
Estimating Result Size and Execution Times for
Graph Queries

Silke Trißl1 and Ulf Leser1

Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6,
10099 Berlin, Germany

{trissl,leser}@informatik.hu-berlin.de

Abstract. In recent years several languages have been proposed to pose
queries on graphs. These languages allow to state graph queries that
contain multiple node and path variables. Nodes and paths of the graph
are incrementally bound to these variables when evaluating the query.
For an efficient execution the order of the bindings is important. To
optimize this order we must be able to estimate the sizes of intermediate
result sets and the time required to produce these. Therefore, in this
paper we present estimation functions for reachability and path queries.
We show that it is possible to estimate the sizes and times using easy to
pre-compute key features of a graph, such as number of nodes and edges,
number of nodes without outgoing edges, and the outdegree of the node
with highest degree.

1 Introduction

Graphs occur in many areas of life. In our work, we specifically target graphs
used in molecular biology. A human being has, according to current estimates,
about 250,000 different proteins in his or her body. Each protein may inter-
act with numerous other proteins or some of the hundreds of thousands organic
and inorganic substances. Biologists have studied these complex interactions and
their gained knowledge is stored as graphs in publicly available data sources [14].
The size of biological graphs ranges from a few hundreds to millions of nodes and
edges. These biological graphs are often stored in relational database manage-
ment systems (RDBMS), where they are usually represented by two relations,
NODE and EDGE. Relation NODE represents all nodes of a graph, possibly with
additional information on each node. Relation EDGE represents edges by giving
the start and end node of the edge.

In [9] van Helden and colleagues identified several questions that are im-
portant for biologists working with biological graphs. We can divide those into
two categories, reachability queries, where only nodes are of interest that are
reachable from a given start node, and path queries, where paths including their
intermediate nodes or lengths of paths are required. For instance, a user may be
interested in fatty acids that lie on a path from Glucose to Acetyl-CoA with the
condition that the path from the fatty acid to Acetyl-CoA is shorter than k.

Biologists can use specialized graph viewing tools to display these graphs [15].
But when manually navigating through images of pathways a biologist might not
find a path although there exists one. Thus, tools are required that allow a user
to pose a query. In [11], we introduced the Pathway Query Language (PQL),
a language to formulate queries on biological graphs stored in an RDBMS. In
similar fashion, He and Singh [8] and Dries et al. [6] also propose graph query
languages. All languages have in common that in order to evaluate a graph query
they have to bind nodes and paths from the graph to node and path variables
of the query. Combinations of bindings are incrementally built to find all correct
answers for a query. Clearly, the order in which these combinations are built is
essential for high performance [7], especially when path predicates are involved,
which are notoriously costly to compute [17]. In the previous example, should one
first bind nodes to node variables, or first search fatty acids that are reachable on
a path from glucose, or first find paths from a fatty acid to Acetyl-CoA that are
shorter than k? To decide this, one must be able to estimate the time required
to execute each step and the sizes of the result set.

In this work we present cardinality estimates to predict the size of the result
set and cost functions to approximate the time required to compute reachability
and path queries. These functions represent a key feature of our graph query
optimizer [16]. Our estimates are merely based on properties of the graph, such
as the number of nodes and edges, the number of nodes without outgoing edges,
and the maximum outdegree of the node with highest degree. These properties
are easy to compute as a single pass over relations NODE and EDGE is sufficient.
We show in Section 4 that good estimation functions for result sizes and query
times can be found using these predicates.

1.1 Related Work

Estimating the cardinality is a well established technique in RDBMS, usually
performed by building histograms [10], as it is important for query optimiza-
tion [7]. However, the methods established for RDBMS only target relational
operations, such as selection, projection, join, and grouping. In graph queries,
such methods can directly be used for estimating the number of bindings for
node variables, but they cannot be applied for path variables.

There are approaches to estimate the sizes of result sets for reachability
and path queries. Lipton and Naughton propose in [12] to estimate the size of
the transitive closure by randomly select a set of start nodes and compute for
each of these nodes the number of reachable nodes. This way, the result set for
reachability queries may be estimated, but no algorithms or estimates for path
queries are given.

