Vorlesungsskript Theoretische Informatik III

Sommersemester 2008

Prof. Dr. Johannes Köbler Humboldt-Universität zu Berlin Lehrstuhl Komplexität und Kryptografie

5. Juli 2008

Inhaltsverzeichnis

1	Einle	Einleitung			
2	Such	en und Sortieren	3		
	2.1	Suchen von Mustern in Texten	3		
	2.2	String-Matching mit endlichen Automaten	4		
	2.3	Der Knuth-Morris-Pratt-Algorithmus	6		
	2.4	Durchsuchen von Mengen	9		
	2.5	Sortieren durch Einfügen	10		
	2.6	Sortieren durch Mischen	11		
	2.7	Lösen von Rekursionsgleichungen	14		
	2.8	Eine untere Schranke für die Fragekomplexität	15		
	2.9	QuickSort	16		
	2.10	HeapSort	20		
	2.11	CountingSort	23		
	2.12	RadixSort	23		
	2.13	BucketSort	24		
	2.14	Vergleich der Sortierverfahren	25		
	2.15	Datenstrukturen für dynamische Mengen	26		
		Verkettete Listen	26		
	2.17	Binäre Suchbäume	28		
	2.18	Balancierte Suchbäume	29		
3	Graj	ohalgorithmen	34		
	3.1	Grundlegende Begriffe	34		
	3.2	Datenstrukturen für Graphen	37		
	3.3	Keller und Warteschlange	38		
	3 4	Durchsuchen von Granhen	41		

INHALTSVERZEICHNIS

3.5	Zusammenhangskomponenten in ungerichteten Graphen	43				
3.6	Spannbäume und Spannwälder für ungerichtete Graphen					
3.7	Breiten- und Tiefensuche					
3.8	Starke Zusammenhangskomponenten					
3.9	Der Dijkstra-Algorithmus					
3.10	Kürzeste Pfade in Graphen mit negativen Kantengewichten	56				
	3.10.1 Der Bellman-Ford-Algorithmus	56				
	3.10.2 Der Bellman-Ford-Moore-Algorithmus	57				
3.11	Berechnung von kürzesten Wegen zwischen allen Knoten	59				
	3.11.1 Der Floyd-Warshall-Algorithmus	59				

Kapitel 1

Einleitung

In der VL ThI 2 standen folgende Themen im Vordergrund:

• Welche Probleme sind lösbar? (Berechenbarkeitstheorie)

• Welche Rechenmodelle sind adäquat? (Automatentheorie)

• Welcher Aufwand ist nötig? (Komplexitätstheorie)

Dagegen geht es in der VL ThI 3 in erster Linie um folgende Frage:

Wie lassen sich eine Reihe von praktisch relevanten Problemstellungen möglichst effizient lösen?
 (Algorithmik)

Der Begriff *Algorithmus* geht auf den persischen Gelehrten Muhammed Al Chwarizmi (8./9. Jhd.) zurück. Der älteste bekannte nicht-triviale Algorithmus ist der nach *Euklid* benannte Algorithmus zur Berechnung des größten gemeinsamen Teilers zweier natürlicher Zahlen (300 v. Chr.). Von einem Algorithmus wird erwartet, dass er jede *Problemeingabe* nach endlich vielen Rechenschritten löst (etwa durch Produktion einer Ausgabe). Ein Algorithmus ist ein "Verfahren" zur Lösung eines Entscheidungs- oder Berechnungsproblems, das sich prinzipiell auf einer Turingmaschine implementieren lässt (Churchsche These bzw. Church-Turing-These).

Die Registermaschine

Bei Aussagen zur Laufzeit von Algorithmen beziehen wir uns auf die Registermaschine (engl. Random Access Machine; RAM). Dieses Modell ist etwas flexibler als die Turingmaschine, da es den unmittelbaren Lese- und Schreibzugriff (random access) auf eine beliebige Speichereinheit (Register) erlaubt. Als Speicher stehen beliebig viele Register zur Verfügung, die jeweils eine beliebig große natürliche Zahl speichern können. Auf den Registerinhalten sind folgende arithmetische Operationen in einem Rechenschritt ausführbar: Addition, Subtraktion, abgerundetes Halbieren und Verdoppeln.

◁

Die Laufzeit von RAM-Programmen wird wie bei TMs in der Länge der Eingabe gemessen. Man beachte, dass bei arithmetischen Problemen (wie etwa Multiplikation, Division, Primzahltests, etc.) die Länge einer Zahleingabe n durch die Anzahl $\lceil \log n \rceil$ der für die Binärkodierung von n benötigten Bits gemessen wird. Dagegen bestimmt bei nicht-arithmetischen Problemen (z.B. Graphalgorithmen oder Sortierproblemen) die Anzahl der gegebenen Zahlen die Länge der Eingabe.

Asymptotische Laufzeit und Landau-Notation

Definition 1 Seien f und g Funktionen von \mathbb{N} nach \mathbb{R}^+ . Wir schreiben f(n) = O(g(n)), falls es Zahlen n_0 und c gibt mit

$$\forall n \geq n_0 : f(n) \leq c \cdot g(n).$$

Die Bedeutung der Aussage f(n)=O(g(n)) ist, dass f "nicht wesentlich schneller" als g wächst. Formal bezeichnet der Term O(g(n)) die Klasse aller Funktionen f, die obige Bedingung erfüllen. Die Gleichung f(n)=O(g(n)) drückt also in Wahrheit eine Element-Beziehung $f\in O(g(n))$ aus. O-Terme können auch auf der linken Seite vorkommen. In diesem Fall wird eine Inklusionsbeziehung ausgedrückt. So steht $n^2+O(n)=O(n^2)$ für die Aussage $\{n^2+f\mid f\in O(n)\}\subseteq O(n^2)$.

Beispiel 2

- $7\log(n) + n^3 = O(n^3)$ ist richtig.
- $7\log(n)n^3 = O(n^3)$ ist falsch.
- $2^{n+O(1)} = O(2^n)$ ist richtig.
- $2^{O(n)} = O(2^n)$ ist falsch (siehe Übungen).

Es gibt noch eine Reihe weiterer nützlicher Größenvergleiche von Funktionen.

Definition 3 Wir schreiben f(n) = o(g(n)), falls es für jedes c > 0 eine Zahl n_0 gibt mit

$$\forall n > n_0 : f(n) < c \cdot q(n).$$

Damit wird ausgedrückt, dass f "wesentlich langsamer" als g wächst. Außerdem schreiben wir

- $f(n) = \Omega(g(n))$ für g(n) = O(f(n)), d.h. f wächst mindestens so schnell wie g)
- $f(n) = \omega(g(n))$ für g(n) = o(f(n)), d.h. f wächst wesentlich schneller als g, und
- $f(n) = \Theta(g(n))$ für $f(n) = O(g(n)) \wedge f(n) = \Omega(g(n))$, d.h. f und g wachsen ungefähr gleich schnell.

Kapitel 2

Suchen und Sortieren

2.1 Suchen von Mustern in Texten

In diesem Abschnitt betrachten wir folgende algorithmische Problemstellung.

String-Matching (STRINGMATCHING):

```
Gegeben: Ein Text x=x_1\cdots x_n und ein Muster y=y_1\cdots y_m über einem Alphabet \Sigma.
```

Gesucht: Alle Vorkommen von y in x.

Wir sagen y kommt in x an Stelle i vor, falls $x_{i+1} \cdots x_{i+m} = y$ ist. Typische Anwendungen finden sich in Textverarbeitungssystemen (emacs, grep, etc.), sowie bei der DNS- bzw. DNA-Sequenz- analyse.

```
Beispiel 4 Sei \Sigma = \{A,C,G,U\}.
```

```
Text x = AUGACGAUGAUGUAGGUAGGUAGAUGAUGUAG,
Muster y = AUGAUGUAG.
```

◁

Das Muster y kommt im Text x an den Stellen 6 und 24 vor.

Bei naiver Herangehensweise kommt man sofort auf folgenden Algorithmus.

Algorithmus 5 NAIV-STRING-MATCHER

```
1 Eingabe: Text x=x_1\cdots x_n und Muster y=y_1\cdots y_m
2 V\leftarrow\emptyset
3 for i\leftarrow 0 to n-m do
4 if x_{i+1}\cdots x_{i+m}=y_1\cdots y_m then V\leftarrow V\cup\{i\} end
5 Ausgabe: V
```

Die Korrektheit von naiv-String-Matcher ergibt sich wie folgt:

- In der for-Schleife testet der Algorithmus alle potentiellen Stellen, an denen y in x vorkommen kann, und
- ullet fügt in Zeile 4 genau die Stellen i zu V hinzu, für die $x_{i+1} \cdots x_{i+m} = y$ ist.

Die Laufzeit von naiv-String-Matcher lässt sich nun durch folgende Überlegungen abschätzen:

- Die **for**-Schleife wird (n m + 1)-mal durchlaufen.
- Der Test in Zeile 4 benötigt maximal m Vergleiche.

Dies führt auf eine Laufzeit von $O(nm) = O(n^2)$. Für Eingaben der Form $x = a^n$ und $y = a^{\lfloor n/2 \rfloor}$ ist die Laufzeit tatsächlich $\Theta(n^2)$.

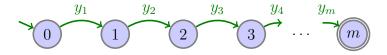
2.2 String-Matching mit endlichen Automaten

Durch die Verwendung eines endlichen Automaten lässt sich eine erhebliche Effizienzsteigerung erreichen. Hierzu konstruieren wir einen DFA M_y , der jedes Vorkommen von y in der Eingabe x durch Erreichen eines Endzustands anzeigt. M_y erkennt also die Sprache

$$L = \{x \in \Sigma^* \mid y \text{ ist Suffix von } x\}.$$

Konkret konstruieren wir M_y wie folgt:

- M_y hat m+1 Zustände, die den m+1 Präfixen $y_1 \cdots y_k$, $k=0,\ldots,m$, von y entsprechen.
- Liest M_y im Zustand k das Zeichen y_{k+1} , so wechselt M_y in den Zustand k+1, d.h. $\delta(k,y_{k+1})=k+1$ für $k=0,\ldots,m-1$:



• Falls das nächste Zeichen a nicht mit y_{k+1} übereinstimmt (engl. Mismatch), wechselt M_y in den Zustand

$$\delta(k, a) = \max\{j \le m \mid y_1 \cdots y_j \text{ ist Suffix von } y_1 \cdots y_k a\}.$$

 M_y speichert also in seinem Zustand die maximale Präfixlänge k, für die $y_1 \cdots y_k$ ein Suffix der gelesenen Eingabe ist:

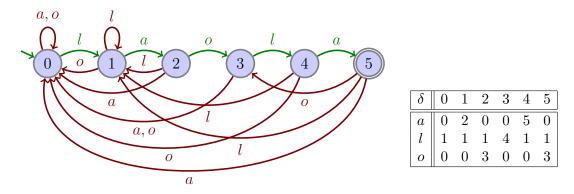
$$\hat{\delta}(0,x) = \max\{k \leq m \mid y_1 \cdots y_k \text{ ist Suffix von } x\}.$$

Die Korrektheit von M_y folgt aus der Beobachtung, dass M_y isomorph zum Äquivalenzklassenautomaten M_{R_L} für L ist. M_{R_L} hat die Zustände $[y_1 \cdots y_k]$, $k = 0, \ldots, m$, von denen nur $[y_1 \cdots y_m]$ ein Endzustand ist. Die Überführungsfunktion ist definiert durch

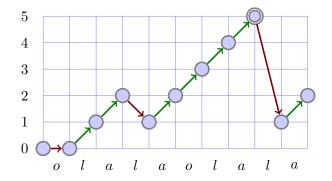
$$\delta([y_1 \cdots y_k], a) = [y_1 \cdots y_j],$$

wobei $y_1 \cdots y_j$ das längste Präfix von $y = y_1 \cdots y_m$ ist, welches Suffix von $y_1 \cdots y_j a$ ist (siehe Übungen).

Beispiel 6 Für das Muster y = laola ergibt sich folgender DFA M_y :



 M_y macht bei der Suche nach dem Muster y = laola im Text x = olalaolala folgende Übergänge:



◁

Insgesamt erhalten wir somit folgenden Algorithmus.

Algorithmus 7 DFA-STRING-MATCHER

- 1 **Eingabe:** Text $x = x_1 \cdots x_n$ und Muster $y = y_1 \cdots y_m$
- 2 konstruiere den DFA $M_y = (Z, \Sigma, \delta, 0, m)$ mit $Z = \{0, \dots, m\}$
- $V \leftarrow \emptyset$

```
4 \qquad k \leftarrow 0
5 \qquad \text{for } i \leftarrow 1 \text{ to } n \text{ do}
6 \qquad k \leftarrow \delta(k, x_i)
7 \qquad \text{if } k = m \text{ then } V \leftarrow V \cup \{i - m\} \text{ end}
8 \qquad \text{Ausgabe: } V
```

Die Korrektheit von DFA-String-Matcher ergibt sich unmittelbar aus der Tatsache, dass M_u die Sprache

$$L(M_y) = \{ x \in \Sigma^* \mid y \text{ ist Suffix von } x \}$$

erkennt. Folglich fügt der Algorithmus genau die Stellen j=i-m zu V hinzu, für die y ein Suffix von $x_1 \cdots x_i$ (also $x_{j+1} \cdots x_{j+m} = y$) ist.

Die Laufzeit von DFA-String-Matcher ist die Summe der Laufzeiten für die Konstruktion von M_y und für die Simulation von M_y bei Eingabe x, wobei letztere durch O(n) beschränkt ist. Für δ ist eine Tabelle mit $(m+1)\|\Sigma\|$ Einträgen

$$\delta(k, a) = \max\{j \le k + 1 \mid y_1 \cdots y_j \text{ ist Suffix von } y_1 \cdots y_k a\}$$

zu berechnen. Jeder Eintrag $\delta(k,a)$ ist in Zeit $O(k^2) = O(m^2)$ berechenbar. Dies führt auf eine Laufzeit von $O(\|\Sigma\|m^3)$ für die Konstruktion von M_y und somit auf eine Gesamtlaufzeit von $O(\|\Sigma\|m^3+n)$. Tatsächlich lässt sich M_y sogar in Zeit $O(\|\Sigma\|m)$ konstruieren.

2.3 Der Knuth-Morris-Pratt-Algorithmus

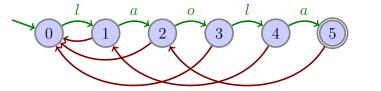
Durch eine Modifikation des Rücksprungmechanismus' lässt sich die Laufzeit von DFA-String-Matcher auf O(n+m) verbessern. Hierz vergegenwärtigen wir uns folgende Punkte:

- Tritt im Zustand k ein Mismatch $a \neq y_{k+1}$ auf, so ermittelt M_y das längste Präfix p von $y_1 \cdots y_k$ ist, das zugleich Suffix von $y_1 \cdots y_k a$ ist, und springt in den Zustand k' = |p|.
- Im Fall $k' \neq 0$ hat p also die Form p = p'a, wobei p' sowohl echtes Präfix als auch echtes Suffix von $y_1 \cdots y_k$ ist.
- Die Idee beim KMP-Algorithmus ist nun, unabhängig von a auf das nächst kleinere Präfix \tilde{p} von $y_1 \cdots y_k$ zu springen, das auch Suffix von $y_1 \cdots y_k$ ist.
- Dies wird solange wiederholt, bis das Zeichen a "passt" (also $\tilde{p}a$ Präfix von y ist) oder der Zustand 0 erreicht wird.

Der KMP-Algorithmus besucht also alle Zustände, die auch M_y besucht, führt aber die Rücksprünge in mehreren Etappen aus. Die Sprungadressen werden durch die so genannte $Präfixfunktion \ \pi: \{1,\ldots,m\} \to \{0,\ldots,m-1\}$ ermittelt:

$$\pi(k) = \max\{0 \le j \le k - 1 \mid y_1 \cdots y_j \text{ ist echtes Suffix von } y_1 \cdots y_k\}.$$

Beispiel 8 Für das Muster y = laola ergibt sich folgende Präfixfunktion π :

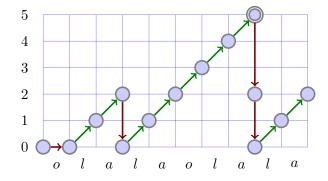


k	1	2	3	4	5
$\pi(k)$	0	0	0	1	2

Wir können uns die Arbeitsweise dieses Automaten wie folgt vorstellen:

- 1. Erlaubt das nächste Eingabezeichen einen Übergang vom aktuellen Zustand k nach k+1, so führe diesen aus.
- 2. Ist ein Übergang nach k+1 nicht möglich und $k\geq 1$, so springe in den Zustand $\pi(k)$ ohne das nächste Zeichen zu lesen.
- 3. Andernfalls (d.h. k=0 und ein Übergang nach 1 ist nicht möglich) lies das nächste Zeichen und bleibe im Zustand 0.

