Algorithms and Data Structures

Amortized Analysis

UIf Leser

e Two Examples

e Two Analysis Methods
e Dynamic Tables

e SOL - Analysis

e This lecture is not covered in [OW93] but, for instance, In
[Cor03]

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Setting

e SOL: Sequences of operations influencing each other

— We have a sequence Q of operations on a data structure
e Searching SOL and rearranging a SOL

— Operations are not independent — by changing the data structure,
costs of subsequent operations are influenced
e Conventional WC-analysis produces misleading results
— Assumes all operations to be independent
— Changing search order in a workload does not influence WC result

e Amortized analysis analyzes the complexity of any
sequence of dependent operations

— In other terms: We seek the worst average cost of each operation
In any sequence

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

,ZAmortizing“

e Economics: How long does it take until a (high) initial
Investment pays off because it leads to continuous
business improvements (less costs, more revenue)?

e Example:
— Investment of 6000€ leads to daily rev. increase from 500 to 560€
— Investment is amortized after 100 days

e WC: Look at all days _
iIndependently e
— Look at ratio cost / revenue
— Compare 560-6000 to 500-0 | |
— Don’t invest! iﬁﬁﬁﬁii 100Tags 200Tage 300Tage

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Algorithmic Example 1: Multi-Pop

e Assume a stack S with a special operation: mpop(k)

— mpop(k) pops min(k, |S|) elements from S
— Implementation: mpop calls pop k times

e Assume any sequence Q of operations push, pop, mpop
— E.g. Q={push,push,mpop(k),push,pop,push,mpop(k),...}

e Assume costs c(push)=1, c(pop)=1, c(mpop(k))=k

e With |Q|=n: What cost do we expect for a given Q?
— Every op in Q costs 1 (push) or 1 (pop) or k (mpop)
— In the worst case, k can be ~n (n times push, then one mpop(n))

— Worst case of a single operation is O(n)
— Total worst-case cost: O(n?)

AN

Note: Costs only ~2*n

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Problem

e Clearly, the cost of Q is in O(n?), but this is not tight

e A simple thought shows: The cost of Q is in O(n)

— Every element can be popped only once
e No matter if this happens through a pop or a mpop

— Pushing an element costs 1, popping it costs 1
— Q can at most push n elements and, hence, only pop n elements
— Thus, the total cost is in O(n)
e It is maximally 2*(n-1)
e \We want to derive such a result in a systematic manner
(analyzing SOLs is not that easy)

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Example 2: Bit-Counter

e \We want to generate bitstrings by iteratively adding 1
— Starting from O

— A single operation can flip up to k bits 00001001
e “11111117 +1 00001010

— Worst case cost for Q: O(k*n)

00000000

— Assume bitstrings of length k 00000001 1| 1
— Roll-over counter if we exceed 2k-1 00000010 | 2 | 3
e Qis a sequence of ,,+1" 00000011 | 1 | 4
_ 00000100 3 7
e We count as cost of an operation 00000101 1| 8
the number of bits we have to flip | ooco0110 | 2 | 10
e Classical WC analysis ot L
00001000 4 | 15

1

2

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Problem

e Again, this complexity is overly pessimistic / not tight

e Cost actually is in O(n)
— The right-most bit is flipped in every operation: cost=n
— The second-rightmost bit is flipped every second time: n/2
— The third ...: n/4

— Together

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

e Two Examples

e Two Analysis Methods
— Accounting Method
— Potential Method

e Dynamic Tables
e SOL - Analysis

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Accounting Analysis

e |ldea: We create an account for Q
e Operations put / withdraw some amounts of “money”

e \We choose these amounts such that the current state of
the account is always (throughout Q) an upper bound of
the actual cost incurred by Q

— Let c; be the true cost of operation i, d; its effect on the account

— We require k k
vi<k<n:» ¢ <) d,
i=1 i=1

— Especially, the account must never become negative

— “<” gives us more freedom in analysis than “=

e [t follows: An upper bound for the account (d) after Q Is
also an upper bound for the true cost (c) of Q

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Application to mpop

e Assume d, =2, d;,,=0, d
e Upper bounds?