In the area of queries on XML data some effort has been put into estimating
the size of the result set for path queries. In [13] McHugh and Widom present
a method based on pre-computed paths of length less than k. However, this
approach has disadvantages. First, estimating works only well for paths of length
k or less, and second, computing and storing paths requires time and a large
amount of storage space. There exist several methods [1, 3, 18] to estimate the

size of the result set of a query on an XML document based on the number and
positions of occurrences of elements in an XML document. The disadvantage of
these methods is that they only work on XML documents with a tree structure.
In contrast, our work addresses general graphs where the problem of reachability
and path computation is considerably more complex.

We are not aware of any prior work that tried to estimate the size of the result
of reachability or path queries merely based on general and easy to compute
properties of the graph. To do this, we first give an introduction to graph queries
in Section 2. Section 3 then presents algorithms for reachability and path queries.
In Section 4 we develop functions to estimate cardinality and query time and
evaluate our proposed functions. Section 5 concludes the paper.

2 Graphs and Graph Queries

We assume directed multi-graphs G = (V,E) with n = |V | and m = |E|. The
number of incoming and outgoing edges of a node is its degree. Based on the
distribution of the node degree in a graph we distinguish between random and
scale-free graphs. Random graphs have a binomial degree distribution, while the
distribution of scale-free graphs follows a power-law [2]. Graphs in biology are
typically scale-free.

In this work we study reachability and path queries. To describe these queries,
we first need to define the terms path and path length.

Definition 1 (Path and path length). Let G = (V,E) be a graph. A path
p is a sequence of nodes 〈v0, v1, v2, . . . , vk〉, vi ∈ V such that (vi−1, vi) ∈ E for
i = 1, 2, . . . , k. The length of the path is the number of edges in the path.

If there exists a path p from u to w we say w is reachable from u, written as
u w. A path is cycle-free if all nodes in p are distinct, otherwise p is said to
contain a cycle. In this work we only consider cycle-free paths. Of course, if w is
reachable from u, there might exist more than one path from u to w.

Definition 2 (Cardinality of reachability and path queries). Let G =
(V,E) be a graph and P1, . . . Pn be properties of the graph. Let S ⊆ V be the set
of start nodes and T ⊆ V be the set of target nodes, with u ∈ S and w ∈ T . The
cardinality of a reachability query, Cardreach(|S|, |T |, P1, . . . Pn), is the number
of node pairs u, w for which u w holds. The cardinality of path queries,
Cardpath(|S|, |T |, P1, . . . Pn) is the number of tuples to represent all paths between
u and w.

Cardinality estimates the size of intermediate results using prior knowledge
of the data (P1, . . . , Pn). However, in query optimization we are more interested
in the time it takes to compute such an intermediate result, which, of course,
depends on the size of the set, but also on the method used to compute it.
Therefore, in the next chapter we introduce several algorithms for computing
reachability and path queries. In Chapter 4 we compare measured execution
times with those for our cardinality and time estimates.

3 Algorithms for Evaluation of Graph Queries

To answer graph queries we can for example traverse the graph at query time or
use index structures, such as the transitive closure (TC)or GRIPP [17]. Graph
traversal can be done using depth-first or breadth-first search [4]. The size of
TC is in the order of O(n2), but can be queried in constant time to answer
reachability queries. We presented in [17] GRIPP, an index structure whose size
is in the order of O(n + m) and can be queried in almost constant time for
reachability queries. But GRIPP may also be used for path queries as we show
in this section.

GRIPP is based on pre- and postorder labeling of the graph [5]. Each node
in the graph receives as many pre- and postorder and depth values as it has
incoming edges, but at least one value triple. Figure 1(a) shows the graph for
indexing, while Figure 1(b) shows the resulting GRIPP index table with pre- and
postorder and depth labelled instances of nodes. In this example, nodes A and
B have two instances in GRIPP, one tree instance and one non-tree instance.
This distinction is important for querying.