Der KMP-Algorithmus macht bei der Suche nach dem Muster y=laola im Text x=olalaolala folgende Übergänge:



◁

Auf die Frage, wie sich die Präfixfunktion π möglichst effizient berechnen lässt, werden wir später zu sprechen kommen. Wir betrachten zunächst das Kernstück des KMP-Algorithmus.

Algorithmus 9 KMP-String-Matcher

Eingabe: Text $x = x_1 \cdots x_n$ und Muster $y = y_1 \cdots y_m$

```
2
       \pi \leftarrow \texttt{KMP-Prefix}(y)
3
       V \leftarrow \emptyset
       k \leftarrow 0
4
5
       for i \leftarrow 1 to n do
          while (k > 0 \land x_i \neq y_{k+1}) do k \leftarrow \pi(k) end
6
          if x_i = y_{k+1} then k \leftarrow k+1 end
7
          if k = m then V \leftarrow V \cup \{i - m\}; k \leftarrow \pi(k) end
8
9
     Ausgabe: V
```

Die Korrektheit von KMP-String-Matcher ergibt sich einfach daraus, dass KMP-String-Matcher den Zustand m an genau den gleichen Textstellen besucht wie DFA-String-Matcher, und somit wie dieser alle Vorkommen von y im Text x findet.

Für die Laufzeitanalyse von KMP-String-Matcher (ohne die Berechnung von KMP-Prefix) stellen wir folgende Überlegungen an.

- Die Laufzeit ist proportional zur Anzahl der Zustandsübergänge.
- Bei jedem Schritt wird der Zustand um maximal Eins erhöht.
- Daher kann der Zustand nicht öfter verkleinert werden als er erhöht wird (*Amortisationsanalyse*).
- Es gibt genau *n* Zustandsübergänge, bei denen der Zustand erhöht wird bzw. unverändert bleibt.
- Insgesamt finden also höchstens 2n = O(n) Zustandsübergänge statt.

Nun kommen wir auf die Frage zurück, wie sich die Präfixfunktion π effizient berechnen lässt. Die Aufgabe besteht darin, für jedes Präfix $y_1\cdots y_i, i\geq 1$, das längste echte Präfix zu berechnen, das zugleich Suffix von $y_1\cdots y_i$ ist. Die Idee besteht nun darin, mit dem KMP-Algorithmus das Muster y im Text $y_2\cdots y_m$ zu suchen. Dann liefert der beim Lesen von y_i erreichte Zustand k gerade das längste Präfix $y_1\cdots y_k$, das zugleich Suffix von $y_2\cdots y_i$ ist (d.h. es gilt $\pi(i)=k$). Zudem werden bis zum Lesen von y_i nur Zustände kleiner als i erreicht. Daher sind die π -Werte für alle bis dahin auszuführenden Rücksprünge bereits bekannt und π kann in Zeit O(m) berechnet werden.

Algorithmus 10 KMP-PREFIX

```
1 Eingabe: Muster y = y_1 \cdots y_m
2 \pi(1) \leftarrow 0
3 k \leftarrow 0
4 for i \leftarrow 2 to m do
```

```
5 while (k > 0 \land y_i \neq y_{k+1}) do k \leftarrow \pi(k) end
6 if y_i = y_{k+1} then k \leftarrow k+1 end
7 \pi(i) \leftarrow k
```

8 Ausgabe: π

Wir fassen die Laufzeiten der in diesem Abschnitt betrachteten String-Matching Algorithmen in einer Tabelle zusammen:

Algorithmus	Vorverarbeitung	Suche	Gesamtlaufzeit
naiv	0	O(nm)	O(nm)
DFA (einfach)	$O(\ \Sigma\ m^3)$	O(n)	$O(\ \Sigma\ m^3+n)$
DFA (verbessert)	$O(\ \Sigma\ m)$	O(n)	$O(\ \Sigma\ m+n)$
Knuth-Morris-Pratt	O(m)	O(n)	O(n)

2.4 Durchsuchen von Mengen

Als nächstes betrachten wir folgendes Suchproblem.

Element-Suche

Gegeben: Eine Folge a_1, \ldots, a_n von natürlichen Zahlen und eine Zahl a.

Gesucht: Ein Index i mit $a_i = a$ (bzw. eine Fehlermeldung, falls $a \notin \{a_1, \ldots, a_n\}$ ist).

Typische Anwendungen finden sich bei der Verwaltung von Datensätzen, wobei jeder Datensatz über einen eindeutigen Schlüssel (z.B. *Matrikelnummer*) zugreifbar ist. Bei manchen Anwendungen können die Zahlen in der Folge auch mehrfach vorkommen (in diesem Fall ist $\{\{a_1,\ldots,a_n\}\}$ eine *Multimenge*). Gesucht sind dann evtl. alle Indizes i mit $a_i=a$.

Durch eine sequentielle Suche lässt sich das Problem in Zeit O(n) lösen.

Algorithmus 11 Sequential-Search

- 1 **Eingabe:** Eine Zahlenfolge a_1, \ldots, a_n und eine Zahl a
- $i \leftarrow 0$
- 3 repeat
- 4 $i \leftarrow i + 1$
- 5 until $(i = n \lor a = a_i)$
- 6 **Ausgabe:** i falls $a_i = a$ bzw. Fehlermeldung, falls $a_i \neq a$

Falls die Folge a_1, \ldots, a_n sortiert ist, d.h. es gilt $a_i \leq a_j$ für $i \leq j$, bietet sich eine *Binärsuche* an.

Algorithmus 12 BINARY-SEARCH

```
1 Eingabe: Eine Zahlenfolge a_1, \ldots, a_n und eine Zahl a
2 l \leftarrow 1
3 r \leftarrow n
4 while l < r do
5 m \leftarrow \lfloor (l+r)/2 \rfloor
6 if a \leq a_m then r \leftarrow m else l \leftarrow m+1 end
7 end
8 Ausgabe: i falls a_l = a bzw. Fehlermeldung, falls a_l \neq a
```

Offensichtlich gibt der Algorithmus im Fall $a \notin \{a_1, \ldots, a_n\}$ eine Fehlermeldung aus. Im Fall $a \in \{a_1, \ldots, a_n\}$ gilt die *Schleifeninvariante* $a_l \leq a \leq a_r$. Daher muss nach Abbruch der **while**-Schleife $a = a_l$ sein. Dies zeigt die Korrektheit von Binary-Search.

Da zudem die Länge l-r+1 des Suchintervalls [l,r] in jedem Schleifendurchlauf mindestens auf $\lfloor (l-r)/2 \rfloor + 1$ reduziert wird, werden höchstens $\lceil \log n \rceil$ Schleifendurchläufe ausgeführt. Folglich ist die Laufzeit von Binary-Search höchstens $O(\log n)$.

2.5 Sortieren durch Einfügen

Wie wir im letzten Abschnitt gesehen haben, lassen sich Elemente in einer sortierten Folge sehr schnell aufspüren. Falls wir also diese Operation sehr oft ausführen müssen, bietet es sich an, die Zahlenfolge zu sortieren.

Sortierproblem

```
Gegeben: Eine Folge a_1, \ldots, a_n von natürlichen Zahlen.
```

```
Gesucht: Eine Permutation a_{i_1}, \ldots, a_{i_n} dieser Folge mit a_{i_j} \leq a_{i_{j+1}} für j = 1, \ldots, n-1.
```

Man unterscheidet vergleichende Sortierverfahren von den übrigen Sortierverfahren.

Während erstere nur Anfragen der Form $a_i \stackrel{?}{\leq} a_j$ bzw. $a_i \stackrel{?}{<} a_j$ stellen dürfen, können letztere auch die konkreten Zahlenwerte a_i der Folge abfragen. Vergleichsbasierte Verfahren benötigen im schlechtesten Fall $\Omega(n \log n)$ Vergleiche, während letztere unter bestimmten Zusatzvoraussetzungen sogar in Linearzeit arbeiten.

Ein einfacher Ansatz, eine Zahlenfolge zu sortieren, besteht darin, sequentiell die Zahl a_i $(i=2,\ldots,n)$ in die bereits sortierte Teilfolge a_1,\ldots,a_{i-1} einzufügen.

Algorithmus 13 INSERTION-SORT

```
Eingabe: Eine Zahlenfolge a_1, \ldots, a_n
 2
         for i \leftarrow 2 to n do
 3
           z \leftarrow a_i
 4
           j \leftarrow i - 1
           while (j \ge 1 \land a_j > z) do
 5
 6
              a_{j+1} \leftarrow a_j
 7
              i \leftarrow i - 1
 8
            end
 9
            a_{i+1} \leftarrow z
10
      Ausgabe: a_1, \ldots, a_n
```

Die Korrektheit von Insertion-Sort lässt sich induktiv durch den Nachweis folgender Schleifeninvarianten beweisen:

- Nach jedem Durchlauf der **for**-Schleife sind a_1, \ldots, a_i sortiert.
- Nach jedem Durchlauf der while-Schleife gilt $z < a_k$ für $k = j + 2, \dots, i$.

Zusammen mit der Abbruchbedingung der **while**-Schleife folgt hieraus, dass z in Zeile 5 an der jeweils richtigen Stelle eingefügt wird.

Da zudem die **while**-Schleife für jedes $i=2,\ldots,n$ höchstens (i-1)-mal ausgeführt wird, ist die Laufzeit von Insertion-Sort durch $\sum_{i=2}^n O(i-1) = O(n^2)$ begrenzt.

Bemerkung 14

- Ist die Eingabefolge a_1, \ldots, a_n bereits sortiert, so wird die **while**-Schleife niemals durchlaufen. Im *besten Fall* ist die Laufzeit daher $\sum_{i=2}^n \Theta(1) = \Theta(n)$.
- Ist die Eingabefolge a_1, \ldots, a_n dagegen absteigend sortiert, so wandert z in i-1 Durchläufen der **while**-Schleife vom Ende an den Anfang der bereits sortierten Teilfolge a_1, \ldots, a_i . Im *schlechtesten Fall* ist die Laufzeit also $\sum_{i=2}^n \Theta(i-1) = \Theta(n^2)$.
- Bei einer zufälligen Eingabepermutation der Folge $1, \ldots, n$ wird z im Erwartungswert in der Mitte der Teilfolge a_1, \ldots, a_i eingefügt. Folglich beträgt die (erwartete) Laufzeit im *durchschnittlichen Fall* ebenfalls $\sum_{i=2}^n \Theta(\frac{i-1}{2}) = \Theta(n^2)$.

2.6 Sortieren durch Mischen

Wir können eine Zahlenfolge auch sortieren, indem wir sie in zwei Teilfolgen zerlegen, diese durch rekursive Aufrufe sortieren und die sortierten Teilfolgen wieder zu einer Liste zusammenfügen.

Diese Vorgehensweise ist unter dem Schlagwort "Divide and Conquer" (auch "divide et impera", also "teile und herrsche") bekannt. Dabei wird ein Problem gelöst, indem man es

- in mehrere Teilprobleme aufteilt,
- die Teilprobleme rekursiv löst, und
- die Lösungen der Teilprobleme zu einer Gesamtlösung des ursprünglichen Problems zusammenfügt.

Die Prozedur Mergesort(A, l, r) sortiert ein Feld $A[l \dots r]$, indem sie

- es in die Felder $A[l \dots m]$ und $A[m+1 \dots r]$ zerlegt,
- diese durch jeweils einen rekursiven Aufruf sortiert, und
- die sortierten Teilfolgen durch einen Aufruf der Prozedur Merge(A, l, m, r) zu einer sortierten Folge zusammenfügt.

Prozedur 15 Mergesort(A, l, r)

```
1 if l < r then
```

- $2 \qquad m \leftarrow \lfloor (l+r)/2 \rfloor$
- 3 Mergesort(A, l, m)
- 4 Mergesort(A, m+1, r)
- 5 Merge(A, l, r, m)

Die Prozedur Merge(A, l, m, r) mischt die beiden sortierten Felder $A[l \dots m]$ und $A[m+1 \dots r]$ zu einem sortierten Feld $A[l \dots r]$.

Prozedur 16 MERGE(A, l, m, r)

```
1 allokiere Speicher für ein neues Feld B[l \dots r]
```

- $2 \quad j \leftarrow l$
- $3 \quad k \leftarrow m+1$
- 4 for $i \leftarrow l$ to r do
- 5 **if** j > m then $B[i] \leftarrow A[k]; k \leftarrow k+1$
- 6 else if k > r then $B[i] \leftarrow A[j]; j \leftarrow j+1$
- 7 **else if** $A[j] \le A[k]$ **then** $B[i] \leftarrow A[j]$; $j \leftarrow j + 1$
- 8 else $B[i] \leftarrow A[k]; k \leftarrow k+1$ end
- 9 kopiere das Feld $B[l \dots r]$ in das Feld $A[l \dots r]$
- 10 gib den Speicher für B wieder frei

Man beachte, dass Merge für die Zwischenspeicherung der gemischten Folge zusätzlichen Speicher benötigt. Mergesort ist daher kein "in place"-Sortierverfahren, welches neben dem Speicherplatz für die Eingabefolge nur konstant viel zusätzlichen Speicher belegen darf. Zum Beispiel ist Insertion-Sort ein "in place"-Verfahren. Auch Mergesort kann als ein "in place"-Sortierverfahren implementiert werden, falls die zu sortierende Zahlenfolge nicht als Array, sondern als mit Zeigern verkettete Liste vorliegt (hierzu muss allerdings auch noch die Rekursion durch eine Schleife ersetzt werden).

Unter der Voraussetzung, dass Merge korrekt arbeitet, können wir per Induktion über die Länge n=r-l+1 des zu sortierenden Arrays die Korrektheit von Mergesort wie folgt beweisen:

n=1: In diesem Fall tut Mergesort nichts, was offensichtlich korrekt ist.

 $n \rightsquigarrow n+1$: Um eine Folge der Länge $n+1 \geq 2$ zu sortieren, zerlegt sie Mergesort in zwei Folgen der Länge höchstens n. Diese werden durch die rekursiven Aufrufe nach IV korrekt sortiert und von Merge nach Voraussetzung korrekt zusammengefügt.

Die Korrektheit von Merge lässt sich leicht induktiv durch den Nachweis folgender Invariante für die FOR-Schleife beweisen:

- Nach jedem Durchlauf enthält $B[l\cdots i]$ die i-l+1 kleinsten Elemente aus $A[l\cdots m]$ und $A[m+1\cdots r]$ in sortierter Reihenfolge.
- Hierzu wurden die ersten j-1 Elemente von $A[l\cdots m]$ und die ersten k-1 Elemente von $A[m+1\cdots r]$ nach B kopiert.

Nach dem letzten Durchlauf (d.h. i=r) enthält daher $B[l\cdots r]$ alle r-l+1 Elemente aus $A[l\cdots m]$ und $A[m+1\cdots r]$ in sortierter Reihenfolge, womit die Korrektheit von Merge bewiesen ist.

Um eine Schranke für die Laufzeit von Mergesort zu erhalten, schätzen wir zunächst die Anzahl V(n) der Vergleiche ab, die Mergesort (im schlechtesten Fall) benötigt, um ein Feld $A[l\cdots m]$ der Länge n=r-l+1 zu sortieren. Wir bezeichnen die Anzahl der Vergleiche, die Merge benötigt, um die beiden sortierten Felder $A[l\dots m]$ und $A[m+1\dots r]$ zu mischen, mit M(n). Dann erfüllt V(n) die Rekursionsgleichung

$$V(n) = \begin{cases} 0, & \text{falls } n = 1, \\ V(\lfloor n/2 \rfloor) + V(\lceil n/2 \rceil) + M(n), & n \geq 2. \end{cases}$$

Offensichtlich benötigt Merge M(n) = n - 1 Vergleiche. Falls n also eine Zweierpotenz ist, genügt es, folgende Rekursion zu lösen:

$$V(1) = 0 \text{ und } V(n) = 2V(n/2) + n - 1, n \geq 2.$$

Hierzu betrachten wir die Funktion $f(k) = V(2^k)$. Dann gilt

$$f(0) = 0$$
 und $f(k) = 2f(k-1) + 2^k - 1, k \ge 1$.

