4 4 4 4

EDatatype 2 2 2 2

EOperation 12 8 12 8

EPackage 1 1 1 1

EReference 3 3 3 3

Total 24 19 24 19

Table 2: Original delta-oriented EPL.

Core Model
Type Elements
EAttribute 1

EClass 3

EDataType 1

EOperation 3

EReference 1

EPackage 1

Total 10

Delta-Module Add Rem Mod
DAdd 4 0 1

DNotNeg 0 3 1

DEval 2 0 2

DNegEval 1 0 1

DAddEval 1 0 1

DFloat 0 0 1

DEvalFloat 0 0 2

DNegEvalFloat 0 0 1

DAddEvalFloat 0 0 1

Total 8 3 11

Table 3: Exported delta-oriented EPL (vASG→ ∆).

Core Model
Type Elements
EClass 2

EOperation 2

EPackage 1

Total 5

Delta Module Add Rem Mod
DAdd 4 0 1

DAddEvalFloat 1 0 1

DAddEvalInteger 1 0 1

DEvalFloat 2 0 2

DEvalInteger 2 0 2

DFloat 1 0 1

DInteger 1 0 1

DNeg 3 0 1

DNegEvalFloat 1 0 1

DNegEvalInteger 1 0 1

Total 17 0 12

RQ3: Fluidity. The runtimes of all the four projectional transfor-

mations conducted in terms of our second experiment using the

PPU case study are shown in Table 4, averaged over 5 runs. The

transformation from the vASG to the 150% model takes about 2

seconds, while the inverse direction takes about 10 seconds. This is

due to the additional overhead of unifying equal elements in the

vASG during import. The transformation of delta modules to the

vASG takes 11 seconds, while the other direction takes 107 seconds.

In case of longer runtimes (e.g., exporting the vASG to delta mod-

ules) most of the consumed time (64%) is due to EMF overheads

for (de-)serialization of the underlying models. In particular, the

difference between delta modeling and 150% models is caused by

the number of saved EMF models, as the delta modules themselves

are saved as separate models [29] compared to saving only one

150% model. Given the expected frequency of switching between

variability mechanisms in realistic MBSPL development scenarios,

we argue that fluidly switching between different external repre-

sentations may be feasible in the case of larger MBSPLs, although

this needs more in-depth investigation in future work.

5.4 Threats to Validity

Our selection of two MBSPLs may threaten the validity because the

results might not be representative of other modeling languages and

Table 4: Results of Experiment 2.

Consumed Time (s)
Direction Transformation De/Serialization Total

vASG→ 150% 1.5 0.6 2.1

150%→ vASG 9.1 0.8 9.9

vASG→ ∆ 38.1 68.8 106,9

∆→ vASG 10.7 0.7 11.4

variability mechanisms. Furthermore, we assume the implemented

variability to be correct (e.g., no invalid annotations) and consistent

to the feature model, which may not be realistic in other cases.

Finally, the consistency level assumed is based upon our earlier

work [18] as well as alignment with the delta module projection [30]

and may need to be adapted for other projections and consistency

levels.

6 RELATEDWORK

Although several variability mechanisms have been proposed in

the context of model-based SPLs [2, 10, 14, 29], there is no work

on projectional editing for MBSPLs. Thus, most closely related to

our work are code-oriented approaches [5ś7, 28], which we extend

regarding specific requirements of MBSPLs. In contrast, (different)

variability mechanisms are integrated in [15, 22], yet without al-

lowing to switch between different mechanisms but by using them

in parallel. Kästner et al. [17] try to mitigate this by refactoring

between physical and virtual separation, although no common vari-

ation structure is used as in our approach. Projectional editing is

remotely related to multi-view editing, but variability is either out

of scope [8] or used for consistency-checking [26]. So-called vari-

ation control systems [24, 40] also differentiate between internal

and external representations, which is similar to our ongoing work

regarding variant projection (see next section).

7 CONCLUSION AND ONGOING WORK

In this paper, we leveraged concepts of projectional editing of code-

centric SPLs and lifted them to model-based SPLs. In contrast to

the code-centric scenario, projectional editing of model-based SPLs

comes with a set of additional requirements which are addressed

by our notion of a variational abstract syntax graph and according

bi-directional transformations into external representations.