— Clearly, d,q, Is an upper bound on ¢, (which is 1)
— But neither d,,, nor d are upper bounds for c,,, / ¢

mpop
e Let’s try: dpush—z dpop=1, dpypop=n
— Now all individual d’s are upper bounds for their c's

— But this doesn’t help (worst-case analysis)

Zn:ci < Zn:di <n*ne0O(n’)
=1 =1

mpop—0

mpop

e But: We only have to show that the sum of d’s for any
prefix of Q is higher than the sum of c’s

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Application to mpop

e Assume d, =2, d;,,=0, d;,0,=0

e Summing these up yields an upper bound on the real cost

— ldea: Whenever we push an element, we pay 1 for the push and 1

for the operation that will (at same later time) pop exactly this
element

e It doesn’'t matter whether this will be through a pop or a mpop
e Note: For every pop, there must have been a corresponding push before

— Thus, when it comes to a pop or mpop, there is always enough
money on the account

e Deposited by previous push’s
e “enough”: Enough such that the sum remains an upper bound

e This proves:

Zn:ci < Zn:di <2*ne0(n)
=1 =1

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Choose d's carefully

e Assume d, =1, d;,,=1, dpep=1
— Assume Q={push,push,push,mpop(3)}
— 2c=6>3d=4
e Assume d, =1, d;,,=0, d;;,0,=0
— Assume Q={push,push,mpop(2)}
— 2c=4>3d=2
e Assume d, =3, d;,,=0, d;,0,=0
— Fine as well, but not as tight (but also leads to O(n))

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Application to Bit-Counter

e Look at the sequence Q° of flips generated by a sequence Q
— Every +1 creates a sequence of [0,k] flip-to-0 and [0,1] flip-to-1
e There is no ,flip to 1* if we roll-over
— Since only flips cost, the cost of Q’ is the same as the cost of Q

* Let's try dyjp10.1=2 and iy 45.0=0
— Clearly, dg, 4,4 IS @an upper bound to Cgp o4

— Note: We start with only 0 and can flip-to-0 any 1 only once
« Before we flip-to-1 again, again enabling one flip-to-0 etc.

— ldea: When we flip-to-1, we pay 1 for flipping and 1 for the back-
flip-to-0 that might happen at some later time in Q’

e There can be only one flip-to-0 per flip-to-1
— Thus, the account is always an upper bound on the actual cost

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Application to Bit-Counter -2-

e We know that the account is always an upper bound on the
actual cost for any prefix of Q

e Every step of Q creates a sequence of flip-to-1 (at most
one) and flip-to-0 in Q’

e This sequence costs at most 2
— There can be only on flip-to-1, and all fli-to-0 are free

e Every step in Q costs at most 2

e Thus, Q is bound by O(n)

e ed.

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

e Two Examples

e Two Analysis Methods
— Accounting Method
— Potential Method

e Dynamic Tables
e SOL - Analysis

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Potential Method: Idea

e In the accounting method, we assign a cost to every
operation and compare aggregated accounting costs of ops
with aggregated real costs of ops

e In the potential method, we assign a potential ®(D) to the
data structure D manipulated by Q

e As ops from Q that change D, also change D’s potential

e The trick is to design ® such that we can (again) use it to
derive an upper bound on the real cost of Q

e “Accounting” and “potential” methods are quite similar —
use whatever is easier to apply for a given problem

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Potential Function

e Let D,, Dy, ... D, be the states of D when applying Q

 We define the amortized cost d; of the I'th operation as
d; = ¢ + ®(D) - (D)

e We derive the amortized cost of Q as

>4, =Y (0 +#(D)-#(D,)) = > +4(D,)~4(Dy)

 Rough idea: If we find a ® such that (a) we can obtain
formulas for the amortized costs for all individual d; and (b)
®(D,)=d(D,), we have an upper bound for the real costs