Aus den ersten Folgengliedern f(0)=0, f(1)=1, $f(2)=2+2^2-1=1\cdot 2^2+1,$ $f(3)=2\cdot 2^2+2+2^3-1=2\cdot 2^3+1$ und $f(4)=2\cdot 2\cdot 2^3+2+2^4-1=3\cdot 2^4+1$ lässt sich vermuten, dass $f(k)=(k-1)\cdot 2^k+1$ ist. Dies lässt sich leicht durch Induktion über k verifizieren, so dass wir für V die Lösungsfunktion $V(n)=n\log_2 n-n+1$ erhalten.

Wir fassen unsere Beobachtungen zur Komplexität von MergeSort zusammen: Falls n eine Zweierpotenz ist, stellt MergeSort im schlechtesten Fall $V(n) = n\log_2 n - n + 1$ Fragen. Ist n keine Zweierpotenz, so können wir die Anzahl der Fragen durch $V(n') \leq V(2n) = O(V(n))$ abschätzen, wobei $n' \leq 2n$ die kleinste Zweierpotenz größer als n ist. Zudem ist leicht zu sehen, dass die Laufzeit T(n) von MergeSort asymptotisch durch die Anzahl V(n) der Vergleiche beschränkt ist, d.h. es gilt T(n) = O(V(n)).

Satz 17 MergeSort ist ein vergleichendes Sortierverfahren mit einer Laufzeit von $O(n \log n)$.

2.7 Lösen von Rekursionsgleichungen

Im Allgemeinen liefert der "Divide and Conquer"-Ansatz einfach zu implementierende Algorithmen mit einfachen Korrektheitsbeweisen. Die Laufzeit T(n) erfüllt dann eine Rekursionsgleichung der Form

$$T(n) = \begin{cases} \Theta(1), & \text{falls } n \text{ ,,klein" ist,} \\ D(n) + \sum_{i=1}^{\ell} T(n_i) + C(n), & \text{sonst.} \end{cases}$$

Dabei ist D(n) der Aufwand für das Aufteilen der Probleminstanz und C(n) der Aufwand für das Verbinden der Teillösungen. Um solche Rekursionsgleichungen zu lösen, kann man oft eine Lösung "raten" und per Induktion beweisen. Mit Hilfe von Rekursionsbäumen lassen sich Lösungen auch "gezielt raten". Eine asymptotische Abschätzung liefert folgender Hauptsatz der Laufzeitfunktionen (Satz von Akra & Bazzi).

Satz 18 (Mastertheorem) Sei $T: \mathbb{N} \to \mathbb{N}$ eine Funktion der Form

$$T(n) = \sum_{i=1}^{\ell} T(n_i) + f(n),$$

mit $\ell, n_1, \ldots, n_\ell \in \mathbb{N}$ und $n_i \in \{\lfloor \alpha_i n \rfloor, \lceil \alpha_i n \rceil\}$ für fest gewählte reelle Zahlen $0 < \alpha_i < 1$ für $i = 1, \ldots, \ell$. Dann gilt im Fall $f(n) = \Theta(n^k)$ mit $k \ge 0$:

$$T(n) = \begin{cases} \Theta(n^k), & \textit{falls } \sum_{i=1}^{\ell} \alpha_i^k < 1, \\ \Theta(n^k \log n), & \textit{falls } \sum_{i=1}^{\ell} \alpha_i^k = 1, \\ \Theta(n^c), & \textit{falls } \sum_{i=1}^{\ell} \alpha_i^k > 1, \end{cases}$$

wobei c Lösung der Gleichung $\sum_{i=1}^{\ell} \alpha_i^c = 1$ ist.

2.8 Eine untere Schranke für die Fragekomplexität

Frage 19 Wie viele Vergleichsfragen benötigt ein vergleichender Sortieralgorithmus A mindestens, um eine Folge (a_1, \ldots, a_n) von n Zahlen zu sortieren?

Zur Beantwortung dieser Frage betrachten wir alle n! Eingabefolgen (a_1,\ldots,a_n) der Form $(\pi(1),\ldots,\pi(n))$, wobei $\pi\in S_n$ eine beliebige Permutation auf der Menge $\{1,\ldots,n\}$ ist. Um diese Folgen korrekt zu sortieren, muss A solange Fragen der Form $a_i < a_j$ (bzw. $\pi(i) < \pi(j)$) stellen, bis höchstens noch eine Permutation $\pi\in S_n$ mit den erhaltenen Antworten konsistent ist. Damit A möglichst viele Fragen stellen muss, beantworten wir diese so, dass mindestens die Hälfte der verbliebenen Permutationen mit unserer Antwort konsistent ist (Mehrheitsvotum). Diese Antwortstrategie stellt sicher, dass nach i Fragen noch mindestens $n!/2^i$ konsistente Permutationen übrig bleiben. Daher muss A mindestens

$$\lceil \log_2(n!) \rceil = n \log_2 n - n \log_2 e + \Theta(\log n) = n \log_2 n - \Theta(n)$$

Fragen stellen, um die Anzahl der konsistenten Permutationen auf Eins zu reduzieren.

Satz 20 Ein vergleichendes Sortierverfahren benötigt mindestens $\lceil \log_2(n!) \rceil$ Fragen, um eine Folge (a_1, \ldots, a_n) von n Zahlen zu sortieren.

Wir können das Verhalten von A auch durch einen Fragebaum B veranschaulichen, dessen Wurzel mit der ersten Frage von A markiert ist. Jeder mit einer Frage markierte Knoten hat zwei Kinder, die die Antworten ja und nein auf diese Frage repräsentieren. Stellt A nach Erhalt der Antwort eine weitere Frage, so markieren wir den entsprechenden Antwortknoten mit dieser Frage. Andernfalls gibt A eine Permutation π der Eingabefolge aus und der zugehörige Antwortknoten ist ein Blatt, das wir mit π markieren. Nun ist leicht zu sehen, dass die Tiefe von B mit der Anzahl V(n) der von A benötigten Fragen im schlechtesten Fall übereinstimmt. Da jede Eingabefolge zu einem anderen Blatt führt, hat B mindestens n! Blätter. Folglich können wir in B einen Pfad der Länge $\lceil \log_2(n!) \rceil$ finden, indem wir jeweils in den Unterbaum mit der größeren Blätterzahl verzweigen.

Da also jedes vergleichende Sortierverfahren mindestens $\Omega(n \log n)$ Fragen benötigt, ist Mergesort asymptotisch optimal.

Korollar 21 MergeSort ist ein vergleichendes Sortierverfahren mit einer im schlechtesten Fall asymptotisch optimalen Laufzeit von $O(n \log n)$.

2.9 QuickSort

Ein weiteres Sortierverfahren, das den "Divide and Conquer"-Ansatz benutzt, ist QuickSort. Im Unterschied zu MergeSort wird hier das Feld *vor* den rekursiven Aufrufen umsortiert.

Prozedur 22 QUICKSORT(A, l, r)

```
1 if l < r then

2 m \leftarrow \text{Partition}(A, l, r)

3 QuickSort(A, l, m - 1)

4 QuickSort(A, m + 1, r)
```

Die Prozedur QuickSort(A, l, r) sortiert ein Feld $A[l \dots r]$ wie folgt:

- Zuerst wird die Funktion Partition(A, l, r) aufgerufen.
- Diese wählt ein *Pivotelement*, welches sich nach dem Aufruf in A[m] befindet, und sortiert das Feld so um, dass gilt:

$$A[i] \leq A[m] \leq A[j] \text{ für alle } i,j \text{ mit } l \leq i < m < j \leq r. \quad \ (*)$$

• Danach werden die beiden Teilfolgen $A[l \dots m-1]$ und $A[m+1 \dots r]$ durch jeweils einen rekursiven Aufruf sortiert.

Die Funktion Partition(A,l,r) pivotisiert das Feld $A[l \dots r]$, indem

- sie x = A[r] als Pivotelement wählt,
- die übrigen Elemente mit x vergleicht und dabei umsortiert und
- den neuen Index i + 1 von x zurückgibt.

Funktion 23 Partition(A,l,r)

```
\begin{array}{ll} 1 & i \leftarrow l-1; \\ 2 & \textbf{for } j \leftarrow l \textbf{ to } r-1 \textbf{ do} \\ 3 & \textbf{ if } A[j] \leq A[r] \textbf{ then} \\ 4 & i \leftarrow i+1; \\ 5 & \textbf{ if } i < j \textbf{ then} \\ 6 & \text{ vertausche } A[i] \text{ und } A[j]; \\ 7 & \textbf{ if } i+1 < r \textbf{ then} \\ 8 & \text{ vertausche } A[i+1] \text{ und } A[r]; \\ 9 & \textbf{ return}(i+1) \end{array}
```

Unter der Voraussetzung, dass die Funktion Partition korrekt arbeitet, d.h. nach ihrem Aufruf gilt (*), folgt die Korrektheit von QuickSort durch einen einfachen Induktionsbeweis über die Länge n=r-l+1 des zu sortierenden Arrays.

Die Korrektheit von Partition wiederum folgt leicht aus folgender Invariante für die FOR-Schleife:

```
A[k] \leq A[r] für k = 1, \ldots, i und A[k] > A[r] für k = i + 1, \ldots, j.
```

Da nämlich nach Ende der FOR-Schleife j=r-1 ist, garantiert die Vertauschung von A[i+1] und A[r] die Korrektheit von Partition.

Wir müssen also nur noch die Gültigkeit der Schleifeninvariante nachweisen. Um eindeutig definierte Werte von *j* vor und nach jeder Iteration der FOR-Schleife zu haben, ersetzen wir sie durch eine semantisch äquivalente WHILE-Schleife:

```
Funktion 24 Partition(A, l, r)
```

```
\begin{array}{lll} 1 & i \leftarrow l-1; \\ 2 & j \leftarrow l-1; \\ 3 & \textbf{while} \ j < r-1 \ \textbf{do} \\ 4 & j \leftarrow j+1; \\ 5 & \textbf{if} \ A[j] \leq A[r] \ \textbf{then} \\ 6 & i \leftarrow i+1; \\ 7 & \textbf{if} \ i < j \ \textbf{then} \\ 8 & \text{vertausche} \ A[i] \ \text{und} \ A[j]; \\ 9 & \textbf{if} \ i+1 < r \ \textbf{then} \\ 10 & \text{vertausche} \ A[i+1] \ \text{und} \ A[r]; \\ 11 & \textbf{return}(i+1) \end{array}
```

Nun lässt sich die Invariante leicht induktiv beweisen.

Induktionsanfang: Vor Beginn der WHILE-Schleife gilt die Invariante, da i und j den Wert l-1 haben.

Induktionsschritt: Zunächst wird j hochgezählt und dann A[j] mit A[r] verglichen.

- Im Fall $A[j] \leq A[r]$ wird auch i hochgezählt (d.h. nach Zeile 6 gilt A[i] > A[r]). Daher gilt nach der Vertauschung in Zeile 8: $A[i] \leq A[r]$ und A[j] > A[r], weshalb die Gültigkeit der Invariante erhalten bleibt.
- Im Fall A[j] > A[r] behält die Invariante ebenfalls ihre Gültigkeit, da nur j hochgezählt wird und i unverändert bleibt.

Als nächstes schätzen wir die Laufzeit von QuickSort im schlechtesten Fall ab. Dieser Fall tritt ein, wenn sich das Pivotelement nach jedem Aufruf von Partition

am Rand von A (d.h. m=l oder m=r) befindet. Dies führt nämlich dazu, dass Partition der Reihe nach mit Feldern der Länge $n, n-1, n-2, \ldots, 1$ aufgerufen wird. Da Partition für die Umsortierung eines Feldes der Länge n genau n-1 Vergleiche benötigt, führt QuickSort insgesamt die maximal mögliche Anzahl

$$V(n) = \sum_{i=1}^{n} (i-1) = \binom{n}{2} = \Theta(n^2)$$

von Vergleichen aus. Dieser ungünstige Fall tritt insbesondere dann ein, wenn das Eingabefeld A bereits (auf- oder absteigend) sortiert ist.

Im besten Fall zerlegt das Pivotelement das Feld dagegen jeweils in zwei gleich große Felder, d.h. V(n) erfüllt die Rekursion

$$V(n) = \begin{cases} 0, & n = 1, \\ V(\lfloor (n-1)/2 \rfloor) + V(\lceil (n-1)/2 \rceil) + n - 1, & n \ge 2. \end{cases}$$

Diese hat die Lösung $V(n) = n \log_2 n - \Theta(n)$ (vgl. die worst-case Abschätzung bei MergeSort).

Es gibt auch Pivotauswahlstrategien, die in linearer Zeit z.B. den Median bestimmen. Dies führt auf eine Variante von QuickSort mit einer Laufzeit von $\Theta(n \log n)$ bei allen Eingaben. Allerdings ist die Bestimmung des Medians für praktische Zwecke meist zu aufwändig.

Bei der Analyse des Durchschnittsfalls gehen wir von einer zufälligen Eingabepermutation $A[1\dots n]$ der Folge $1,\dots,n$ aus. Dann ist die Anzahl V(n) der Vergleichsanfragen von QuickSort eine Zufallsvariable. Wir können V(n) als Summe $\sum_{1\leq i\leq j\leq n} X_{ij}$ folgender Indikatorvariablen darstellen:

$$X_{ij} = \begin{cases} 1, & \text{falls die Werte } i \text{ und } j \text{ verglichen werden,} \\ 0, & \text{sonst.} \end{cases}$$

Ob die Werte i und j verglichen werden, entscheidet sich beim ersten Aufruf von Partition(A,l,r), bei dem das Pivotelement x=A[r] im Intervall

$$I_{ij} = \{i, \dots, j\}$$

liegt. Bis zu diesem Aufruf werden die Werte im Intervall I_{ij} nur mit Pivotelementen außerhalb von I_{ij} verglichen und bleiben daher im gleichen Teilfeld $A[l \dots r]$ beisammen. Ist das erste Pivotelement x in I_{ij} nun nicht gleich i oder j, dann werden i und j zwar mit x verglichen. Das liegt daran dass im Fall i < x < j die Werte i und j bei diesem Aufruf in zwei verschiedene Teilfelder getrennt werden und daher nicht mehr miteinander verglichen werden.

Die Werte i und j werden also genau dann verglichen, wenn das erste Pivotelement x im Intervall I_{ij} den Wert i oder j hat. Da die Eingabe eine Zufallsfolge ohne Mehrfachvorkommen ist, nimmt x jeden Wert in I_{ij} mit Wahrscheinlichkeit 1/(j-i+1)

an. Daher findet mit Wahrscheinlichkeit $p_{ij}=2/(j-i+1)$ ein Vergleich zwischen den Werten i und j statt.

Der Erwartungswert von $V(n) = \sum_{1 \le i \le j \le n} X_{ij}$ berechnet sich nun zu

$$E[V(n)] = \sum_{1 \le i < j \le n} \underbrace{E[X_{ij}]}_{p_{ij}} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}$$
$$\le \sum_{i=1}^{n-1} \sum_{k=2}^{n} \frac{2}{k} = \sum_{i=1}^{n-1} O(\log n) = O(n \log n).$$

Damit haben wir folgenden Satz bewiesen. Dass für vergleichende Sortierverfahren eine Laufzeit von $O(n \log n)$ auch im Durchschnitt asymptotisch optimal ist, wird in den Übungen gezeigt.

Satz 25 QuickSort ist ein vergleichendes Sortierverfahren mit einer im Durchschnitt asymptotisch optimalen Laufzeit von $O(n \log n)$.

Unabhängig davon nach welcher (deterministischen) Strategie das Pivotelement gewählt wird, wird es immer Eingabefolgen geben, für die QuickSort $\binom{n}{2}$ Vergleiche benötigt. Eine Möglichkeit, die Effizienz von QuickSort im Durchschnittsfall auf den schlechtesten Fall zu übertragen, besteht darin, eine *randomisierte* Auswahlstrategie für das Pivotelement anzuwenden.

Die Prozedur RandomQuickSort(A,l,r) arbeitet ähnlich wie QuickSort. Der einzige Unterschied besteht darin, dass als Pivotelement ein zufälliges Element aus dem Feld $A[l\dots r]$ gewählt wird.