To reduce complexity, which is not the aim of switching between

variability mechanisms, we plan to integrate the so-called variant

projection (see [5, 28]) into our framework, which renders a single

configuration of the MBSPL in its external representation. More-

over, our consistency analysis as well as annotation propagation

is based upon annotation strings without inspecting the formula

in detail. We want to take single terms and the feature model into

consideration for reasoning about consistency and correctness. In

earlier work we demonstrated the drawbacks of current delta-based

quality analyses due to their pair-wise strategy [31]. We plan to use

the succinct vASG representation for efficient variability-specific

analyses [30] for higher-order conflict detection.

ACKNOWLEDGMENTS

This work was partially supported by the DFG (German Research

Foundation) within the projects CoMoVa (grant nr. 330452222) and

VariantSync (grant nr. KE 2267/1-1).

Towards Projectional Editing for Model-Based SPLs VaMoS ’20, February 5–7, 2020, Magdeburg, Germany

REFERENCES
[1] S. Apel, D. Batory, C. Kästner, and G. Saake. 2013. Feature-Oriented Software

Product Lines - Concepts and Implementation. Springer Science & Business Media,
Berlin Heidelberg.

[2] Sven Apel, Florian Janda, Salvador Trujillo, and Christian Kästner. 2009. Model
Superimposition in Software Product Lines. In Theory and Practice of Model
Transformations, Second International Conference, ICMT 2009, Zurich, Switzerland,
June 29-30, 2009. Proceedings. 4ś19. https://doi.org/10.1007/978-3-642-02408-5_2

[3] S. Apel, C. Kästner, and C. Lengauer. 2013. Language-Independent and Automated
Software Composition: The FeatureHouse Experience. IEEE Transactions on
Software Engineering 39, 1 (Jan 2013), 63ś79. https://doi.org/10.1109/TSE.2011.120

[4] Benjamin Behringer and Moritz Fey. 2016. Implementing Delta-oriented SPLs
Using PEoPL: An Example Scenario and Case Study. In Proceedings of the 7th
International Workshop on Feature-Oriented Software Development (FOSD 2016).
ACM, New York, NY, USA, 28ś38. https://doi.org/10.1145/3001867.3001871

[5] Benjamin Behringer, Jochen Palz, and Thorsten Berger. 2017. PEoPL: Projectional
Editing of Product Lines. In Proceedings of the 39th International Conference
on Software Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 563ś574.
https://doi.org/10.1109/ICSE.2017.58

[6] Benjamin Behringer and Steffen Rothkugel. 2016. Integrating Feature-based
Implementation Approaches Using a Common Graph-based Representation. In
Proceedings of the 31st Annual ACM Symposium on Applied Computing (SAC ’16).
ACM, New York, NY, USA, 1504ś1511. https://doi.org/10.1145/2851613.2851791

[7] Thorsten Berger, Markus Völter, Hans Peter Jensen, Taweesap Dangprasert, and
Janet Siegmund. 2016. Efficiency of Projectional Editing: A Controlled Exper-
iment. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2016). ACM, New York, NY, USA,
763ś774. https://doi.org/10.1145/2950290.2950315

[8] Antonio Cicchetti, Federico Ciccozzi, and Thomas Leveque. 2012. A hybrid
approach for multi-view modeling. Electronic Communications of the EASST 50,
0 (July 2012). http://journal.ub.tu-berlin.de/eceasst/article/view/738

[9] P. Clements and L. Northrop. 2001. Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc.

[10] K. Czarnecki and M. Antkiewicz. 2005. Mapping Features to Models: A Template
Approach Based on Superimposed Variants. In ACM International Conference on
Generative Programming and Component Engineering (Lecture Notes in Computer
Science), Vol. 3676. Springer-Verlag, 422 ś 437.

[11] K. Czarnecki and U. Eisenecker. 2000. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley.

[12] Sascha El-Sharkawy, Nozomi Yamagishi-Eichler, and Klaus Schmid. 2019. Metrics
for analyzing variability and its implementation in software product lines: A
systematic literature review. Information & Software Technology 106 (2019), 1ś30.
https://doi.org/10.1016/j.infsof.2018.08.015

[13] Sandra Greiner and Bernhard Westfechtel. 2019. On Determining Variability
Annotations In Partially Annotated Models. In Proceedings of the 13th Interna-
tional Workshop on Variability Modelling of Software-Intensive Systems, VAMOS
2019, Leuven, Belgium, February 06-08, 2019. 17:1ś17:10. https://doi.org/10.1145/
3302333.3302341

[14] éystein Haugen, Birger Mùller-Pedersen, Jon Oldevik, Gùran K Olsen, and An-
dreas Svendsen. 2008. Adding standardized variability to domain specific lan-
guages. In 2008 12th International Software Product Line Conference. IEEE, 139ś
148.