— Because then: n

Zdi :ici +¢(D,) - ¢(D;) 2 ici

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Details: Always Pay in Advance

e QOperations raise or lower the potential (—future cost) of D

e We need to find a function ® such that
— Req. 1: ®(D;) depends on a property of D,
— Req. 2: ®(D,)=d(D,) [and we will always have ®(D,)=0]
— Req. 3: We can compute d,= ¢, + ®(D,) — ®(D,,)
e As within a sequence we do not know its future, we also
have to require that ®(D,) never is negative

— Otherwise, the amortized cost of the prefix Q[1-1] would not be an
upper bound of the real costs at step i

e |dea: Always pay in advance

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Example: mpop

e We use the number of objects on the stack as its potential

e Then
— Req. 1: ®(D;) depends on a property of D,
— Req. 2: ®(D,)=d(D,) and ®(D,)=0
— Req. 3: Compute d, = ¢, + ®(D,) — ®(D, ,) for all ops:
e Ifopispush:d, =c¢,+ (x—-(x-1))=1+1=2
e Ifopispop:d,=c¢c,+(Xx—-(x+1))=1-1=0
e Ifop is mpop(k): di=c,+ (X — (x+k)) =k-k=0

e Thus, 2*n = 2d, = 2¢; and Q is in O(n)

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Example: Bit-Counter

e We use the number of ,1“ in the bitstring as its potential

e Then

— Req. 1: ®(D;) depends on a property of D,
— Req. 2: ®(D,)=d(D,) and ®(D,)=0
— Req. 3: We compute d, = ¢; + ®(D,) — ®(D, ,) for all ops

e Thus,

Let the i'th operation incur t; flip-to-0 and 0 or 1 flip-to-1
Thus,c, <t +1

If ®(D,)=0, then operation i has flipped all positions to 0; this implies
that previously they were all 1, which means that ®(D, ,)=k

If ®(D,)>0, then ®(D,)=®(D,,)-t+1
In both cases, we have ®©(D;) < ®(D,,)-t+1

2*n =2 2d, =2 2¢;and Q is in O(n)

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

e Two Examples
e Two Analysis Methods

e Dynamic Tables

— SOL are complicated ... we still try to get familiar with the analysis
method using simpler problems ...

e SOL - Analysis

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Dynamic Tables

e \We use amortized analysis for something more useful:
Complexity of operations on a dynamic table

e Assume an array T and a sequence Q of insert/delete ops

e Dynamic Tables: Keep the array small, yet avoid overflows
— Start with a table T of size 1

— When inserting and T is full, we double |T|; upon deleting and T is
only half-full, we reduce |T| by 50%

— “Doubling”, “reducing” means: Copying data to a new array
— Copying an element of an array costs 1

e Thus, any operation (ins or del) costs either 1 or |

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Example

insert(1) |1

e Conventional WC

insert(2) |1]2

analysis
insert(3) [1]2]3 e Asican be up to n, the
nsert(@) [1121a]2 complexity of any

operation is O(n)

e Complexity of any Q Is
delete(5); delete(6): delete(7) |1]2|3[4 O(n?)

insert(5); insert(6); insert(7) |1(2|3(4|5(6|7

delete(4) [1]2(3

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

1: ®(D;) depends on a property of D,
2: O(D,)=d(Dy)

With Potential Method 3-d = ¢ + O(D) — O(D,)

e Let num(T) be the current number of elements in T
e We use potential ®(T) = 2*num(T) - |T|

— Intuitively a “potential”

e Immediately before an expansion, num(T)=|T| and ®(T)=|T|, so there
IS much potential in T (we saved for the expansion to come)

e Immediately after an expansion, num(T)=|T|/2 and ®(T)=0; all
potential has been used, we need to save again for the next expansion
— Formally
e Requirement 1: Of course

e Requirement 2: As T is always at least half-full, ®(T) is always =0;
we start with |T|=0, and thus ®(T,)-®(T,)=0

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

1: ®(D;) depends on a property of D,
- - 2: ©(D,)=d(Dy)
Continuation 3 4=t + OD) - O(D,) |