(a) Graph, G.

'

&

$

%

node pre post depth type

r 0 21 0 tree
A 1 20 1 tree
B 2 7 2 tree
E 3 4 3 tree
F 5 6 3 tree
C 8 9 2 tree
D 10 19 2 tree
G 11 14 3 tree
B 12 13 4 non-tree
H 15 18 3 tree
A 16 17 4 non-tree

(b) GRIPP index table.

Fig. 1. The graph to index and the resulting GRIPP index table. Nodes A and B have
two instances in GRIPP, one tree instance and one non-tree instance.

3.1 Reachability Queries

We can answer reachability queries for a given pair of nodes u, w using either a
depth-first traversal, querying GRIPP, or the TC. For the depth-first traversal
we start at u and query EDGE recursively until we find w. The number of recursive
calls to answer reachability queries using depth-first traversal may range from
1 call for nodes without outgoing edges to n calls when we have to traverse all
nodes of the graph. In contrast, querying the transitive closure only requires one
lookup in the index table.

For GRIPP the situation is more complicated [17]. When querying GRIPP we
use the tree instance of u, uT to retrieve the reachable instance set of u, RIS(u).
RIS(u) contains all instances v′ , for which uT

pre < v′pre < uT
post holds. We know

that all nodes v, which have at least one instance in RIS(u) are reachable from

u. But in RIS(u) we may also find non-tree instances, for which we know that
there exists some tree instance in the GRIPP index table. To find all reachable
nodes of u we have to hop to the tree instance and use this instance and query
the GRIPP index table again. We basically have to traverse the GRIPP index
recursively until we find w or no further hop node can be used. To make the
search more efficient we developed in [17] heuristics.

3.2 Path Queries

To answer path queries we have to define how to represent cycle-free paths. As we
want to answer graph queries inside an RDBMS, we represent paths as relation
PATHS, which is given in Figure 2(a). To give you an example how this relation
is filled, consider Figure 2(b), which contains the tuples for all paths between D
and B in the graph from Figure 1(a).

Paths
path id
start
end
length
node id
position

(a) PATHS.

start end length node id position

D B 2 D 0
D B 2 G 1
D B 2 B 2
D B 3 D 0
D B 3 H 1
D B 3 A 2
D B 3 B 3

(b) Instance for paths from D to B.

Fig. 2. The relation PATHS to represent all paths of a graph and the resulting relation
for all paths between D and B in the graph from Figure 1(a).

To fill relation PATHS we can recursively traverse the graph or query the
GRIPP index. We can not use TC, as it does not store intermediate nodes.
When using the recursive query strategy we basically traverse the graph using
depth-first search starting at u. When we find w during the search, we return
the node pair and all intermediate nodes, which are stored during the search,
together with their length information.

But we can also use GRIPP to answer path queries. To find paths with
GRIPP we basically use the information already present in the index structure
and use every hop node in a RIS. We use the example from Figure 2(b) to
illustrate the search strategy. We start the search at the tree instance of D and
add D at position 0 to list path nodes, which stores all intermediate nodes. In
RIS(D) we first find an instance of G, which we add to path nodes at 0−2+3 = 1.
It is neither a non-tree instance nor B, therefore we use the next instance in
RIS(D), which is B, our target node. We return all intermediate nodes of that
path and continue by removing B from path nodes. Next, we find H, add it a
position 1 and then we find the non-tree instance of A. We add A at position
2 to path nodes and use A as hop node. We now explore all paths in RIS(A),
where we find another instance of B and return that path as well. If a length
restriction for the paths is given, we only explore paths with up to the given
length.

4 Estimating Cardinality and Execution Times

We estimate the size of the result set and the time required to compute it based
on simple properties of the graph. In particular, we only use the number of nodes,
the number of edges, the highest outdegree, and the number of nodes without
any outgoing edge.