[15] Jose-Miguel Horcas, Alejandro Cortiñas, Lidia Fuentes, and Miguel R. Luaces.
2018. Integrating the Common Variability Language with Multilanguage Anno-
tations for Web Engineering. In Proceedings of the 22Nd International Systems
and Software Product Line Conference - Volume 1 (SPLC ’18). ACM, New York, NY,
USA, 196ś207. https://doi.org/10.1145/3233027.3233049

[16] Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. 2019. Software Product
Line Engineering: A Practical Experience. In Proceedings of the 23rd International
Systems and Software Product Line Conference - Volume A (SPLC ’19). ACM, New
York, NY, USA, 164ś176. https://doi.org/10.1145/3336294.3336304

[17] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2009. A Model of Refactor-
ing Physically and Virtually Separated Features. SIGPLAN Not. 45, 2 (Oct. 2009),
157ś166. https://doi.org/10.1145/1837852.1621632

[18] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. 2013. Consistency-preserving
edit scripts in model versioning. In IEEE/ACM 28th International Conference on
Automated Software Engineering (ASE). 191ś201.

[19] Timo Kehrer, Gabriele Taentzer, Michaela Rindt, and Udo Kelter. 2016. Automati-
cally deriving the specification of model editing operations from meta-models.
In International Conference on Theory and Practice of Model Transformations.
Springer, 173ś188.

[20] Jacob Krüger, Gül Calikli, Thorsten Berger, Thomas Leich, and Gunter Saake. 2019.
Effects of Explicit Feature Traceability on ProgramComprehension. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2019). ACM,
New York, NY, USA, 338ś349. https://doi.org/10.1145/3338906.3338968

[21] Jacob Krüger, Kai Ludwig, Bernhard Zimmermann, and Thomas Leich. 2018.
Physical Separation of Features: A Survey with CPP Developers. In Proceedings
of the 33rd Annual ACM Symposium on Applied Computing (SAC ’18). ACM, New
York, NY, USA, 2042ś2049. https://doi.org/10.1145/3167132.3167351

[22] Jacob Krüger, Ivonne Schröter, Andy Kenner, Christopher Kruczek, and Thomas
Leich. 2016. FeatureCoPP: Compositional Annotations. In Proceedings of the 7th
International Workshop on Feature-Oriented Software Development (FOSD 2016).
ACM, New York, NY, USA, 74ś84. https://doi.org/10.1145/3001867.3001876

[23] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. 2010. An Analysis of the Variability in Forty Preprocessor-based Soft-
ware Product Lines. In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1 (ICSE ’10). ACM, New York, NY, USA, 105ś114.
https://doi.org/10.1145/1806799.1806819

[24] Lukas Linsbauer, Thorsten Berger, and Paul Grünbacher. 2017. A Classification of
Variation Control Systems. In Proceedings of the 16th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences (GPCE 2017).
ACM, New York, NY, USA, 49ś62. https://doi.org/10.1145/3136040.3136054

[25] Malte Lochau, Johannes Bürdek, Sascha Lity, Matthias Hagner, Christoph
Legat, Ursula Goltz, and Andy Schürr. 2014. Applying model-based software
product line testing approaches to the automation engineering domain. at-
Automatisierungstechnik 62, 11 (2014), 771ś780.

[26] Roberto Erick Lopez-Herrejon and Alexander Egyed. 2010. Detecting Incon-
sistencies in Multi-view Models with Variability (ECMFA’10). Springer-Verlag,
Berlin, Heidelberg, 217ś232. https://doi.org/10.1007/978-3-642-13595-8_18

[27] J. Martinez, T. Ziadi, T. F. Bissyande, J. Klein, and Y. L. Traon. 2015. Automating
the Extraction of Model-Based Software Product Lines from Model Variants. In
International Conference on Automated Software Engineering (ASE 15). 396ś406.