 Req. 3: Let’'s look at d; = ¢, + O(T,) — ®(T, ;) for insertions
e Without expansion

d =1+ (2%num(T)-IT]) - 2*num(T_)-|T..])
=1+ 2*num(T)-2*num(T,,) - |T;| + [Tl
=1+2+0
=3
e With expansion
d; =num(T;) + (2*num(T)-|Ti]) - (2*num(T;_)-IT;11)
= num(T) + 2*num(Ty) - |Tjl - 2*num(T;,) + [Tl

num(T;) + 2*num(T,) - 2*(hum(T))-1) - 2*(num(T;)-1) +num(T,)-1
= 3*num(T;) - 2*num(T,) + 2 - 2*num(T;) + 2 + num(T;) — 1
=3

e Thus, 3*n = 2d, = 2¢, and Q is in O(n) (for only insertions)

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Intuition

e Think accounting method

e For insert’, we deposit 3 because
— 1 for the insertion (the real cost)

— 1 for the time when we need to copy
this new element at the next
expansion

e These 1’s fill the account with |T;|/2
before the next expansion

— 1 for one of the |T;|/2 elements
already in A after the last expansion

e These fill the account with |T;|/2
before the next expansion

e Thus, we have enough credit at
the next expansion

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Problem: Deletions

e QOur strategy for deletions so far is not very clever
— Assume a table with num(T)=|T]|
— Assume a sequence Q = {I,D,I,D,1,D,1 ...}
— This sequence will perform |T|+|T|/2+|T|+|T|/2+ ... real ops
— As |T] is O(n), Q is in O(n?) and not in O(n)

e Simple trick: Do only contract when num(T)=|T|/4
— Leads to amortized cost of O(n) for any sequence of operations
— We omit the proof (see [Cor03])

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

e Two Examples
e Two Analysis Methods
e Dynamic Tables
e SOL — Analysis
— Goal and idea

— Preliminaries
— A short proof

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Re-Organization Strategies

e Recall self-organizing lists (SOL)
— As usual: Accessing the I'th element costs |
— When searching an element, we change the list L

e Three popular strategies /\

— MF, move-to-front:

\ 4

— T, transpose:

— FC, frequency count:

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Notation

e Assume we have a strategy A and a workload S on list L

e After accessing element i, A may move | by swapping
— Swap with predecessor (to-front) or successor (to-back)

— Let F,(l) be the number of front-swaps and X,(l) the number of
back-swaps of step | when using strategy A

e This means: Fy,/X, for strategy MF, F/X; ... Feo/Xec
e We never back-swap: VI: X,,:(1)=X:(1)=X(1)=0
e Let C,(S) be the total access cost of A incurred by S
— Again: C, for strategy MF, C; for T, C. for FC
e With conventional worst-case analysis, we can only derive
that C,(S) is in O(|S|*|L]) — for any A

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Theorem

e Theorem (Amortized costs)
Let A be any self-organizing strateqy for a SOL L, MF be
the move-to-front strateqgy, and S be a sequence of
accesses to L. Then

Cue(S) = 27C\(S) + X\ (S) — FA(S) - 1S/

e What does this mean?
— We don‘t learn more about the absolute complexity of SOLs
— But we learn that MF is quite good

— Any strategy following the same constraints (only series of swaps)
will at best be roughly twice as good as MF

e Assuming C,(S)>>|S| and for |S]|—>00: X(S)~F(S) for any strategy
— Despite its simplicity, MF is a fairly safe bet for all workloads

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

ldea of the Proof

e \We will compare access costs in L between MF and any A
e Think of both strategies (MF, A) running S on two copies of
the same initial list L

— After each step, A and MF perform different swaps, so all list states
except the first very likely are different

 We will compare list states by looking at the number of
Inversions (“Fehlstellungen”)
— Actually, we only analyze how the number of inversions changes
 We will show that the number of inversions defines a

potential of a pair of lists that helps to derive an upper
bound on the differences in real costs