4.1 Evaluation Method and Data

We evaluate our estimation using synthetic random and scale-free graphs with
varying sizes and densities. On each graph, we executed 1,000 reachability and
path queries using randomly chosen node pairs and gathered the size of the
result set and query time. We compare these measurements with our estimation
functions. Table 1 shows properties of these graphs. Note that the maximum
outdegree for random graphs only increases slightly with growing number of
nodes, while it grows constantly for scale-free. In contrast, the number of nodes
with no outgoing edges increases linearly with growing graph sizes in both types.

No. nodes No. edges
Random graphs Scale-free graphs

Max. degree Zero degree Max. degree Zero degree
100 200 6.2 12.0 10.8 14.6

1,000 2,000 7.8 135.6 28.2 156.4
10,000 20,000 9.6 1,346.8 91.8 1,567.2

100,000 200,000 11.2 13,520.2 237.8 15,839.2
1,000,000 2,000,000 11.6 135,198.0 748.2 158,780.8

100 100 4.2 37.6 7.2 35.8
100 200 6.2 12.0 10.8 14.6
100 300 7.0 4.4 15.4 6.6
100 400 9.4 1.0 17.6 1.4
100 500 10.6 0.6 20.0 1.6

Table 1. Properties of random and scale-free graphs used for evaluation. Figures are
averaged over five different graphs for each type and size.

4.2 Reachability Queries

We estimate for a given set of start and end nodes, with |S| = s and |T | = t,
the size of the result set. Clearly, the larger both sets are, the more tuples are
returned. But the density of the graph also influences the size of the result set. We
can expect that with increasing average node degree the probability of u w
will increase, until a saturation occurs. A saturation function is described by
(1− ex). In our case x is the fraction between additional edges (m− n) and the
number of nodes, n. Equation 1 shows the formula for cardinality estimation of
reachability queries.

Cardreach(s, t, n, m) = s · t · (1− e−
m−n

n) (1)

The cost estimates must resemble the time required for each algorithm to
answer reachability queries for a given pair of nodes. This means, we require
three cost functions. Querying the transitive closure is done in constant time. The

same is true for GRIPP, as we require on average 2.7 recursive calls, regardless
the size or shape of the graph. For the recursive query strategy the situation is
more complicated. The query time is proportional to the number of calls. This
number in turn depends on the number of nodes in the graph (calls ∼

√
n), the

degree and maximum outdegree, x (calls ∼ 1/ ln ((m + x)/n)), and the number
of nodes with outdegree 0, z (calls ∼ (n − z)/n). Equation 2 gives the cost
estimates for reachability queries. The constant factors c1 (access cost) and c2

(CPU cost), which depend on the system setup, may be estimated using test
runs on the system.

Costreach(TC)(s, t) = s · t · c1

Costreach(GRIPP)(s, t) = s · t · 2.7 · c1

Costreach(recursive)(s, t, n, m, x, z) = s · t · (c1 + (c2 ·
√

n · 1
ln m+x

n

· n− z

n
))

(2)

We evaluate our cardinality and cost functions experimentally. Figures 3(a)
and 3(b) show that the given functions correspond well with the actually ob-
served values for c1 = 0.0015 and c2 = 0.00017. Note, there is no distinction
between random and scale-free graphs for the size of the result set.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
vg

.n
um

be
r

of
 tu

pl
es

Number of edges

Average number of tuples for method ’pair’ on different graphs

random
scale-free

 1 - e^(-(|E|-|V|)/|V|)

(a) Cardinality Estimates.

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1000000

A
vg

. q
ue

ry
 ti

m
e

[s
ec

]

Number of nodes

Query times for method ’pair’ on scale-free graphs

recursive
GRIPP

TC
estim. cost recursive

estim. cost GRIPP
estim. cost TC

(b) Cost Estimates.

Fig. 3. The figures show the estimated and actual result sizes and query times for
different graphs to answer reachability queries for a given pair of nodes.