Prozedur 26 RANDOMQUICKSORT(A, l, r)

- 1 if l < r then
- $2 \qquad m \leftarrow \mathtt{RandomPartition}(A,l,r)$
- 3 RandomQuickSort(A, l, m-1)
- 4 RandomQuickSort(A, m+1, r)

Funktion 27 RANDOMPARTITION (A, l, r)

- 1 rate zufällig $j \in \{l, \ldots, r\}$
- 2 if j < r then
- 3 vertausche A[j] und A[r];
- 4 **return**(Partition(A, l, r))

Es ist nicht schwer zu zeigen, dass sich RandomQuickSort bei jeder Eingabefolge $A[l,\ldots,r]$ exakt gleich verhält wie QuickSort bei einer zufälligen Permutation dieser Eingabefolge (siehe Übungen). Daher ist die (erwartete) Laufzeit von RandomQuickSort auch im schlechtesten Fall durch $O(n\log n)$ beschränkt, falls Mehrfachvorkommen ausgeschlossen sind.

2.10 HeapSort

Satz 28 RandomQuickSort ist ein randomisiertes vergleichendes Sortierverfahren mit einer im schlechtesten Fall asymptotisch optimalen Laufzeit von $O(n \log n)$.

2.10 HeapSort

Die Prozedur HeapSort(A,l,r) benutzt als Datenstruktur einen so genannten Heap, um ein Feld $A[1\dots n]$ zu sortieren.

Definition 29 Ein $Heap\ H$ mit n Knoten ist ein geordneter Binärbaum nebenstehender Form. Das heißt, H hat in Tiefe $i=0,1,\ldots,\lfloor\log_2 n\rfloor-1$ jeweils die maximale Anzahl von 2^i Knoten und in Tiefe $\lfloor\log_2 n\rfloor$ sind alle Knoten linksbündig angeordnet. Zudem ist jeder Knoten v mit einer Zahl H[v] beschriftet, deren Wert mindestens so groß ist wie die Werte der Kinder von v (sofern vorhanden).

Ein Heap H mit n Knoten lässt sich in einem Feld $H[1, \ldots, n]$ speichern. Dabei gilt:

- Das linke Kind von Knoten i hat den Index left(i) = 2i.
- Das rechte Kind von Knoten i hat den Index right(i) = 2i + 1.
- Der Elternknoten von Knoten i hat den Index parent $(i) = \lfloor i/2 \rfloor$.

Die Heap-Eigenschaft lässt sich nun wie folgt formulieren:

Für alle Knoten $i \in \{1, ..., n\}$ gilt:

$$(2i \le n \Rightarrow H[i] \ge H[2i]) \land (2i+1 \le n \Rightarrow H[i] \ge H[2i+1]).$$

Da die Knoten im Intervall $\{\lfloor n/2 \rfloor + 1, \dots, n\}$ keine Kinder haben, ist für sie die Heap-Eigenschaft automatisch erfüllt.

Ist $H[1,\ldots,n]$ ein Heap, dann repräsentiert auch jedes Anfangsstück $H[1,\ldots,r]$, $1 \le r \le n$, einen Heap H_r mit r Knoten. Zudem ist für $1 \le i \le r \le n$ der Teilbaum von H_r mit Wurzel i ein Heap, den wir mit $H_{i,r}$ bezeichnen.

Aufgrund der Heap-Eigenschaft muss die Wurzel H[1] eines Heaps den größten Wert haben. Daher können wir eine in einem Heap $H[1,\ldots,n]$ gespeicherte Zahlenfolge sortieren, indem wir sukzessive

- die Wurzel H[1] mit dem letzten Feldelement des Heaps vertauschen,
- den rechten Rand des Heaps um ein Feld nach links verschieben (also die vormalige Wurzel des Heaps herausnehmen) und

2.10 HeapSort

• die durch die Ersetzung der Wurzel verletzte Heap-Eigenschaft wieder herstellen.

Natürlich müssen wir zu Beginn die Heap-Eigenschaft auf dem gesamten Feld erst einmal herstellen.

Sei $H[1,\ldots,n]$ ein Feld, so dass der Teilbaum $H_{i,r}$ die Heap-Eigenschaft in allen Knoten bis auf seine Wurzel i erfüllt. Dann stellt die Prozedur Heapify(H,i,r) die Heap-Eigenschaft im gesamten Teilbaum $H_{i,r}$ her.

```
Prozedur 30 HEAPIFY(H, i, r)
```

```
1 if (2i \le r) \land (H[2i] > H[i]) then x \leftarrow 2i
```

- 2 else $x \leftarrow i$ end
- 3 if $(2i + 1 \le r) \land (H[2i + 1] > H[x])$ then
- 4 $x \leftarrow 2i + 1$
- 5 if x > i then
- 6 vertausche H[x] und H[i]
- 7 Heapify(H, x, r)

Unter Verwendung der Prozedur Heapify ist es nun leicht, ein Feld zu sortieren.

Prozedur 31 HEAPSORT(H,1,n)

- 1 for $i \leftarrow \lfloor n/2 \rfloor$ downto 1 do
- $2 \qquad \texttt{Heapify}(H,i,n)$
- 3 for $r \leftarrow n$ downto 2 do
- 4 vertausche H[1] und H[r]
- 5 Heapify(H, 1, r 1)

Wir setzen zunächst voraus, dass die Prozedur Heapify korrekt arbeitet. D.h. Heapify(H,i,r) stellt die Heap-Eigenschaft im gesamten Teilbaum $H_{i,r}$ her, falls $H_{i,r}$ die Heap-Eigenschaft höchstens in seiner Wurzel i nicht erfüllt. Unter dieser Voraussetzung folgt die Korrektheit von HeapSort durch den Nachweis folgender Schleifeninvarianten, der sich sehr leicht erbringen lässt.

Invariante für die erste FOR-Schleife:

Für j = i, ..., n erfüllt der Teilbaum $H_{j,n}$ die Heap-Eigenschaft.

Invariante für die zweite FOR-Schleife:

 $H[r], \ldots, H[n]$ enthalten die n-r+1 größten Feldelemente in sortierter Reihenfolge und der Teilbaum $H_{1,r-1}$ erfüllt die Heap-Eigenschaft.

2.10 HeapSort

Als nächstes zeigen wir die Korrektheit von Heapify. Sei also $H[1,\ldots,n]$ ein Feld, so dass der Teilbaum $H_{i,r}$ die Heap-Eigenschaft in allen Knoten bis auf seine Wurzel i erfüllt. Dann müssen wir zeigen, dass Heapify(H,i,r) die Heap-Eigenschaft im gesamten Teilbaum $H_{i,r}$ herstellt.

Heapify(H,i,r) bestimmt den Knoten $x \in \{i,2i,2i+1\}$ mit maximalem Wert H(x). Im Fall x=i erfüllt der Knoten i bereits die Heap-Eigenschaft. Ist x dagegen eines der Kinder von i, so vertauscht Heapify die Werte von i und x. Danach ist die Heap-Eigenschaft höchstens noch im Knoten x verletzt. Daher folgt die Korrektheit von Heapify durch einen einfachen Induktionsbeweis über die Rekursionstiefe.

Es ist leicht zu sehen, dass Heapify(H,i,r) maximal 2h(i) Vergleiche benötigt, wobei h(i) die Höhe des Knotens i in $H_{1,r}$ ist. Daher ist die Laufzeit von Heapify(H,i,r) durch $O(h(i)) = O(\log r)$ beschränkt.

Für den Aufbau eines Heaps H der Tiefe $t = \lfloor \log_2 n \rfloor$ wird Heapify in der ersten FOR-Schleife für höchstens

- $2^0 = 1$ Knoten der Höhe h = t,
- $2^1 = 2$ Knoten der Höhe h = t 1,

:

ullet 2^{t-1} Knoten der Höhe h=t-(t-1)=1

aufgerufen. Daher benötigt der Aufbau des Heaps maximal

$$V_1(n) \leq 2 \sum_{h=1}^{\lfloor \log_2 n \rfloor} h 2^{\lfloor \log_2 n \rfloor - h} \leq 2 \sum_{h=1}^{\lfloor \log_2 n \rfloor} h \left\lfloor \frac{n}{2^h} \right\rfloor < 2n \sum_{h=1}^{\infty} \frac{h}{2^h} = 4n$$

Vergleiche. Für den Abbau des Heaps in der zweiten FOR-Schleife wird Heapify genau (n-1)-mal aufgerufen. Daher benötigt der Abbau des Heaps maximal

$$V_2(n) \le 2(n-1)\lfloor \log_2 n \rfloor \le 2n \log_2 n$$

Vergleiche.

Satz 32 HeapSort ist ein vergleichendes Sortierverfahren mit einer im schlechtesten Fall asymptotisch optimalen Laufzeit von $O(n \log n)$.

Die Floyd-Strategie

Die Floyd-Strategie benötigt beim Abbau des Heaps im Durchschnitt nur halb so viele Vergleiche wie die bisher betrachtete Williams-Strategie. Die Idee besteht darin, dass Heapify(H,1,r) beginnend mit der Wurzel $i_0=1$ sukzessive die Werte der beiden

2.11 CountingSort

Kinder des aktuellen Knotens i_j vergleicht und jeweils zu dem Kind i_{j+1} mit dem größeren Wert absteigt, bis nach $t \leq \lfloor \log_2 n \rfloor$ Schritten ein Blatt i_t erreicht wird.

Nun geht Heapify auf diesem Pfad bis zum ersten Knoten i_j mit $H[i_j] \geq H[1]$ zurück und führt auf den Werten der Knoten $i_j, i_{j-1}, \ldots, i_0$ den für die Herstellung der Heap-Eigenschaft erforderlichen Ringtausch aus. Offensichtlich benötigt diese Strategie

$$t + (t - j + 1) = 2t - j + 1$$

Vergleiche (im Unterschied zu höchstens 2j Vergleichen bei der Williams-Strategie). Da sich der Knoten i_j , an den der Wert H[1] des Wurzelknotens zyklisch verschoben wird, im Mittel sehr weit unten im Baum befindet, spart man auf diese Art asymptotisch die Hälfte der Vergleiche.

2.11 CountingSort

Die Prozedur CountingSort sortiert eine Zahlenfolge, indem sie zunächst die Anzahl der Vorkommen jedes Wertes in der Folge und daraus die Rangzahlen der Zahlenwerte bestimmt. Dies funktioniert nur unter der Einschränkung, dass die Zahlenwerte natürliche Zahlen sind und eine Obergrenze k für ihre Größe bekannt ist.

Prozedur 33 CountingSort(A, 1, n, k)

```
1 for i \leftarrow 0 to k do C[i] \leftarrow 0
```

- 2 for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1$
- $3 \quad \text{for } i \leftarrow 1 \text{ to } k \text{ do } C[i] \leftarrow C[i] + C[i-1]$
- 4 for $j \leftarrow 1$ to n do
- $5 \qquad B[C[A[j]]] \leftarrow A[j]$
- $6 \qquad C[A[j]] \leftarrow C[A[j]] 1$
- 7 for $j \leftarrow 1$ to n do $A[j] \leftarrow B[j]$

Satz 34 CountingSort sortiert n natürliche Zahlen der Größe höchstens k in Zeit $\Theta(n+k)$ und Platz $\Theta(n+k)$.

Korollar 35 CountingSort sortiert n natürliche Zahlen der Größe O(n) in linearer Zeit und linearem Platz.

2.12 RadixSort

RadixSort sortiert d-stellige Zahlen $a = a_d \cdots a_1$ eine Stelle nach der anderen, wobei mit der niederwertigsten Stelle begonnen wird.

2.13 BucketSort 24

Prozedur 36 RADIXSORT(A, 1, n)

- 1 for $i \leftarrow 1$ to d do
- 2 sortiere A[1, ..., n] nach der *i*-ten Stelle

Hierzu sollten die Folgenglieder möglichst als Festkomma-Zahlen vorliegen. Zudem muss in Zeile 2 "stabil" sortiert werden.

Definition 37 Ein Sortierverfahren heißt *stabil*, wenn es die relative Reihenfolge von Elementen mit demselben Wert nicht verändert.

Es empfiehlt sich, eine stabile Variante von CountingSort als Unterroutine zu verwenden. Damit CountingSort stabil sortiert, brauchen wir lediglich die for-Schleife in Zeile 4 in der umgekehrten Reihenfolge zu durchlaufen:

Prozedur 38 CountingSort(A, 1, n, k)

- 1 for $i \leftarrow 0$ to k do $C[i] \leftarrow 0$
- 2 for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1$
- 3 for $i \leftarrow 1$ to k do $C[i] \leftarrow C[i] + C[i-1]$
- 4 for $j \leftarrow n$ downto 1 do
- 5 $B[C[A[j]]] \leftarrow A[j]$
- 6 $C[A[j]] \leftarrow C[A[j]] 1$
- 7 for $j \leftarrow 1$ to n do $A[j] \leftarrow B[j]$

Satz 39 RadixSort sortiert n d-stellige Festkomma-Zahlen zur Basis b in Zeit $\Theta(d(n+b))$.

Wenn wir r benachbarte Ziffern zu einer "Ziffer" $z \in \{0, \dots, b^r - 1\}$ zusammenfassen, erhalten wir folgende Variante von RadixSort.

Korollar 40 Für jede Zahl $1 \le r \le d$ sortiert RadixSort n d-stellige Festkomma-Zahlen zur Basis b in Zeit $\Theta(\frac{d}{r}(n+b^r))$.

Wählen wir beispielsweise $r = \lceil \log_2 n \rceil$, so erhalten wir für $d = O(\log n)$ -stellige Binärzahlen eine Komplexität von

$$\Theta\left(\frac{d}{r}(n+2^r)\right) = \Theta(n+2^r) = \Theta(n).$$

2.13 BucketSort

Die Prozedur Bucket Sort sortiert n Zahlen a_1, \ldots, a_n aus einem Intervall [a, b) wie folgt. Der Einfachheit halber nehmen wir a = 0 und b = 1 an.

1. Erstelle für $j = 0, \dots, n-1$ eine Liste L_j für das Intervall

$$I_i = [j/n, (j+1)/n).$$

- 2. Bestimme zu jedem Element a_i das Intervall I_j , zu dem es gehört, und füge es in die entsprechende Liste L_j ein.
- 3. Sortiere jede Liste L_i .
- 4. Füge die sortierten Listen L_i wieder zu einer Liste zusammen.

Um Listen L_j mit einer konstanten erwarteten Länge zu erhalten, sollten die zu sortierenden Zahlenwerte im Intervall [a,b) möglichst gleichverteilt sein. In diesem Fall ist die erwartete Laufzeit von BucketSort nämlich $\Theta(n)$. Wie wir gleich zeigen werden, gilt dies sogar, wenn als Unterroutine ein Sortierverfahren der Komplexität $O(n^2)$ verwendet wird. Im schlechtesten Fall kommen dagegen alle Schlüssel in die gleiche Liste. Dann hat BucketSort dieselbe asymptotische Laufzeit wie das als Unterroutine verwendete Sortierverfahren.

Wir schätzen nun die erwartete Laufzeit von Bucket Sort ab. Sei X_i die Zufallsvariable, die die Länge der Liste L_i beschreibt. Dann ist X_i binomialverteilt mit Parametern n und p=1/n. Also hat X_i den Erwartungswert

$$E[X_i] = np = 1$$

und die Varianz

$$V[X_i] = np(1-p) = 1 - 1/n < 1.$$

Wegen $V[X_i] = E[X_i^2] - E[X_i]^2$ ist $E[X_i^2] = V[X_i] + E[X_i]^2 < 2$. Daher folgt für die erwartete Laufzeit von BucketSort:

$$E\left[\sum_{i=0}^{n-1} O(X_i^2)\right] = O\left(\sum_{i=0}^{n-1} E[X_i^2]\right) = O(n).$$

2.14 Vergleich der Sortierverfahren

Folgende Tabelle zeigt die Komplexitäten der betrachteten vergleichenden Sortierverfahren.

	Insertion- Sort	MergeSort	Quick- Sort	Heap- Sort
worst-case	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n^2)$	$\Theta(n \log n)$
average-case	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$
Speicherplatz	$\Theta(1)$	$\Theta(n)$ bzw. $\Theta(1)$	$\Theta(\log n)$	$\Theta(1)$
stabil	ja	ja	nein	nein

Wir fassen auch die wichtigsten Eigenschaften der betrachteten Linearzeit-Sortierverfahren zusammen.