[28] Mukelabai Mukelabai, Benjamin Behringer, Moritz Fey, Jochen Palz, Jacob
Krueger, and Thorsten Berger. 2018. Multi-view Editing of Software Product
Lines with PEoPL. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings (ICSE ’18). ACM, New York, NY, USA, 81ś84.
https://doi.org/10.1145/3183440.3183499

[29] Christopher Pietsch, Timo Kehrer, Udo Kelter, Dennis Reuling, and Manuel Ohrn-
dorf. 2015. SiPL - A Delta-Based Modeling Framework for Software Product
Line Engineering. In 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. 852ś857.
https://doi.org/10.1109/ASE.2015.106

[30] Christopher Pietsch, Udo Kelter, Timo Kehrer, and Christoph Seidl. 2019. Formal
foundations for analyzing and refactoring delta-oriented model-based software
product lines. In Proceedings of the 23rd International Systems and Software Product
Line Conference, SPLC 2019, Volume A, Paris, France, September 9-13, 2019. 30:1ś
30:11. https://doi.org/10.1145/3336294.3336299

[31] Christopher Pietsch, Dennis Reuling, Udo Kelter, and Timo Kehrer. 2017. A
tool environment for quality assurance of delta-oriented model-based SPLs. In
Proceedings of the Eleventh International Workshop on Variability Modelling of
Software-intensive Systems, VaMoS 2017, Eindhoven, Netherlands, February 1-3,
2017. 84ś91. https://doi.org/10.1145/3023956.3023960

[32] Christopher Pietsch, Christoph Seidl, Michael Nieke, and Timo Kehrer. 2019.
Model Management and Analytics for Large Scale Systems. Elsevier, Chapter Delta-
Oriented Development of Model-Based Software Product Lines with DeltaEcore
and SiPL: A Comparison. accepted.

[33] Dennis Reuling, Udo Kelter, Johannes Bürdek, andMalte Lochau. 2019. Automated
N-way Program Merging for Facilitating Family-based Analyses of Variant-rich
Software. ACM Trans. Softw. Eng. Methodol. 28, 3, Article 13 (July 2019), 59 pages.
https://doi.org/10.1145/3313789

[34] Dennis Reuling, Malte Lochau, and Udo Kelter. 2019. From Imprecise N-Way
Model Matching to Precise N-Way Model Merging. Journal of Object Technology
18, 2 (2019), 8:1ś20. https://doi.org/10.5381/jot.2019.18.2.a8

[35] Dennis Reuling, Christopher Pietsch, Udo Kelter, and Timo Kehrer.
2020. Accompanying materials for this paper. http://pi.informatik.uni-
siegen.de/Projekte/sipl/doc/vamos2020/.

[36] Michaela Rindt, Timo Kehrer, and Udo Kelter. 2014. Automatic Generation of
Consistency-Preserving Edit Operations for MDE Tools. Demos@MoDELS 14
(2014).

[37] J. Rubin, K. Czarnecki, and M. Chechik. 2015. Cloned product variants: from
ad-hoc to managed software product lines. International Journal on Software
Tools for Technology Transfer 17, 5 (2015), 627ś646.

[38] Ina Schaefer. 2010. Variability Modelling for Model-Driven Development of
Software Product Lines. In Fourth International Workshop on Variability Modelling
of Software-Intensive Systems, Linz, Austria, January 27-29, 2010. Proceedings.
85ś92.

[39] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-
zarella. 2010. Delta-Oriented Programming of Software Product Lines. In Software
Product Lines: Going Beyond, Jan Bosch and Jaejoon Lee (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 77ś91.

[40] Felix Schwägerl and Bernhard Westfechtel. 2016. SuperMod: Tool Support
for Collaborative Filtered Model-driven Software Product Line Engineering.
In Proceedings of the 31st IEEE/ACM International Conference on Automated

VaMoS ’20, February 5–7, 2020, Magdeburg, Germany Dennis Reuling, Christopher Pietsch, Udo Kelter, and Timo Kehrer

Software Engineering (ASE 2016). ACM, New York, NY, USA, 822ś827. https:
//doi.org/10.1145/2970276.2970288

[41] M. Stephan and J. R Cordy. 2013. A Survey of Model Comparison Approaches
and Applications.. In Modelsward. 265ś277.

[42] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. 2014. A Classification and
Survey of Analysis Strategies for Software Product Lines. ACM Comput. Surv. 47,
1, Article 6 (June 2014), 45 pages.