4.3 Path Queries

To estimate the size of the result set for path queries we consider the following.
Assume, the graph has an average outdegree of d = 2, thus, for a single start
node we find on average 2 nodes, i.e., 2 paths for path length 1, 4 + 2 paths for
length 2, 8 + 4 + 2 paths for length 3, and so on. In general for length l we find∑l

1 dl paths. This would be true for infinite binary trees, but not for general
graphs. In general graphs three factors influence the number of paths, which
are given in Equation 3. First, we may hit a node with high outdegree during

the search, which will open many new paths. Therefore, the number of outgoing
edges, x, of the node with highest degree increases the average outdegree by
f(m/n, x) = (x− (m/n))/16. Second, if we find a node without outgoing edges,
we must stop. Thus, the number of nodes without outgoing edges z, reduces the
number of paths by the factor of (1−pZero(n, z, l)). The same is true, if we find
a node for a second time on a path, which reduces the number of paths by the
factor of (1− pDupl(n, x, l)).

Cardpaths(s, t, n, m, x, z, l) = s · t·
l∑

i=1

(
(l + 1) ·

(m

n
+ f(

m

n
, x)
)i

· (1− pZero(n, z, l)) · (1− pDupl(n, x, l))
)

with

pZero(n, z, l) =
l∑

i=1

l!
i!(l − i)!

·
(z

n

)i

·
(

n− z

n

)l−i

pDupl(n, x, l) =
l∑

i=2

l!
i!(l − i)!

·
(x

n

)i

·
(

n− x

n

)l−i

(3)

For both correction factors we assume that each node has the same proba-
bility of being added to the path. Thus, we can use the binomial distribution to
model the two correction factors. pDupl(n, x, l) represents the probability that
we find a node twice in a path of length l, while pZero(n, z, l) represents that
we find a node without outgoing edges on a path of length l.

To answer path length queries we have two different implementations. We
can either recursively traverse the graph or query GRIPP. For both implemen-
tations it is important how often we read relation EDGE or the GRIPP index.
The number of reads is related to the number of paths found and thus, the cor-
rection factors applied for the cardinality estimates also apply here. Equation 4
shows the functions to estimate the cost to compute paths up to a certain length.
GRIPP requires only

√
(m− n)/m times the number of reads of the recursive

strategy as some path information is already stored in the index.

Costpaths(GRIPP)(s, t, n, m, x, z, l) = s · t · c1 ·No readspaths(n, m, x, z, l)

·
√

(m− n)/m

Costpaths(recursive)(s, t, n, m, x, z, l) = s · t · c1 ·No readspaths(n, m, x, z, l)
with

No readspaths(n, m, x, z, l) =
l−1∑
i=0

(m

n
+ f(

m

n
, x)
)i

· (1− pZero(n, z, i))

· (1− pDupl(n, x, i + 1))
(4)

As for reachability queries we experimentally evaluate our cardinality esti-
mates and cost functions. Figure 4(a) and 4(b) show the experimentally and
predicted result sizes. Note, there is a clear difference between the sizes of ran-
dom and scale-free graphs. We capture this difference in Equation 3 by x, the
outdegree of the node with highest degree, which basically means that in scale-
free graphs more paths up to a certain length are found due to the nodes with
high outdegree. This difference is also reflected in the query time (data not
shown), where a query to find all paths up to length 7 for a given pair of nodes
requires in random graphs with 1,000 nodes and 2,000 edges on average 90 ms
and on scale-free graphs 800 ms using GRIPP. This difference is due to the size of
the resulting relation Paths (1.5 tuples compared to 23.3 tuples on average). In
comparison, a reachability query for a pair of nodes using GRIPP requires some
4 ms, regardless the size and shape of the graph. Clearly, this fact opens many
possibilities for query optimization by query rewriting as it is much cheaper to
execute a reachability query for the same set of input nodes than a path query.