- CountingSort: lineare Zeit im schlechtesten Fall, falls die Werte natürliche Zahlen sind und O(n) nicht übersteigen.
- RadixSort: bitweises Sortieren in linearer Zeit, falls die zu sortierenden Zahlen nur $O(\log n)$ Bit haben.
- BucketSort: Sortieren in erwarteter linearer Zeit, falls die n Zahlen gleichmäßig über einem Intervall [a,b) verteilt sind.

2.15 Datenstrukturen für dynamische Mengen

Eine Datenstruktur für dynamische Mengen S sollte im Prinzip beliebig viele Elemente aufnehmen können. Die Elemente $x \in S$ werden dabei anhand eines Schlüssels k = key(x) identifiziert. Auf die Elemente $x \in S$ wird meist nicht direkt, sondern mittels Zeiger (engl. pointer) zugegriffen.

Typische Operationen, die auf einer dynamische Mengen S auszuführen sind:

Insert(S, x): Füge x in S ein.

Remove(S, x): Entferne x aus S.

Search(S, k): Gib für einen Schlüssel k einen Zeiger auf $x \in S$ mit key(x) = k, falls ein solches Element existiert, und sonst nil zurück.

Min(S): Gib einen Zeiger auf das Element in S mit dem kleinsten Schlüssel zurück.

 $\mathbf{Max}(S)$: Gib einen Zeiger auf das Element in S mit dem größten Schlüssel zurück.

Prec(S, x): Gib einen Zeiger auf das nach x nächstkleinere Element in S oder nil zurück, falls x das Minimum ist.

Succ(S, x): Gib einen Zeiger auf das nach x nächstgrößere Element in S oder nil zurück, falls x das Maximum ist.

2.16 Verkettete Listen

Die Elemente einer verketteten Liste sind in linearer Reihenfolge angeordnet. Das erste Element der Liste L ist head(L). Jedes Element x "kennt" seinen Nachfolger next(x). Wenn jedes Element x auch seinen Vorgänger prev(x) kennt, dann spricht man von einer doppelt verketteten Liste.

2.16 Verkettete Listen 27

Die Prozedur ${\tt DL-Insert}(L,x)$ fügt ein Element x in eine doppelt verkettete Liste L ein.

Prozedur 41 DL-INSERT(L,x)

```
1 \quad \texttt{next}(x) \leftarrow \texttt{head}(L)
```

- 2 **if** $head(L) \neq nil$ **then**
- 3 prev(head(L)) $\leftarrow x$
- 4 $head(L) \leftarrow x$
- 5 $prev(x) \leftarrow nil$

Die Prozedur ${\tt DL-Remove}(L,x)$ entfernt wieder ein Element x aus einer doppelt verketteten Liste L.

Prozedur 42 DL-Remove(L,x)

- 1 **if** $x \neq \text{head}(L)$ **then**
- 2 $\operatorname{next}(\operatorname{prev}(x)) \leftarrow \operatorname{next}(x)$
- 3 else
- 4 head(L) \leftarrow next(x)
- 5 **if** $next(x) \neq nil$ **then**
- 6 $\operatorname{prev}(\operatorname{next}(x)) \leftarrow \operatorname{prev}(x)$

Die Prozedur ${\tt DL-Search}(L,k)$ sucht ein Element x mit dem Schlüssel k in der Liste L.

Prozedur 43 DL-SEARCH(L,k)

```
1 x \leftarrow \text{head}(L)
```

- 2 while $x \neq \text{nil}$ und $\text{key}(x) \neq k$ do
- $3 \quad x \leftarrow \text{next}(x)$
- 4 return(x)

Es ist leicht zu sehen, dass DL-Insert und DL-Remove konstante Zeit $\Theta(1)$ benötigen, während DL-Search eine lineare (in der Länge der Liste) Laufzeit hat.

Bemerkung 44

- Wird DL-Remove nur der Schlüssel übergeben, dann wäre die Laufzeit linear, da wir erst mit DL-Search das entsprechende Element suchen müssen.
- Für einfach verkettete Listen ist der Aufwand von Remove ebenfalls linear, da wir keinen direkten Zugriff auf den Vorgänger haben.

2.17 Binäre Suchbäume 28

• Die Operationen Max, Min, Prec und Succ lassen sich ebenfalls mit linearer Laufzeit berechnen (siehe Übungen).

• MergeSort lässt sich für Listen sogar als "in place"-Verfahren implementieren (siehe Übungen). Daher lassen sich Listen in Zeit $O(n \log n)$ sortieren.

2.17 Binäre Suchbäume

Ein Binärbaum B kann wie folgt durch eine Zeigerstruktur repräsentiert werden. Jeder Knoten x in B hat 3 Zeiger:

- left(x) zeigt auf das linke Kind,
- right(x) zeigt auf das rechte Kind und
- parent(x) zeigt auf den Elternknoten.

Für die Wurzel $w = \mathtt{root}(B)$ ist $\mathtt{parent}(w) = \mathtt{nil}$ und falls einem Knoten x eines seiner Kinder fehlt, so ist der entsprechende Zeiger ebenfalls \mathtt{nil} . Auf diese Art lassen sich beispielsweise Heaps für unbeschränkt viele Datensätze implementieren.

Definition 45 Ein binärer Baum B ist ein binärer Suchbaum, falls für jeden Knoten x in B folgende Eigenschaften erfüllt sind:

- Für jeden Knoten y im linken Teilbaum von x gilt $key(y) \le key(x)$ und
- für jeden Knoten y im rechten Teilbaum von x gilt $key(y) \ge key(x)$.

Folgende Prozedur ST-Search(B,k) sucht ein Element x mit dem Schlüssel k im binären Suchbaum (engl. Search Tree) B.

Prozedur 46 ST-SEARCH(B,k)

```
1 x \leftarrow \text{root}(B)

2 while x \neq \text{nil und key}(x) \neq k do

3 if k \leq \text{key}(x) then

4 x \leftarrow \text{left}(x)

5 else

6 x \leftarrow \text{right}(x)

7 return(x)
```

Die Prozedur ST-Insert(B,z) fügt ein neues Element z in B ein, indem sie den nil-Zeiger "sucht", der eigentlich auf den Knoten z zeigen müsste.

```
Prozedur 47 ST-INSERT(B, z)
   1 if root(B) = nil then
   2
          root(B) \leftarrow z
   3
         parent(z) \leftarrow nil
   4
       else
   5
         x \leftarrow \text{root}(B)
   6
         repeat
   7
            y \leftarrow x
   8
            if key(z) \le key(x) then
   9
              x \leftarrow \text{left}(x)
  10
            else
  11
              x \leftarrow \text{right}(x)
         until x = nil
  12
         if key(z) \le key(y) then
  13
  14
           left(y) \leftarrow z
  15
         else
  16
           right(y) \leftarrow z
         parent(z) \leftarrow y
  17
```

Satz 48 Die Prozeduren ST-Search und ST-Insert laufen auf einem binären Suchbaum der Höhe h in Zeit O(h).

Bemerkung 49 Auch die Operationen Min, Max, Succ, Prec und Remove lassen sich auf einem binären Suchbaum der Höhe h in Zeit O(h) implementieren (siehe Übungen).

Die Laufzeiten der Operationen für binäre Suchbäume hängen von der Tiefe der Knoten im Suchbaum ab. Suchbäume können zu Listen entarten. Dieser Fall tritt z.B. ein, falls die Datensätze in sortierter Reihenfolge eingefügt werden. Daher haben die Operationen im schlechtesten Fall eine lineare Laufzeit.

Für die Analyse des Durchschnittsfalls gehen wir davon aus, dass die Einfügesequenz eine zufällige Permutation von n verschiedenen Zahlen ist. Dann lässt sich zeigen, dass der resultierende Suchbaum eine erwartete Tiefe von $O(\log n)$ hat (siehe Übungen). Somit ist die erwartete Laufzeit der Operationen nur $O(\log n)$.

2.18 Balancierte Suchbäume

Um die Tiefe des Suchbaums klein zu halten, kann er während der Einfüge- und Löschoperationen auch aktiv ausbalanciert werden. Hierfür gibt es eine ganze Reihe von

Techniken. Die drei bekanntesten sind Rot-Schwarz-Bäume, Splay-Bäume und die AVL-Bäume, mit denen wir uns im Folgenden etwas näher befassen möchten.

Definition 50 Ein AVL- $Baum\ T$ ist ein binärer Suchbaum, der $h\ddot{o}henbalanciert$ ist, d.h. für jeden Knoten x von T unterscheiden sich die Höhen des linken und rechten Teilbaumes von x höchstens um eins (die Höhe eines nicht existierenden Teilbaumes setzen wir mit -1 an).

Lemma 51 *Die Höhe eines AVL-Baumes mit* n *Knoten ist* $O(\log n)$.

Beweis Sei M(h) die minimale Blattzahl eines AVL-Baumes der Höhe h. Dann gilt

$$M(h) = \begin{cases} 1, & h = 0 \text{ oder } 1, \\ M(h-1) + M(h-2), & h \ge 2. \end{cases}$$

M(h) ist also die (h+1)-te Fibonacci-Zahl F_{h+1} . Durch Induktion über h lässt sich leicht zeigen, dass $F_{h+1} \geq \phi^{h-1}$ ist, wobei $\phi = (1+\sqrt{5})/2$ der goldene Schnitt ist. Daher folgt für einen AVL-Baum der Höhe h mit n Knoten und b Blättern

$$n \ge b \ge M(h) = F_{h+1} \ge \phi^{h-1}$$
.

Somit gilt

$$h \le 1 + \log_{\phi}(n) = O(\log_2 n).$$

Der konstante Faktor in $O(\log_2 n)$ ist hierbei $\frac{1}{\log_2(\phi)} \approx 1{,}44$.

Für die Aufrechterhaltung der AVL-Eigenschaft eines AVL-Baums T benötigen wir folgende Information über jeden Knoten x. Seien h_l und h_r die Höhen des linken und des rechten Teilbaums von x. Dann heißt die Höhendifferenz

$$bal(x) = h_l - h_r$$

die *Balance* von x in T. T ist also genau dann ein AVL-Baum, wenn jeder Knoten x in T eine Höhendifferenz zwischen -1 und 1 hat:

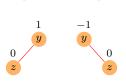
$$\forall x: \mathtt{bal}(x) \in \{-1,0,1\}.$$

Im Folgenden bezeichne T(x) den Teilbaum von T mit der Wurzel x.

Wir fügen einen neuen Knoten z in einen AVL-Baum T ähnlich wie die Prozedur ST-Insert für binäre Suchbäume ein. D.h. wir "suchen" den Schlüssel $k= \ker(z)$ in T bis wir einen Knoten y mit $k \leq \ker(y)$ und $\mathrm{left}(y) = \mathrm{nil}$ bzw. $k > \ker(y)$ und $\mathrm{right}(y) = \mathrm{nil}$ erreichen und fügen z an dieser Stelle als Kind von y ein. Da z ein Blatt ist, erhält z den Wert $\mathrm{bal}(z) = 0$. Das Einfügen von z kann nur für Knoten auf dem Pfad von z zur Wurzel von T eine Änderung der Höhendifferenz bewirken. Daher genügt es, diesen Suchpfad zurückzugehen und dabei für jeden besuchten Knoten die AVL-Eigenschaft zu testen und nötigenfalls wiederherzustellen.

Wir untersuchen zuerst, ob y die AVL-Eigenschaft verletzt.

- 1. Falls der Wert von $\mathtt{bal}(y)$ gleich -1 oder 1 ist, hatte T(y) schon vor dem Einfügen von z die Höhe 1. Daher genügt es, $\mathtt{bal}(y) = 0$ zu setzen.
- 2. Falls bal(y) = 0 ist, wurde z an ein Blatt gehängt, d.h. die Höhe von T(y) ist um 1 gewachsen. Zunächst setzen wir bal(y) auf den Wert 1 oder -1, je nachdem ob z linkes oder rechtes Kind von y ist.



Dann wird die rekursive Prozedur AVL-Check-Insertion(y) aufgerufen, die überprüft, ob weitere Korrekturen nötig sind.

```
Prozedur 52 AVL-INSERT(B,z)
```

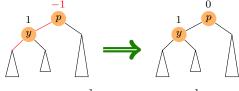
```
if root(B) = nil then
 2
       root(B) \leftarrow z
       parent(z) \leftarrow nil
 3
 4
       bal(z) \leftarrow 0
 5
     else
 6
       x \leftarrow \mathtt{root}(B)
 7
       repeat
 8
          y \leftarrow x
 9
          if key(z) \le key(x) then
            x \leftarrow \text{left}(x)
10
11
          else
12
            x \leftarrow \text{right}(x)
13
       until x = nil
       if key(z) \le key(y) then
14
15
          left(y) \leftarrow z
16
       else
17
          right(y) \leftarrow z
18
       parent(z) \leftarrow y
       bal(z) \leftarrow 0
19
       if bal(y) \in \{-1, 1\} then
20
21
         bal(y) \leftarrow 0
22
       else
23
          if z = left(y) then
24
            bal(y) \leftarrow 1
25
          else
26
            bal(y) \leftarrow -1
27
          AVL-Check-Insertion(y)
```

Als nächstes beschreiben wir die Arbeitsweise der Prozedur AVL-Check-Insertion(y). Dabei setzen wir voraus, dass bei jedem Aufruf von AVL-Check-Insertion(y) folgende Invariante gilt:

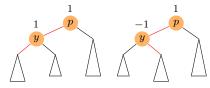
Der Wert von $\mathtt{bal}(y)$ wurde von 0 auf ± 1 aktualisiert, d.h. die Höhe von T(y) ist um 1 gewachsen.

Falls y die Wurzel von T ist, ist nichts weiter zu tun. Andernfalls nehmen wir an, dass y linkes Kind von p = parent(y) ist (der Fall y = right(p) ist analog).

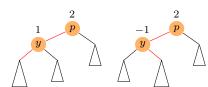
1. Im Fall bal(p) = -1 genügt es, bal(p) = 0 zu setzen.



2. Im Fall bal(p) = 0 setzen wir bal(p) = 1 und rufen AVL-Check-Insertion(p) auf.



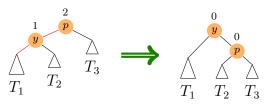
3. Im Fall bal(p) = 1 müssen wir T umstrukturieren, da die aktuelle Höhendifferenz von p gleich 2 ist.



3a. Im Fall bal(y) = 1 sei T_1 der linke und T_2 der rechte Teilbaum von y. Weiter sei T_3 der rechte Teilbaum von p und h sei die Höhe von T(y). Dann gilt für die Höhen h_i der Teilbäume T_i :

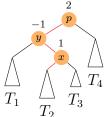
$$h_1 = h - 1$$
 und $h_2 = h_3 = h - 2$.

Wir führen nun eine so genannte Rechts-Rotation aus,



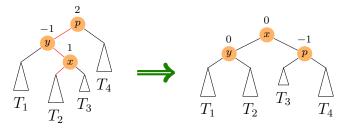
d.h. p wird rechtes Kind von y und erhält T_2 als linken und T_3 als rechten Teilbaum (d.h. bal(p) erhält den Wert 0) und T_1 bleibt linker Teilbaum von y (d.h. bal(y) erhält ebenfalls den Wert 0). Dann hat der rotierte Teilbaum wieder die gleiche Höhe wie vor dem Einfügen von z. Daher ist nichts weiter zu tun.

3b. Im Fall $\operatorname{bal}(y) = -1$ sei T_1 der linke Teilbaum von y und T_4 der rechte Teilbaum von p. Weiter seien T_2 und T_3 der linke und rechte Teilbaum von $x = \operatorname{right}(y)$. Die Höhe von T(y) bezeichnen wir wieder mit h. Dann gilt



 $h_1=h_4=h-2$ und $h-3\leq h_2, h_3\leq h-2,$ wobei $h_3=h_2-\operatorname{bal}(x)$ ist und $\operatorname{bal}(x)=0$ nur im Fall h=1 (d.h. alle Teilbäume T_1, T_2, T_3 und T_4 sind leer) möglich ist.

Daher genügt es, eine Doppel-Rotation auszuführen,



d.h. y wird linkes und p wird rechtes Kind von x, y erhält T_1 als linken und T_2 als rechten Teilbaum und p erhält T_3 als linken und T_4 als rechten Teilbaum. Die neuen Balance-Werte von p, y und x sind

$$\mathrm{bal}(p) = \begin{cases} -1, \, \mathrm{bal}(x) = 1, \\ 0, \, \mathrm{sonst}, \end{cases} \quad \mathrm{bal}(y) = \begin{cases} 1, \, \mathrm{bal}(x) = -1, \\ 0, \, \mathrm{sonst} \end{cases}$$

und $\mathtt{bal}(x)=0.$ Der rotierte Teilbaum hat die gleiche Höhe wie der ursprüngliche Teilbaum an dieser Stelle und daher ist nichts weiter zu tun.