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Content of this Lecture

e Two Examples
e Two Analysis Methods
e Dynamic Tables
e SOL - Analysis
— Goal and idea

— Preliminaries
— A short proof

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Inversions

e LetL and L’ be permutation of the set {1, 2, ..., n}
e Definition

— A palr (1)) Is called an inversion of L and L" iff i and J are in different
orderin L than in L' (for 1 <ij < n and izf)

— The number of inversions between L and L' Is denoted by inv(L, L")
e Remarks

— Different order: Once i before j, once | after |

— Obviously, inv(L, L') =inv(L, L)

— Example: inv({4,3,1,5,7,2,6}, {3,6,2,5,1,4,7}) =12
e Without loss of generality, we assume that L={1,...,n}

— Because we only look at changes in number of inversions and not at
the actual set of inversions

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Sequences of Changes

e Assume we applied I-1 steps of S on L, creating L,,r using
MF and L, using A

e Let us consider the next step |, creating L, and L,’

ABICI. .l LT ABICI. . L.
L, |B A C Lue |- (B Cl.|-]-]Al.
$ $ Fa
L, [B|.|A C Ly |A|- B C

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Inversion Changes

 How does | change the number of inv’'s between Ly, / L,?

e Can we compute inv(Ly', L)) from inv(L,, Ly)?
— Assume step | accesses element i from L,
— We may assume it is at position i
— Let this element | be at position k in Ly
— Access in L, costs i, access in Ly, costs k

— After step I, A performs an unknown number of swaps; MF
performs exactly k-1 front-swaps

LA123.....i..... Lye 1] |-|-|Bli||-|-|-|-]-]-]-
‘ Tpositioni position k ‘v
La (2120?12] Lye (@l (of -]
\ Y J \ Y J
? front-swaps k-1 front-swaps

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Counting Inversion Changes 1 Y X,

Lo (1(23[.].|.|.].[i].[-]-]-].
» Let X, be the set of values _
that are before position k in Ll [][
L= and after position i in L, 1

 Le Y, be the values before position k in L, and before i in L,
— Clearly, |X]| + |Y|| = k-1

» All pairs (I,c) with ceX, are inversions between L, and L
— There may be more; but only those with i are affected in this step

o After step I, MF moves element | to the front
— Assume first that A does simply nothing
— All inversions (i,c) with ceX, disappear (there are |X,| many)
— But |Y,|=k-1-|X|| new inversions appear
— Thus: inv(Ly,,Ly) = inv(LyeLy) - IX] + k-1-]X|]
— But A does something

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Counting Inversion Changes 2

Lo (123].]. |- 1i]-li].]-]-]-]-

e Instep |, let A perform F,(l) -
front-swaps and X,(I) Ly L L Ll Ll L
back-swaps

e Every front-swap (swapping | before any j) in L, decreases
Inv(Lye,Ly") by 1

— Before step |,] must be before i in L, (it is a front-swap), but after i
In Ly’ (because 1 now is the first element in L)

— After step |, i is before j in both L,’ and Ly’ — inversion removed
e Equally, every back-swap increases inv(Ly,,L,") by 1
e Together: After step |, we have

INvV(Lye,La) :\inV(LMF’LA)} - \IXII + k'1'|X||} '\FA(I) + XA(I)}

| | |
Before step | through MF through A

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Was ¢, ... was d, ... we switch to Cor notation

Amortized Costs

e Let t,,c(l) be the real cost of stratggy MF for step |

e We use the number of inversions @s potential function
O(L,,Lye)=Inv(L,, L) on the pair|L,, Ly,

e Definition !
— The amortized costs of step |, called a, are

a; = tye(l) + Inv(Ly(D), Lye(1)) — inv(Ly(I-1), Lye(1-1))
— Accordingly, the amortized costs of sequence S, [S[=m, are