 0.001

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12

A
vg

. n
um

be
r

of
 tu

pl
es

Number of tuples for method ’pair’ on random graphs

size 25/50
size 50/100

size 100/200
size 250/500

size 500/1000
size 1000/2000

approx 25/50
approx 50/100

approx 100/200
approx 250/500

approx 500/1000
approx 1000/2000

(a) Cardinality on random graphs.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12

A
vg

. n
um

be
r

of
 tu

pl
es

Number of tuples for method ’pair’ on scale-free graphs

size 25/50
size 50/100

size 100/200
size 250/500

size 500/1000
size 1000/2000

approx 25/50
approx 50/100

approx 100/200
approx 250/500

approx 500/1000
approx 1000/2000

(b) Cardinality on scale-free graphs.

Fig. 4. The figures show the estimated and actual result sizes for different graphs to
answer path queries for a given pair of nodes.

5 Conclusion

In this paper we provide functions to estimate the sizes of result sets and the
times to compute these for reachability and path queries. The presented functions
require as parameters only easy to compute key features of a graph, such as the
number of nodes and edges, the outdegree of the node with highest degree, and
the number of nodes without outgoing edges. We verified our proposed functions
experimentally on random and scale-free graphs.

These functions are a key requirement in query optimization. We are cur-
rently working to include the presented functions in our graph query opti-
mizer [16]. This optimizer has rewrite rules that state, in which cases a path
query may be rewritten to a reachability query. Based on the cardinality and
cost estimates presented here, the optimizer can then decide if query rewriting
is beneficial.

Bibliography

[1] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. Estimating the Selectiv-
ity of XML Path Expressions for Internet Scale Applications. In Proceedings of
VLDB, pages 591–600, 2001. Morgan Kaufmann.

[2] A.-L. Barabási and Z. N. Oltvai. Network biology: understanding the cell’s func-
tional organization. Nature Reviews Genetics, 5(2):101–113, Feb 2004.

[3] J. Cheng, J. X. Yu, and B. Ding. Cost-Based Query Optimization for Multi
Reachability Joins. In DASFAA, volume 4443 of Lecture Notes in Computer
Science, pages 18–30, 2007. Springer.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 2001.

[5] P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In
Proceedings of STOC, pages 365–372, 1987. ACM Press.

[6] A. Dries, S. Nijssen, and L. De Raedt. A query language for analyzing networks.
In Proceedings of ACM SIGMOD, pages 485–494, 2009. ACM Press.

[7] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible Query
Processing in Starburst. In Proceedings of the ACM SIGMOD, pages 377–388,
1989. ACM Press.

[8] H. He, and A. K. Singh. Graphs-at-a-time: query language and access methods
for graph databases. In Proceedings of the ACM SIGMOD, pages 405–418, 2008.
ACM Press.

[9] J van Helden, A Naim, R Mancusoet. al. Representing and analysing molecular
and cellular function using the computer. Journal of Biological Chemistry, 381(9-
10):921–935, 2000.

[10] Y. E. Ioannidis. The History of Histograms (abridged). In Proceedings of VLDB,
pages 19–30, 2003.

[11] U. Leser. A query language for biological networks. Bioinformatics, 21 Suppl
2:ii33–ii39, Sep 2005.

[12] R. J. Lipton and J. F. Naughton. Estimating the Size of Generalized Transitive
Closures. In Proceedings of VLDB, pages 165–171, 1989. Morgan Kaufmann.

[13] J. McHugh and J. Widom. Query Optimization for XML. In Proceedings of
VLDB, pages 315–326, 1999. Morgan Kaufmann.

[14] C. F Schaefer. Pathway databases. Annals of the New York Academy of Sciences,
1020:77–91, May 2004.

[15] M. Suderman, and M. Hallett. Tools for visually exploring biological networks.
Bioinformatics, 23: 2651–2659. 2007.

[16] S. Trißl. Cost-based Optimization of Graph Queries. In IDAR, 2007.
[17] S. Trißl and U. Leser. Fast and Practical Indexing and Querying of Very Large

Graphs. In Proceedings of ACM SIGMOD, pages 63–79, 2007. ACM Press.
[18] Y. Wu, Jignesh M. Patel, and H. V. Jagadish. Using histograms to estimate

answer sizes for XML queries. Inf. Syst., 28(1-2):33–59, 2003.