Wir fassen die worst-case Komplexitäten der betrachteten Datenstrukturen für dynamische Mengen in folgender Tabelle zusammen.

	Search	Min/Max	Prec/Succ	Insert	Remove
Heap	O(n)	O(1)	O(n)	$O(\log n)$	$O(\log n)$
Liste (einfach)	O(n)	O(n)	O(n)	O(1)	O(n)
Liste (doppelt)	O(n)	O(n)	O(n)	O(1)	O(1)
Suchbaum	O(n)	O(n)	O(n)	O(n)	O(n)
AVL-Baum	$O(\log n)$				

Kapitel 3

Graphalgorithmen

3.1 Grundlegende Begriffe

Definition 53 Ein (ungerichteter) Graph ist ein Paar G = (V, E), wobei

V - eine endliche Menge von Knoten/Ecken und

E - die Menge der Kanten ist.

Hierbei gilt

$$E \subseteq \binom{V}{2} = \{\{u, v\} \subseteq V \mid u \neq v\}.$$

Sei $v \in V$ ein Knoten.

- a) Die Nachbarschaft von v ist $N_G(v) = \{u \in V \mid \{u, v\} \in E\}.$
- b) Der *Grad* von v ist $\deg_G(v) = ||N_G(v)||$.
- c) Der *Minimalgrad* von G ist $\delta(G) = \min_{v \in V} \deg_G(v)$ und der *Maximalgrad* von G ist $\Delta(G) = \max_{v \in V} \deg_G(v)$.

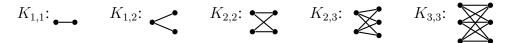
Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach N(v), $\deg(v)$, δ usw.

Beispiel 54

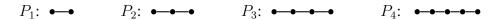
• Der vollständige Graph (V, E) auf n Knoten, d.h. ||V|| = n und $E = {V \choose 2}$, wird mit K_n und der leere Graph (V, \emptyset) auf n Knoten wird mit E_n bezeichnet.

$$K_1$$
: K_2 : K_3 : K_4 : K_5 :

• Der vollständige bipartite Graph (A, B, E) auf a + b Knoten, d.h. $A \cap B = \emptyset$, ||A|| = a, ||B|| = b und $E = \{\{u, v\} \mid u \in A, v \in B\}$ wird mit $K_{a,b}$ bezeichnet.



• Der *Pfad der Länge* n wird mit P_n bezeichnet.



• Der Kreis der Länge n wird mit C_n bezeichnet.

Definition 55 Sei G = (V, E) ein Graph.

a) Eine Knotenmenge $U \subseteq V$ heißt *stabil*, wenn es keine Kante von G mit beiden Endpunkten in U gibt, d.h. es gilt $E \cap \binom{U}{2} = \emptyset$. Die *Stabilitätszahl* ist

$$\alpha(G) = \max\{||U|| \mid U \text{ ist stabile Menge in } G\}.$$

b) Eine Knotenmenge $U \subseteq V$ heißt *Clique*, wenn jede Kante mit beiden Endpunkten in U in E ist, d.h. es gilt $\binom{U}{2} \subseteq E$. Die *Cliquenzahl* ist

$$\omega(G) = \max\{\|U\| \mid U \text{ ist Clique in } G\}.$$

c) Eine Abbildung $f: V \to \mathbb{N}$ heißt Färbung von G, wenn $f(u) \neq f(v)$ für alle $\{u,v\} \in E$ gilt. G heißt k-färbbar, falls eine Färbung $f: V \to \{1,\ldots,k\}$ existiert. Die chromatische Zahl ist

$$\chi(G) = \min\{k \in \mathbb{N} \mid G \text{ ist } k\text{-f\"arbbar}\}.$$

- d) Ein Graph G'=(V',E') heißt Sub-/Teil-/Untergraph von G, falls $V'\subseteq V$ und $E'\subseteq E$ ist. Ein Subgraph G'=(V',E') heißt (durch V') induziert, falls $E'=E\cap\binom{V'}{2}$ ist. Hierfür schreiben wir auch H=G[V'].
- e) Ein Weg ist eine Folge von (nicht notwendig verschiedenen) Knoten v_0, \ldots, v_ℓ mit $\{v_i, v_{i+1}\} \in E$ für $i = 0, \ldots, \ell 1$. Die Länge des Weges ist die Anzahl der Kanten, also ℓ . Ein Weg v_0, \ldots, v_ℓ heißt auch v_0 - v_ℓ -Weg.
- f) Ein Graph G=(V,E) heißt zusammenhängend, falls es für alle Paare $\{u,v\}\in\binom{V}{2}$ einen u-v-Weg gibt.
- g) Ein Zyklus ist ein u-v-Weg der Länge $\ell \geq 2$ mit u = v.

- h) Ein Weg heißt *einfach* oder *Pfad*, falls alle durchlaufenen Knoten verschieden sind.
- i) Ein *Kreis* ist ein Zyklus $v_0, v_1, \dots, v_{\ell-1}, v_0$ der Länge $\ell \geq 3$, für den $v_0, v_1, \dots, v_{\ell-1}$ paarweise verschieden sind.
- j) Ein Graph G=(V,E) heißt kreisfrei, azyklisch oder Wald, falls er keinen Kreis enthält.
- k) Ein *Baum* ist ein zusammenhängender Wald.

Definition 56 Ein gerichteter Graph oder Digraph ist ein Paar G = (V, E), wobei

V - eine endliche Menge von Knoten/Ecken und

E - die Menge der Kanten ist.

Hierbei gilt

$$E \subseteq V \times V = \{(u, v) \mid u, v \in V\},\$$

wobei E auch Schlingen (u, u) enthalten kann. Sei $v \in V$ ein Knoten.

- a) Die Nachfolgermenge von v ist $N^+(v) = \{u \in V \mid (v, u) \in E\}.$
- b) Die Vorgängermenge von v ist $N^-(v) = \{u \in V \mid (u, v) \in E\}.$
- c) Die Nachbarmenge von v ist $N(v) = N^+(v) \cup N^-(v)$.
- d) Der Ausgangsgrad von v ist $\deg^+(v) = ||N^+(v)||$ und $\operatorname{der} Eingangsgrad$ von v ist $\deg^-(v) = ||N^-(v)||$. Der Grad von v ist $\deg(v) = \deg^+(v) + \deg^-(v)$.
- e) Ein gerichteter v_0 - v_ℓ -Weg ist eine Folge von Knoten v_0, \ldots, v_ℓ mit $(v_i, v_{i+1}) \in E$ für $i = 0, \ldots, \ell 1$.
- f) Ein gerichteter Zyklus ist ein gerichteter u-v-Weg der Länge $\ell \geq 1$ mit u = v.
- g) Ein gerichteter Weg heißt *einfach* oder *gerichteter Pfad*, falls alle durchlaufenen Knoten verschieden sind.
- h) Ein gerichteter Kreis ist ein gerichteter Zyklus $v_0, v_1, \dots, v_{\ell-1}, v_0$ der Länge $\ell \geq 1$, für den $v_0, v_1, \dots, v_{\ell-1}$ paarweise verschieden sind.
- i) Ein Digraph G = (V, E) heißt *kreisfrei* oder *azyklisch*, wenn er keinen gerichteten Kreis hat.
- j) Ein Digraph G=(V,E) heißt schwach zusammenhängend, wenn es für jedes Paar $\{u,v\}\in\binom{V}{2}$ einen gerichteten u-v-Pfad oder einen gerichteten v-u-Pfad gibt.
- k) G = (V, E) heißt stark zusammenhängend, wenn es für jedes Paar $\{u, v\} \in \binom{V}{2}$ sowohl einen gerichteten u-v-Pfad als auch einen gerichteten v-u-Pfad gibt.

3.2 Datenstrukturen für Graphen

Sei G=(V,E) ein Graph bzw. Digraph und sei $V=\{v_1,\ldots,v_n\}$. Dann ist die $(n\times n)$ -Matrix $A=(a_{ij})$ mit den Einträgen

$$a_{ij} = \begin{cases} 1, & \{v_i, v_j\} \in E \\ 0, & \text{sonst} \end{cases}$$
 bzw.
$$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \\ 0, & \text{sonst} \end{cases}$$

die Adjazenzmatrix von G. Für ungerichtete Graphen ist die Adjazenzmatrix symmetrisch mit $a_{ii} = 0$ für i = 1, ..., n.

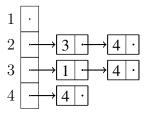
Bei der Adjazenzlisten-Darstellung wird für jeden Knoten v_i eine Liste mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet man entweder nur die Liste der Nachfolger oder zusätzlich eine weitere für die Vorgänger. Falls die Anzahl der Knoten gleichbleibt, organisiert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit Index i verweist auf die Adjazenzliste von Knoten v_i . Falls sich die Anzahl der Knoten dynamisch ändert, so werden die Adjazenzlisten typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 57

Betrachte den gerichteten Graphen G=(V,E) mit $V=\{1,2,3,4\}$ und $E=\{(2,3),(2,4),(3,1),(3,4),(4,4)\}$. Dieser hat folgende Adjazenzmatrix- und Adjazenzlisten-Darstellung:

◁

	1	2	3	4
1	0	0	0	0
2	0	0	1	1
3	1	0	0	1
4	0 0 1 0	0	0	1



Folgende Tabelle gibt den Aufwand der wichtigsten elementaren Operationen auf Graphen in Abhängigkeit von der benutzten Datenstruktur an. Hierbei nehmen wir an, dass sich die Knotenmenge V nicht ändert.

	Adjazen	zmatrix	Adjazenzlisten		
	einfach	clever	ever einfach clever		
Speicherbedarf	$O(V ^2)$	$O(V ^2)$	O(V + E)	O(V + E)	
Initialisieren	$O(V ^2)$	O(1)	O(V)	O(1)	
Kante einfügen	O(1)	O(1)	O(1)	O(1)	
Kante entfernen	O(1)	O(1)	O(V)	O(1)	
Test auf Kante	O(1)	O(1)	O(V)	O(V)	

Bemerkung 58

- Der Aufwand für die Initialisierung des leeren Graphen in der Adjazenzmatrixdarstellung lässt sich auf O(1) drücken, indem man mithilfe eines zusätzlichen Feldes B die Gültigkeit der Matrixeinträge verwaltet (siehe Übungen).
- Die Verbesserung beim Löschen einer Kante in der Adjazenzlistendarstellung erhält man, indem man die Adjazenzlisten doppelt verkettet und im ungerichteten Fall die beiden Vorkommen jeder Kante in den Adjazenzlisten der beiden Endknoten gegenseitig verlinkt (siehe Übungen).
- Bei der Adjazenzlistendarstellung können die Knoten auch in einer doppelt verketteten Liste organisiert werden. In diesem Fall können dann auch Knoten in konstanter Zeit hinzugefügt und in Zeit O(|V|) wieder entfernt werden (unter Beibehaltung der übrigen Speicher- und Laufzeitschranken).

3.3 Keller und Warteschlange

Für das Durchsuchen eines Graphen ist es vorteilhaft, die bereits besuchten (aber noch nicht abgearbeiteten) Knoten in einer Menge B zu speichern. Damit die Suche effizient ist, sollte die Datenstruktur für B folgende Operationen effizient implementieren.

Init(B): Initialisiert B als leere Menge.

Insert(B, u): Fügt u in B ein.

Empty(B): Testet B auf Leerheit.

Element (B): Gibt ein Element aus B zurück.

Remove(B): Gibt ebenfalls Element(B) zurück und entfernt es

aus B.

Andere Operationen wie z.B. Remove(B, u) werden nicht benötigt.

Die gewünschten Operationen lassen sich leicht durch einen Keller (auch Stapel genannt) (engl. stack) oder eine Warteschlange (engl. queue) implementieren. Falls maximal n Datensätze gespeichert werden müssen, kann ein Feld zur Speicherung der Elemente benutzt werden. Andernfalls können sie auch in einer einfach verketteten Liste gespeichert werden.

Stack S – Last-In-First-Out

Top(S): Gibt das oberste Element von S zurück.

Push(S, x): Fügt x als oberstes Element zum Keller hinzu.

Pop(S): Gibt das oberste Element von S zurück und entfernt es.

Queue Q - Last-In-Last-Out

```
Enqueue(Q, x): Fügt x am Ende der Schlange hinzu.

Head(Q): Gibt das erste Element von Q zurück.

Dequeue(Q): Gibt das erste Element von Q zurück und entfernt es.
```

Die Kelleroperationen lassen sich wie folgt auf einem Feld $S[1 \dots n]$ implementieren. Die Variable size(S) enthält die Anzahl der im Keller gespeicherten Elemente.

```
Prozedur 59 INIT(S)
  1 size(S) \leftarrow 0
Prozedur 60 Push(S, x)
      if size(S) < n then
  2
        size(S) \leftarrow size(S) + 1
        S[\operatorname{size}(S)] \leftarrow x
  3
  4
      else
  5
        return(nil)
Prozedur 61 EMPTY(S)
     return(size(S) = 0)
Prozedur 62 Top(S)
      if size(S) > 0 then
  2
        return(S[size(S)])
  3
      else
  4
        return(nil)
Prozedur 63 Pop(S)
     if size(S) > 0 then
        size(S) \leftarrow size(S) - 1
  2
        return(S[size(S) + 1])
  3
  4
      else
```

return(nil)

5

Es folgen die Warteschlangenoperationen für die Speicherung in einem Feld $Q[1\dots n]$. Die Elemente werden der Reihe nach am Ende der Schlange Q (zyklisch) eingefügt und am Anfang entnommen. Die Variable $\mathtt{head}(Q)$ enthält den Index des ersten Elements der Schlange und $\mathtt{tail}(Q)$ den Index des hinter dem letzten Element von Q befindlichen Eintrags.

Prozedur 64 Init(Q)

- 1 head $(Q) \leftarrow 1$
- 2 $tail(Q) \leftarrow 1$
- 3 $\operatorname{size}(Q) \leftarrow 0$

Prozedur 65 ENQUEUE(Q, x)

- 1 **if** size(Q) = n **then**
- 2 return(nil)
- $3 \operatorname{size}(Q) \leftarrow \operatorname{size}(Q) + 1$
- 4 $Q[tail(Q)] \leftarrow x$
- 5 **if** tail(Q) = n **then**
- 6 $tail(Q) \leftarrow 1$
- 7 else
- 8 $tail(Q) \leftarrow tail(Q) + 1$

Prozedur 66 Empty(Q)

1 **return**(size(Q) = 0)

Prozedur 67 HEAD(Q)

- 1 **if** Empty(Q) **then**
- 2 return(nil)
- 3 else
- 4 $\mathbf{return}Q[\mathsf{head}(Q)]$

- 1 **if** Empty(Q) **then**
- 2 return(nil)
- $3 \text{ size}(Q) \leftarrow \text{size}(Q) 1$
- 4 $x \leftarrow Q[\text{head}(Q)]$
- 5 **if** head(Q) = n **then**
- 6 head $(Q) \leftarrow 1$
- 7 else
- 8 $head(Q) \leftarrow head(Q) + 1$
- 9 return(x)

Satz 69 Sämtliche Operationen für einen Keller S und eine Warteschlange Q sind in konstanter Zeit O(1) ausführbar.

Bemerkung 70 Mit Hilfe von einfach verketteten Listen sind Keller und Warteschlangen auch für eine unbeschränkte Anzahl von Datensätzen mit denselben Laufzeitbeschränkungen implementierbar.

Die für das Durchsuchen von Graphen benötigte Datenstruktur B lässt sich nun mittels Keller bzw. Schlange wie folgt realisieren.

Operation	Keller S	Schlange Q
Init(B)	Init(S)	Init(Q)
Insert(B, u)	Push (S,u)	Enqueue (Q,u)
$\operatorname{Empty}(B)$	$\operatorname{Empty}(S)$	$\operatorname{Empty}(Q)$
${\tt Element}(B)$	Top(S)	$\operatorname{ t Head}(Q)$
$\operatorname{Remove}(B)$	Pop(S)	Dequeue(Q)

3.4 **Durchsuchen von Graphen**

Wir geben nun für die Suche in einem Graphen bzw. Digraphen G = (V, E) einen Algorithmus GraphSearch mit folgenden Eigenschaften an:

- GraphSearch benutzt eine Prozedur Explore, um alle Knoten und Kanten von G zu besuchen.
- Explore(w) findet Wege zu allen von w aus erreichbaren Knoten.
- Hierzu speichert Explore(w) für jeden über eine Kante $\{u,v\}$ bzw. (u,v) neu entdeckten Knoten $v \neq w$ den Knoten u in parent(v).