[43] Thomas Thüm, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, Mukelabai
Mukelabai, Mahsa Varshosaz, Goetz Botterweck, Ina Schaefer, and Timo Kehrer.
2019. Towards efficient analysis of variation in time and space. In Proceedings
of the 23rd International Systems and Software Product Line Conference-Volume B.
ACM.

[44] B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann. 2014. Researching Evolution
in Industrial Plant Automation: Scenarios and Documentation of the Pick and Place
Unit. Technical Report TUM-AIS-TR-01-14-02. TU München.

	References
	Abstract
	References
	Abstract
	1 Introduction
	2 The Need for Configuration Counting
	3 Motivating Example
	4 Model Counting
	5 Evaluation
	5.1 Evaluated #SAT Solvers
	5.2 Subject Systems
	5.3 Experiment Design
	5.4 Results
	5.5 Discussion
	5.6 Threats to Validity

	6 Related Work
	7 Conclusion
	8 Future Work
	References
	Abstract
	1 Introduction
	2 Foundations of Configurable Systems
	2.1 Feature Models
	2.2 Configurations

	3 T-Wise Sampling with YASA
	3.1 Input and Parameters
	3.2 Constructing a Configuration Sample
	3.3 Covering Strategy
	3.4 Optimized Covering Strategy

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Evaluation Results
	4.3 Interpretation
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion & Future Work
	References
	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Transfer Learning
	2.2 State-of-the-Art AVM Synthesis

	3 Synthesizing target AVMs with Loki
	3.1 Overview
	3.2 Generating Candidate AVMs
	3.3 Optimizing Aspects

	4 Evaluation: Applicability
	4.1 Setup
	4.2 Results
	4.3 Discussion

	5 Summary
	References
	Abstract
	1 Introduction
	2 Analyses of Feature Models
	3 Analyses of Configurations
	4 Analyses of Preprocessor Directives
	5 Attribute Range Computation for Partial Configurations
	6 Empirical Evaluation
	6.1 Setup
	6.2 Results
	6.3 Discussion

	7 Related Work
	8 Conclusion
	References
	Abstract
	1 Introduction
	2 Correctness-by-Construction
	3 Motivating Example
	3.1 Developing a Base Variant of Method Push
	3.2 Variants of Push

	4 Correctness-by-Construction for Variational Software
	4.1 Variation Points
	4.2 Contract Composition

	5 Tool Support: VarCorC
	6 Case Study
	6.1 Settings
	6.2 Results and Discussion

	7 Related Work
	8 Conclusion
	References
	Abstract
	1 Introduction
	2 Related Work
	3 Tradeoffs in Designing Static Analysis Tools
	3.1 SPL Analysis Strategies
	3.2 AST Parsing Strategies for SPL Analyses

	4 Concept
	4.1 Reduced Abstract Syntax Tree (RAST)
	4.2 Application of RAST

	5 Realization
	6 Evaluation
	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Motivation
	2.1 Prestudy: Integrate Features from Forks
	2.2 Merge Conflicts in the Literature

	3 Methodology
	3.1 Subject System: ElasticSearch
	3.2 Identification of Conflicts
	3.3 Analysis of Conflicts

	4 Results
	4.1 Merge Conflicts and Code-Level Changes
	4.2 Project-Level Changes

	5 Findings and Recommendations
	5.1 Conflict and Change Sizes
	5.2 Changes In Method Calls
	5.3 Addition of Statements
	5.4 Changes on the Project-Level
	5.5 State-of-the-Art Conflict Categories
	5.6 Practical Implications

	6 Threats to Validity
	7 Conclusion
	References
	Abstract
	1 Introduction
	2 Background
	3 The Big Picture
	4 Study Design
	5 Case Study
	5.1 Extracting Information
	5.2 Vulnerability Feature Model
	5.3 Defining Docker Images
	5.4 Executing Attack Scenarios

	6 Prospects
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Example Scenario
	2.1 Structure
	2.2 Behavior
	2.3 Analysis

	3 Vision and Roadmap
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Challenges and approaches
	3 Workflow and Toolchain
	Abstract
	1 Introduction
	2 Progress & Contributions
	3 Goals for the Second Phase
	4 Conclusion
	References
	1 Motivation and Aim
	2 Method
	3 Scientific approach
	References
	Abstract
	1 Context
	2 Objective
	3 Research Questions
	4 Brief Work Plan
	5 Related Work
	References
	Abstract
	1 Introduction
	2 Background
	2.1 Variability Encoding Overview
	2.2 Testing on Configurable Systems