2a;= 20y() + inv(Ly(m), Lye(m)) — inv(L(0), Ly(0))
e This Is a proper potential function
— 1: ® depends on a property of the pair L,, Ly
— 2:inv() can never be negative, so VI: ®(L,(1), Ly(1)) = ®(L,L)=0

e Let's look at how operations change the potential

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Content of this Lecture

e Two Examples
e Two Analysis Methods
e Dynamic Tables
e SOL - Analysis
— Goal and idea

— Preliminaries
— A short proof (after much preparatory work)

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Putting it Together

 We know for every step | from workload S accessing I:
INV(Lye',La) = INv(LyeLa) - X+ K-1-]X] - Fa(l) + X4(0)
and thus
INV(Lye',La") - INV(Lye La) = -IX]+K-1-[X|] - FA(l) + Xa(1)

e Since t,,:(I)=k, we get amortized costs of

a = tye(l) +inv(Ly', Lye) — Inv(La, L)
=k - [X|+k-1-1X| - Fa(l) + Xa(0)
= 2(k-1X|]) - 1 - Fa() + X4 ()

e Recall that Y, (]Y,|=k-1-|X||) are those elements before i in
both lists. This implies that k-1-|X,| < i-1 or k-|X/|<i
— There can be at most i-1 elements before position i in L,

e Therefore: a, < 2i -1 - F,(I) + X,(1)

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Putting it Together

e This Is the central trick!

e Because we only lookdd at inversions (and hence the
sequence of values), wesan draw a connection between
the value that is accessed aQd the number of inversions
that are affected

e Recall that Y, (]Y,|=k-1-|X||) are those elenatsredQre i in
both lists. This implies that k-1-|X,| < i-1 o
— There can be at most i-1 elements before position

e Therefore: a, < 2i -1 - F,(I) + X,(1)

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Aggregating

e We also know the cost of accessing i using A: that'’s |
e Together: g, < 2C,(I) - 1 - FA(l) + X,(I)
e Aggregating this inequality over all a, In S, we get
Sa < 2¥C,(S) — IS| = FA(S) + Xa(S)

e By definition, we also have

2a) = 2tye(l) +inv(La™, Lye™) —inv(L,®, Lye°)
e Since 2t,,() = C,,z(S) and inv(L,°, L,,2)=0, we get

Cur(S) + inv(Ly™, Lye™) < 2*Cu(S) — [S] = Fa(S) + XA(S)
It finally follows (inv()=0)
Cur(S) = 2*Cu(S) — [S] = Fa(S) + Xa(S)

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

Summary

e Self-organization creates a type of problem we were not
confronted with before

Things change during program execution
But not at random — we follow a strategy

e Analysis is none-trivial, but

Helped to find a elegant and surprising conjecture

Very interesting in itself: We showed relationships between
measures we never counted (and could not count easily)

But beware the assumptions (e.g., only single swaps)

Original work: Sleator, D. D. and Tarjan, R. E. (1985). "Amortized
efficiency of list update and paging rules." Communications of the
ACM 28(2): 202-208.

UIf Leser: Algorithms and Data Structures, Summer Semester 2017

	Foliennummer 1
	Foliennummer 2
	Setting
	„Amortizing“
	Algorithmic Example 1: Multi-Pop
	Problem
	Example 2: Bit-Counter
	Problem
	Foliennummer 9
	Accounting Analysis
	Application to mpop
	Application to mpop
	Choose d‘s carefully
	Application to Bit-Counter
	Application to Bit-Counter -2-
	Foliennummer 16
	Potential Method: Idea
	Potential Function
	Details: Always Pay in Advance
	Example: mpop
	Example: Bit-Counter
	Foliennummer 22
	Dynamic Tables
	Example
	With Potential Method
	Continuation
	Intuition
	Problem: Deletions
	Foliennummer 29
	Re-Organization Strategies
	Notation
	Theorem
	Idea of the Proof
	Content of this Lecture
	Inversions
	Sequences of Changes
	Inversion Changes
	Counting Inversion Changes 1
	Counting Inversion Changes 2
	Amortized Costs
	Content of this Lecture
	Putting it Together
	Putting it Together
	Aggregating
	Summary