Algorithmus 71 GRAPHSEARCH(V, E)

```
1 for all v \in V, e \in E do
```

2 $visited(v) \leftarrow false$

 $parent(v) \leftarrow nil$

 $visited(e) \leftarrow false$

5 for all $w \in V$ do

6 **if** visited(w) = false**then**

7 Explore(w)

Prozedur 72 Explore(w)

- 1 $visited(w) \leftarrow true$
- 2 Init(B)
- Insert(B, w)
- while NonEmpty(B) do

```
5
       u \leftarrow \texttt{Element}(B)
 6
      if \exists e = \{u, v\} bzw. e = (u, v) \in E: visited(e) = false then
 7
         visited(e) \leftarrow true
 8
         if visited(v) = false then
 9
           visited(v) \leftarrow true
10
          parent(v) \leftarrow u
           Insert(B, v)
11
12
       else
13
         Remove(B)
```

Satz 73 Falls der (un)gerichtete Graph G in Adjazenzlisten-Darstellung gegeben ist, durchläuft GraphSearch alle Knoten und Kanten von G in Zeit O(|V| + |E|).

Beweis Offensichtlich wird jeder Knoten u genau einmal zu B hinzugefügt. Dies geschieht zu dem Zeitpunkt, wenn u zum ersten Mal "besucht" und das Feld visited für u auf true gesetzt wird. Außerdem werden in Zeile 6 von Explore alle von u ausgehenden Kanten durchlaufen, bevor u wieder aus B entfernt wird. Folglich werden tatsächlich alle Knoten und Kanten von G besucht.

Wir bestimmen nun die Laufzeit des Algorithmus GraphSearch. Innerhalb von Explore wird die while-Schleife für jeden Knoten u genau $(\deg(u) + 1)$ -mal bzw. $(\deg^+(u) + 1)$ -mal durchlaufen:

- ullet einmal für jeden Nachbarn v von u und
- dann noch einmal, um u aus B zu entfernen.

Insgesamt sind das $\|V\| + 2\|E\|$ im ungerichteten bzw. $\|V\| + \|E\|$ Durchläufe im gerichteten Fall. Bei Verwendung von Adjazenzlisten kann die nächste von einem Knoten v aus noch nicht besuchte Kante e in konstanter Zeit ermittelt werden, falls man für jeden Knoten v einen Zeiger auf (den Endpunkt von) e in der Adjazenzliste von v vorsieht. Die Gesamtlaufzeit des Algorithmus GraphSearch beträgt somit $O(\|V\| + \|E\|)$.

Als nächstes zeigen wir, dass Explore(w) einen Weg zu jedem von w aus erreichbaren Knoten findet.

Satz 74 Falls beim Aufruf von Explore alle Knoten und Kanten als unbesucht markiert sind, markiert Explore(w) alle von w aus erreichbaren Knoten v. Zudem lässt sich für jeden markierten Knoten v mittels parent ein w-v-Weg p_{ℓ}, \ldots, p_{o} zurückverfolgen, d.h. es gilt $p_{\ell} = w$, $p_{o} = v$ und $p_{i+1} = parent(p_{i})$ für $i = 0, \ldots, \ell - 1$.

Beweis Wir zeigen zuerst, dass parent zu jedem als besucht markierten Knoten v einen w-v-Weg liefert. Dies folgt leicht durch Induktion über die Anzahl k der vor v markierten Knoten. Seien also v_0, v_1, \cdots die Knoten in der Reihenfolge, in der sie von Explore(w) als besucht markiert werden.

- k=0: Da $v_0=w$ und parent(w)= nil ist, liefert parent einen w- v_0 -Weg (der Länge 0).
- $k-1 \sim k$: Sei $v_i = \texttt{parent}(v_k)$. Da v_i vor v_k markiert wird, lässt sich nach IV mittels parent ein w- v_i -Weg zurückverfolgen. Da $v_i = \texttt{parent}(v_k)$ mit v_k durch eine Kante verbunden ist, liefert parent dann auch für den Knoten v_k einen w- v_k -Weg.

Die Rückrichtung zeigen wir durch Induktion über die Länge ℓ eines kürzesten Weges von w nach v.

- $\ell = 0$: In diesem Fall ist v = w und w wird in Zeile 1 markiert.
- $\ell \leadsto \ell+1$: Sei v ein Knoten mit Abstand l+1 von w. Dann hat ein Nachbarknoten $u \in N(v)$ den Abstand ℓ von w. Folglich wird u nach IV als besucht markiert. Da u nicht vorher aus B entfernt wird, bis alle seine Nachbarn (bzw. Nachfolger) markiert sind, wird auch v markiert.

3.5 Zusammenhangskomponenten in ungerichteten Graphen

Da ${\tt Explore}(w)$ alle von w aus erreichbaren Knoten findet, lassen sich die Zusammenhangskomponenten eines (ungerichteten) Graphen durch folgende Variante von GraphSearch bestimmen.

Algorithmus 75 CC(V, E)

```
\begin{array}{ll} 1 & k \leftarrow 0 \\ 2 & \textbf{for all } v \in V, \ e \in E \ \textbf{do} \\ 3 & \texttt{cc}(v) \leftarrow 0 \\ 4 & \texttt{cc}(e) \leftarrow 0 \\ 5 & \textbf{for all } w \in V \ \textbf{do} \\ 6 & \textbf{if } \texttt{cc}(w) = 0 \ \textbf{then} \\ 7 & k \leftarrow k+1 \\ 8 & \texttt{ComputeCC}(k,w) \end{array}
```

Prozedur 76 Computecc(k, w)

 $cc(w) \leftarrow k$ 2 Init(B)Insert(B, w)**while** NonEmpty(B) **do** $u \leftarrow Element(B)$

```
6 if \exists e = \{u, v\} \in E : cc(e) = 0 then

7 cc(e) \leftarrow k

8 if cc(v) = 0 then

9 cc(v) \leftarrow k

10 Insert(B, v)

11 else

12 Remove(B)
```

Korollar 77 Der Algorithmus CC(V, E) bestimmt für einen Graphen G = (V, E) in Linearzeit $O(\|V\| + \|E\|)$ sämtliche Zusammenhangskomponenten $G_k = (V_k, E_k)$ von G, wobei $V_k = \{v \in V \mid cc(v) = k\}$ und $E_k = \{e \in E \mid cc(e) = k\}$ ist.

3.6 Spannbäume und Spannwälder für ungerichtete Graphen

In diesem Abschnitt zeigen wir, dass der Algorithmus GraphSearch für jede Zusammenhangskomponente eines Graphen G einen Spannbaum berechnet.

Definition 78 Sei G = (V, E) ein Graph und H = (U, F) ein Untergraph.

- H heißt spannend, falls U = V ist.
- H ist ein spannender Baum (oder Spannbaum) von G, falls H ein Baum und U = V ist.
- H ist ein spannender Wald (oder Spannwald) von G, falls H ein Wald und U = V ist.

Es ist leicht zu sehen, dass für G genau dann ein Spannbaum existiert, wenn G zusammenhängend ist. Allgemeiner gilt, dass die Spannbäume für die Zusammenhangskomponenten von G einen Spannwald bilden. Tatsächlich berechnet der Algorithmus GraphSearch einen solchen Spannwald W, da er für jeden neu entdeckten Knoten v seinen $Entdecker\ u$ im Feld parent(v) speichert.

Betrachte den durch SearchGraph(V,E) erzeugten Graphen $W=(V,E_{\mathtt{parent}})$ mit

$$E_{\mathrm{parent}} = \left\{ \left\{ \mathrm{parent}(v), v \right\} \mid v \in V \text{ und } \mathrm{parent}(v) \neq \mathrm{nil} \right\}.$$

Da parent(v) vor v markiert wird, ist klar, dass W kreisfrei und somit tatsächlich ein Wald ist. Wir bezeichnen W auch als Suchwald von G. Kennzeichnen wir in jedem Baum T von W den eindeutig bestimmten Knoten w mit parent(w) = nil als Wurzel von T, so erhalten die Kanten von W hierdurch die Richtung (parent(v), v).

W hängt zum einen davon ab, wie die Datenstruktur B implementiert ist (z.B. als Keller oder als Warteschlange). Zum anderen hängt W aber auch von der Reihenfolge der Knoten in den Adjazenzlisten ab.

Da Explore(w) alle von w aus erreichbaren Knoten findet, spannt jeder Baum des Suchwalds W eine Zusammenhangskomponente von G, d.h. die Bäume des Suchwalds sind Spannbäume der Zusammenhangskomponenten.

Korollar 79 *Sei G ein (ungerichteter) Graph.*

- Der Algorithmus GraphSearch(V, E) berechnet in Linearzeit einen Spannwald W, dessen Bäume die Zusammenhangskomponenten von G spannen.
- Falls G zusammenhängend ist, ist W ein Spannbaum für G.

3.7 Breiten- und Tiefensuche

Wie wir gesehen haben, findet Explore(w) sowohl in Graphen als auch in Digraphen alle von w aus erreichbaren Knoten. Als nächstes zeigen wir, dass Explore(w) zu allen von w aus erreichbaren Knoten sogar einen kürzesten Weg findet, falls wir die Datenstruktur B als Warteschlange Q implementieren.

Die Benutzung einer Warteschlange Q zur Speicherung der bereits entdeckten, aber noch nicht abgearbeiteten Knoten bewirkt, dass zuerst alle Nachbarknoten u_1, \ldots, u_k des aktuellen Knotens u besucht werden, bevor ein anderer Knoten aktueller Knoten wird. Da die Suche also zuerst in die Breite geht, spricht man von einer *Breitensuche* (kurz *BFS*, engl. breadth first search). Den hierbei berechneten Suchwald bezeichnen wir als *Breitensuchwald*.

Bei Benutzung eines Kellers wird dagegen u_1 aktueller Knoten, bevor die übrigen Nachbarknoten von u besucht werden. Daher führt die Benutzung eines Kellers zu einer *Tiefensuche* (kurz *DFS*, engl. *depth first search*). Der berechnete Suchwald heißt dann *Tiefensuchwald*.

Die Breitensuche eignet sich eher für Distanzprobleme wie z.B. das Finden

- kürzester Wege in Graphen und Digraphen,
- längster Wege in Bäumen (siehe Übungen) oder
- kürzester Wege in Distanzgraphen (Dijkstra-Algorithmus).

Dagegen liefert die Tiefensuche interessante Strukturinformationen wie z.B.

- die zweifachen Zusammenhangskomponenten in Graphen,
- die starken Zusammenhangskomponenten in Digraphen oder

• eine topologische Sortierung bei azyklischen Digraphen (s. Übungen).

Wir betrachten zuerst den Breitensuchalgorithmus.

```
Algorithmus 80 BFS(V, E)
  1 for all v \in V, e \in E do
  2
        visited(v) \leftarrow false
  3
        parent(v) \leftarrow nil
  4
        visited(e) \leftarrow false
  5 for all w \in V do
  6
        if visited(w) = false then
  7
          BFS-Explore(w)
Prozedur 81 BFS-Explore(w)
  1 visited(w) \leftarrow true
  2
     Init(Q)
  3 Enqueue(Q, w)
  4 while NonEmpty(Q) do
  5
       u \leftarrow \operatorname{Head}(Q)
  6
        if \exists e = \{u, v\} bzw. e = (u, v) \in E: visited(e) = false then
  7
          visited(e) \leftarrow true
  8
          if visited(v) = false then
  9
            visited(v) \leftarrow true
 10
           parent(v) \leftarrow u
 11
            Enqueue(Q, v)
 12
        else Dequeue(Q)
```

Satz 82 Sei G ein Graph oder Digraph und sei w Wurzel des von BFS-Explore(w) berechneten Suchbaumes T. Dann liefert parent für jeden Knoten v in T einen kürzesten w-v-Weg.

Beweis Wir führen Induktion über die kürzeste Weglänge ℓ von w nach v in G.

```
\ell=0: Dann ist v=w und parent liefert einen Weg der Länge 0.
```

 $\ell \rightsquigarrow \ell+1$: Sei v ein Knoten, der den Abstand $\ell+1$ von w in G hat. Dann existiert ein Knoten $u \in N^-(v)$ (bzw. $u \in N(v)$), der den Abstand ℓ von w in G hat. Nach IV liefert also parent einen w-u-Weg der Länge ℓ . Da u erst aus Q entfernt wird, nachdem alle Nachfolger von u entdeckt sind, wird v von u oder einem bereits zuvor in Q eingefügten Knoten z entdeckt. Da Q als Schlange organisiert ist, liefert parent von w zu z keinen längeren Weg als von w zu u. Daher folgt in beiden Fällen, dass parent einen w-v-Weg der Länge $\ell+1$ liefert. \square

12

else Pop(S)

Wir werden später noch eine Modifikation der Breitensuche kennen lernen, die kürzeste Wege in Graphen mit nichtnegativen Kantenlängen findet (Algorithmus von Dijkstra). Als nächstes betrachten wir den Tiefensuchalgorithmus.

```
Algorithmus 83 DFS(V, E)
  1 for all v \in V, e \in E do
  2
        visited(v) \leftarrow false
       parent(v) \leftarrow nil
  3
  4
        visited(e) \leftarrow false
  5 for all w \in V do
        if visited(w) = false then
  6
  7
          DFS-Explore(w)
Prozedur 84 DFS-EXPLORE(w)
  1 visited(w) \leftarrow true
  2 Init(S)
  3 Push(S, w)
     while NonEmpty(S) do
  5
       u \leftarrow \text{Top}(S)
  6
        if \exists e = \{u, v\} bzw. e = (u, v) \in E: visited(e) = false then
  7
          visited(e) \leftarrow true
  8
          if visited(v) = false then
  9
           visited(v) \leftarrow true
           parent(v) \leftarrow u
 10
 11
           Push(S, v)
```

Die Tiefensuche lässt sich auch rekursiv implementieren. Dies hat den Vorteil, dass kein (expliziter) Keller benötigt wird.

```
Prozedur 85 DFS-EXPLORE-REC(w)

1 visited(w) \leftarrow true

2 while \exists e = \{w, v\} bzw. e = (w, v) \in E: visited(e) = false do

3 visited(e) \leftarrow true

4 if visited(v) = false then

5 parent(v) \leftarrow w

6 DFS-Explore-rec(v)
```

Da DFS-Explore-rec(w) zu parent(w) zurückspringt, kann auch das Feld parent(w) als Keller fungieren. Daher lässt sich die Prozedur auch nicht-rekursiv

ohne zusätzlichen Keller implementieren, indem die Rücksprünge explizit innerhalb einer Schleife ausgeführt werden.

Definition 86 Sei W = (V, E) ein gerichteter Wald und $v \in V$ ein beliebiger Knoten.

- Ein Knoten $u \in V$ heißt Nachfahre von v, falls in W ein v-u-Weg existiert.
- Wir bezeichnen dann v auch als Vorfahren von u in W.
- Gilt zudem $u \neq v$, so sprechen wir auch von *echten* Nach- bzw. Vorfahren.
- Den in W durch alle Nachfahren von v induzierten Baum mit der Wurzel v bezeichnen wir mit $T_W(v)$ bzw. einfach mit T(v), falls W aus dem Kontext ersichtlich ist.

Die Kanten eines Graphen G=(V,E) werden durch den Tiefensuchwald $W=(V,E_{\texttt{parent}})$ in zwei Klassen eingeteilt. Die Kanten $\{\texttt{parent}(v),v\}\in E_{\texttt{parent}}$ heißen Baumkanten. Alle Kanten $\{u,v\}\in E-E_{\texttt{parent}}$, die einen Knoten u mit einem Vorfahren v von u in W verbinden, heißen Rückwärtskanten.

So genannte Querkanten, die zwei Knoten in W verbinden, so dass keiner Vorfahre des anderen ist, kann es dagegen nicht geben. Sonst müsste nämlich einer von beiden abgearbeitet sein, bevor der andere entdeckt wird. Dies ist jedoch bei einer Tiefensuche nicht möglich, da kein Knoten aus dem Keller entfernt wird, bevor nicht alle von ihm aus erreichbaren Knoten entdeckt sind.