	3 Dataset Overview
	3.1 Selecting Subject Systems
	3.2 Generating Variability Encoding Systems
	3.3 Creating Test Suite
	3.4 Collecting Metrics
	3.5 Test-enriched Configurable System Dataset

	4 Dataset evaluation
	4.1 Study Settings
	4.2 Failure Report
	4.3 Dispersion of Failures

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work
	References
	Abstract
	1 Introduction
	2 Context
	3 Problem Areas
	3.1 Lack of Preprocessor in the Slice
	3.2 Syntax Mixing
	3.3 Interprocedural Slicing
	3.4 Size of the Slice

	4 Conclusion
	References
	Abstract
	1 Introduction
	2 Related Work
	3 Rocker Switch Product Line
	4 Feature Candidate Identification for PPR Assembly Sequence Models
	4.1 PPR-FCI 1: Design PPR AS models
	4.2 PPR-FCI 2: Derive construction primitives
	4.3 PPR-FCI 3: Identify PPR feature candidates
	4.4 PPR-FCI 4: Build superimposed PPR model

	5 Evaluation and Discussion
	6 Conclusion and Future Work
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 From ad-hoc to Structured Reuse
	3 Recovering Variability Information from Software Systems
	3.1 A Fine-Grained Comparison Metric
	3.2 Comparing Software Systems

	4 Evaluation
	4.1 Research Questions
	4.2 Setup
	4.3 Analysis Guidelines

	5 Results and Discussion
	5.1 RQ1: Accuracy of the 150% Model
	5.2 RQ2: Performance of our Approach
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	References
	Abstract
	1 Introduction
	2 Background
	2.1 ArgoUML-SPL ground truth
	2.2 Automatic identification and visualization of implemented variability

	3 Evaluating the Relevance of vp-s with variants
	3.1 Data normalization
	3.2 Mapping of variabilities
	3.3 Mapping measures

	4 Additional Results
	4.1 Towards an automatic approach
	4.2 A visualization that supports mapping
	4.3 Threats to validity

	5 Related Work
	6 Conclusion
	References
	Abstract
	1 Introduction
	2 Background
	3 Study Design
	3.1 Research Objectives
	3.2 Conduct Literature Survey
	3.3 Devise Logging and Measurement Strategy
	3.4 Synthesize Methodology
	3.5 Perform Case Study
	3.6 Log Activities
	3.7 Summarize Data
	3.8 Compare Results

	4 Results & Discussion
	4.1 RO1: Activities Performed
	4.2 RO2: Costs of Activities
	4.3 RO3: Cross-Case Analysis

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References
	Abstract
	1 Introduction
	2 Motivation
	2.1 Annotation Preservation
	2.2 Incremental Transformations for Validation
	2.3 Consequences

	3 Formal Background
	4 Incremental Multi-Variant Model Transformations
	4.1 Annotation Determination
	4.2 Incremental Commutativity
	4.3 Discussion

	5 Related Work
	6 Conclusion and Future Work
	References
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Focus
	2.2 MontiArc
	2.3 Deltas

	3 Example
	4 Structural Differencing
	4.1 Algorithm Description

	5 Delta-based Architecture Merging
	6 User Study
	6.1 Survey
	6.2 Threats to Validity
	6.3 Observations

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	Abstract
	1 Introduction
	2 Compositional Annotations
	2.1 Motivation
	2.2 Compositional Annotations
	2.3 Project and File Structure
	2.4 Feature Mapping

	3 Decomposing Directives
	3.1 Preconditions
	3.2 Handling Conditional Directives
	3.3 Variant-Preserving Mapping
	3.4 Output

	4 Reintegrating Modules
	4.1 Preconditions
	4.2 Depth-First Text Concatenation

	5 Study Design
	6 Results & Discussion
	6.1 Results
	6.2 RQ1 – Performance
	6.3 RQ2 – Reflecting on Maintainability
	6.4 Limitations

	7 Threats to Validity
	8 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Running Example

	3 Basic Requirements
	4 Approach
	4.1 Internal Representation
	4.2 External Representations

	5 Experimental Evaluation
	5.1 Study Subjects
	5.2 Study Design and Methodology
	5.3 Results & Discussion
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion and Ongoing Work
	References