Das Fehlen von Querkanten spielt bei manchen Anwendungen eine wichtige Rolle, etwa bei der Zerlegung eines Graphen G in seine zweifachen Zusammenhangskomponenten.

Die Kanten eines Digraphen werden durch eine Tiefensuche in vier Klassen eingeteilt. Die Kanten (parent(v), v) des Tiefensuchwaldes W heißen wieder Baumkanten. Eine R"uckw"artskante (u, v) verbindet einen Knoten u mit einem echten Vorfahren v von u in W. Eine Vorw"artskante (v, u) verbindet einen Knoten v mit einem Nachfahren v von v in v (hier kann v verbindet einen Kanten heißen v verbindet einen Knoten v mit einem Nachfahren v von v in v (hier kann v verbindet einen Kanten heißen v verbindet einen Knoten v mit einem Nachfahren v von v in v (hier kann v verbindet einen Kanten heißen v verbindet einen Knoten v mit einem Nachfahren v von v in v (hier kann v verbindet einen Kanten heißen v verbindet einen Knoten v verbindet einen Knoten v mit einem Nachfahren v von v verbindet einen Knoten v mit einem Nachfahren v von v in v (hier kann v verbindet einen Knoten v mit einem Nachfahren v von v in v (hier kann v verbindet einen Knoten v mit einem Nachfahren v von v in v (hier kann v verbindet einen Knoten v mit einem Nachfahren v von v in v (hier kann v verbindet einen Knoten v mit einem Nachfahren v von v in v (hier kann v verbindet einen Knoten v mit einem Nachfahren v von v in v verbindet einen Knoten v mit einem Nachfahren v von v in v verbindet einen Knoten v mit einem Nachfahren v von v in v von v in v verbindet einen Knoten v mit einem Nachfahren v von v in v von v in v verbindet einen Knoten v mit einem Nachfahren v von v in v von v verbindet einen Knoten v mit einem Nachfahren v von v einem Nachfahren v einem Na

Der Typ jeder Kante lässt sich algorithmisch leicht bestimmen, wenn wir bei der Tiefensuche noch folgende Zusatzinformationen speichern.

- Ein neu entdeckter Knoten wird grau gefärbt. Wenn er abgearbeitet ist, wird er schwarz. Zu Beginn sind alle Knoten weiß.
- Zudem merken wir uns die Reihenfolge, in der die Knoten entdeckt werden, in einem Feld k.

Die folgende Variante von DFS berechnet diese Informationen.

Algorithmus 87 DFS(V, E)

```
1 k \leftarrow 0
  2 for all v \in V, e \in E do
        farbe(v) \leftarrow wei\beta
   3
        visited(e) \leftarrow false
  4
  5 for all u \in V do
  6
        if farbe(u) = weiß then
  7
          DFS-Explore(u)
Prozedur 88 DFS-Explore(u)
      farbe(u) \leftarrow grau
  2 \quad k \leftarrow k+1
  3 \quad k(u) \leftarrow k
  4 while \exists e = (u, v) \in E : visited(e) = false do
        visited(e) \leftarrow true
        if farbe(v) = weiß then
  6
  7
          DFS-Explore(v)
      farbe(u) \leftarrow schwarz
```

Nun lässt sich der Typ jeder Kante e = (u, v) bei ihrem Besuch in Zeile 6 anhand der Werte von farbe(v) und k(v) wie folgt bestimmen:

Baumkante: farbe(v) = weiß,

Vorwärtskante: farbe $(v) \neq \text{weiß} \text{ und } k(v) \geq k(u)$,

Rückwärtskante: farbe(v) = grau und k(v) < k(u),

Querkante: farbe(v) = schwarz und k(v) < k(u).

3.8 Starke Zusammenhangskomponenten

Sei G = (V, E) ein Digraph. Dann ist leicht zu sehen, dass die Relation

$$S = \{(u,v) \in V \times V \mid \text{ es gibt in } G \text{ einen } u\text{-}v\text{-Weg und einen } v\text{-}u\text{-Weg}\}$$

eine Äquivalenzrelation ist. Für $(u, v) \in S$ schreiben wir auch kurz $u \sim v$.

Definition 89 Die durch die Äquivalenzklassen U_1, \ldots, U_k von S induzierten Teilgraphen $G[U_1], \ldots, G[U_k]$ heißen die *starken Zusammenhangskomponenten* (engl. *Strongly Connected Components*) von G.

Satz 90 Sei G = (V, E) ein Digraph mit den starken Zusammenhangskomponenten $G[U_1], \ldots, G[U_k]$. Dann ist der Digraph (C, D) mit $C = \{1, \ldots, k\}$ und

$$D = \{(i, j) \mid 1 \le i \ne j \le k \land \exists u \in U_i, v \in U_j : (u, v) \in E\}$$

azyklisch.

Beweis Da der Digraph (C,D) schlingenfrei ist, müsste ein Zyklus mindestens zwei verschiedene Knoten $i \neq j$ enthalten. Dann wären aber alle Knoten in den beiden Komponenten $G[U_i]$ und $G[U_j]$ gegenseitig erreichbar.

Sei G ein Digraph mit den starken Zusammenhangskomponenten $G[U_1], \ldots, G[U_k]$. Für $i=1,\ldots,k$ sei s_i der erste bei der Tiefensuche innerhalb von U_i besuchte Knoten. Wir bezeichnen s_i als den *Startknoten* von U_i . Da s_i erst schwarz wird, nachdem alle von s_i aus erreichbaren Knoten besucht sind, enthält $T(s_i)$ alle Knoten in U_i .

Weiter sei V_i die Menge aller Knoten in $T(s_i)$, die für keinen Startknoten s_j , der echter Nachfahre von s_i ist, in $T(s_j)$ enthalten sind. Wir behaupten, dass jeder Knoten $u \in V_i$ die Äquivalenz $u \sim s_i$ erfüllt (d.h. es gilt $U_i = V_i$). Gilt nämlich $u \sim s_j$ für ein $j \neq i$, dann muss u in $T(s_j)$ liegen, d.h. $T(s_j)$ kann kein Unterbaum von $T(s_i)$ sein. Da u in $T(s_i)$ und $T(s_j)$ liegt, muss s_j also ein Vorfahre von s_i sein. Wegen $u \sim s_j$ impliziert dies jedoch $u \sim s_i$ (Widerspruch).

Die Mengen U_i lassen sich also leicht bestimmen, falls wir die Startknoten s_i während der Tiefensuche identifizieren können. Hierzu betrachten wir für $u \in U_i$ die Funktion

$$low(u) := min\{k(v) \mid v \in T(s_i) \text{ und es gibt einen } u\text{-}v\text{-Weg in } G\}.$$

Da alle Knoten in $T(s_i)$ nach s_i entdeckt werden, ist $k(v) \ge k(s_i)$ für alle $v \in T(s_i)$ und daher folgt $low(u) \ge k(s_i)$. Zudem existiert wegen $u \sim s_i$ ein u- s_i -Weg und somit ist $low(u) = k(s_i)$. Folglich erfüllen genau die Startknoten $u \in \{s_1, \ldots, s_k\}$ die Eigenschaft low(u) = k(u).

Um die Knoten s_i bei der Tiefensuche effizient als Startknoten identifizieren zu können, betrachten wir für $u \in U_i$ die Funktion

$$1(u) := \min\{k(v) \mid v = u \lor \exists u' \in T(u), v \in T(s_i) : (u', v) \in E\}.$$

Dann gilt $k(s_i) \leq l(u) \leq k(u)$, wobei l(u) = k(u) nur für $u = s_i$ gilt. Ist nämlich $u \neq s_i$, so führt jeder u- s_i -Weg aus T(u) heraus. Dies kann jedoch nur mittels einer (Rückwärts- oder Quer-) Kante (u',v) mit $u' \in T(u)$, $v \in T(s_i)$ und k(v) < k(u) geschehen.

Der folgende Algorithmus SCC berechnet für jeden Knoten u den Wert $\mathbb{1}(u)$ und gibt der Reihe nach die Mengen U_i aus. Dass SCC bis zum letzten Besuch eines Knotens u tatsächlich den Wert $\mathbb{1}(u)$ korrekt berechnet, lässt sich leicht induktiv über die Anzahl der zuvor abgearbeiteten Knoten zeigen. SCC speichert alle entdeckten Knoten, die noch keiner Menge U_i zugeordnet werden konnten, in einem Keller S. Das Feld onstack speichert die Information, welche Knoten sich aktuell in S befinden.

Besitzt ein Knoten u bei seinem letzten Besuch den Wert $\mathbb{1}(u) = \mathbb{k}(u)$, so wird die Prozedur Output-SCC(u) aufgerufen. Output-SCC(u) leert den Keller S bis einschließlich u und gibt diese Knoten als neu entdeckte Menge U_i aus.

```
Algorithmus 91 SCC(V, E)
   1 k \leftarrow 0
  2 Init(S)
  3 for all v \in V, e \in E do
  4 visited(e) \leftarrow false
  5 k(v) \leftarrow 0
  6 onstack(v) \leftarrow \text{false}
  7 for all u \in V do
        if k(u) = 0 then Compute-SCC(u)
Prozedur 92 Compute-SCC(u)
   1 k \leftarrow k + 1
  2 k(u) \leftarrow k
  3 \quad 1(u) \leftarrow k
  4 Push(S, u)
  5 onstack(u) \leftarrow \text{true}
  6 while \exists e = (u, v) \in E : \mathtt{visited}(e) = \mathtt{false} \ \mathbf{do}
        visited(e) \leftarrow true
        if k(v) = 0 then
  8
  9
          Compute-SCC(v)
          1(u) \leftarrow \min\{1(u), 1(v)\}
 10
        else if onstack(v) = true then
 11
 12
           1(u) \leftarrow \min\{1(u), k(v)\}
      if l(u) = k(u) then
 13
 14
        Output-SCC(u)
Prozedur 93 OUTPUT-SCC(u)
   1 write(Neue Komponente:)
  2 repeat
      v \leftarrow \text{Pop}(S)
   3
  4
        onstack(v) \leftarrow false
        write(v)
  6 until v = u
```

3.9 Der Dijkstra-Algorithmus

In vielen Anwendungen tritt das Problem auf, einen kürzesten Weg von einem Startknoten s zu einem Zielknoten t in einem Digraphen zu finden, dessen Kanten (u,v) eine vorgegebene $L\ddot{a}nge\ l(u,v)$ haben. Für die Suche ist es vorteilhaft, die Knoten v, zu denen bereits ein s-v-Weg gefunden wurde, dessen Optimalität aber noch nicht garantiert werden kann, in einer Menge P zu speichern. Damit die Suche effizient ist, sollte die Datenstruktur für P folgende Operationen effizient implementieren.

Init(P): Initialisiert P als leere Menge.

Update(P, u, d): Erniedrigt den Wert von u auf d (nur wenn der aktuelle Wert

größer als d ist). Ist u noch nicht in P enthalten, wird u mit

dem Wert d in P eingefügt.

RemoveMin(P): Gibt ein Element aus P mit dem kleinsten Wert zurück und

entfernt es aus P. Ist P leer, wird nil zurückgegeben.

Der Dijkstra-Algorithmus findet einen kürzesten Weg vom Startknoten s zu allen erreichbaren Knoten (single-source shortest-path problem). Hierzu führt der Algorithmus eine modifizierte Breitensuche mit dem Startknoten s aus. Wird nur ein kürzester Weg von s zu einem bestimmten Zielknoten t gesucht, kann man die Suche auch abbrechen, sobald t als fertig markiert ist.

Voraussetzung für die Korrektheit des Algorithmus' ist, dass alle Kanten in E eine nichtnegative Länge $l(u,v) \geq 0$ haben. In diesem Fall wird D = (V,E,l) auch Distanzgraph genannt. Die Länge eines Weges $p = (v_0, \ldots, v_\ell)$ ist

$$l(p) = \sum_{i=0}^{\ell-1} l(v_i, v_{i+1}).$$

Die kürzeste Weglänge von s nach t wird als Distanz d(s,t) von s zu t bezeichnet,

$$d(s,t) = \min\{l(p) \mid p \text{ ist ein } s\text{-}t\text{-Weg}\}.$$

Falls kein s-t-Weg existiert, setzen wir $d(s,t) = \infty$.

Algorithmus 94 Dijkstra(V, E, l, s)

```
for all v \in V do

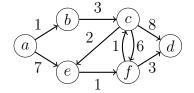
g(v) := \infty
parent(v) := nil
done(v) := false
g(s) := 0
Init(P)
update(P, s, 0)
```

```
while u := \operatorname{RemoveMin}(P) \neq \operatorname{nil} do \operatorname{done}(u) := \operatorname{true} for all v \in N^+(u) do \operatorname{if} \operatorname{done}(v) = \operatorname{false} \wedge \operatorname{g}(u) + l(u,v) < \operatorname{g}(v) \text{ then} \operatorname{g}(v) := \operatorname{g}(u) + l(u,v) \operatorname{Update}(P,v,\operatorname{g}(v)) \operatorname{parent}(v) := u
```

Der Algorithmus führt eine Breitensuche durch und speichert den aktuellen Breitensuchbaum T im Feld parent. Das Feld g dient zur Speicherung der aktuellen Wurzeldistanzen im Breitensuchbaum T. Knoten außerhalb von T haben den Wert ∞ .

In jedem Schleifendurchlauf wird in Zeile 8 ein unfertiger Knoten u in T mit kleinstem g-Wert gewählt und als fertig markiert. Anschließend werden alle unfertigen Nachfolger v von u an den Knoten u in T an- bzw. umgehängt, falls sich dadurch ihre Wurzeldistanz g(v) verkleinert.

Beispiel 95 Betrachte nebenstehenden Distanzgraphen mit dem Startknoten *a*:



gewählt	besuchte Kanten	Update-Operationen	Inhalt von P
_	_	_	(a,0)
(a, 0)	(a,b),(a,e)	(b,1), (e,7)	(b,1), (e,7)
(b, 1)	(b,c)	(c,4)	(c,4), (e,7)
(c,4)	(c,d),(c,e),(c,f)	(d, 12), (e, 6), (f, 10)	(e,6), (f,10), (d,12)
(e, 6)	(e, f)	(f,7)	(f,7), (d,12)
(f,7)	(f,c),(f,d)	(d, 10)	(d, 10)
(d, 10)	_	_	_

Als nächstes beweisen wir die Korrektheit des Dijkstra-Algorithmus'.

Satz 96 Sei D=(V,E,l) ein Distanzgraph und sei $s\in V$. Dann berechnet Dijkstra(V,E,l,s) für alle von s aus erreichbaren Knoten $t\in V$ einen kürzesten s-t-Weg. Dieser Weg lässt sich mittels parent von t zu s zurückverfolgen.

Beweis Wir zeigen zuerst, dass alle von s aus erreichbaren Knoten $t \in V$ als fertig markiert werden. Sei T der durch parent beschriebene Breitensuchbaum bei Abbruch der while-Schleife. Dann werden genau die Knoten in T als fertig markiert. Zudem werden für jeden Knoten u in T spätestens dann, wenn u in Zeile s gewählt wird, sämtliche Nachfolger von s zu s hinzugefügt. Also enthält s alle von s aus erreichbaren Knoten.

◁

Als nächstes zeigen wir, dass parent für jeden Knoten t in T einen kürzesten s-t-Weg liefert, d.h. es gilt $g(t) \leq d(s,t)$ für alle Knoten t in T. Wir führen Induktion über die Anzahl k der vor t gewählten Knoten.

k=0: In diesem Fall ist t=s und parent liefert einen kürzesten s-t-Weg (der Länge 0).

 $k-1 \rightsquigarrow k$: Sei $s=v_0,\ldots,v_\ell=t$ ein kürzester s-t-Weg in G und sei v_i der Knoten mit maximalem Index i auf diesem Weg, der vor t gewählt wird.

Nach IV gilt dann

$$d(s, v_i) = g(v_i). \tag{3.1}$$

Zudem ist

$$g(v_{i+1}) \le g(v_i) + l(v_i, v_{i+1}). \tag{3.2}$$

Da t im Fall $t \neq v_{i+1}$ vor v_{i+1} gewählt wird, ist

$$g(t) \le g(v_{i+1}). \tag{3.3}$$

Daher folgt

$$g(t) \stackrel{(3.3)}{\leq} g(v_{i+1}) \stackrel{(3.2)}{\leq} g(v_i) + l(v_i, v_{i+1}) \stackrel{(3.1)}{=} d(s, v_i) + l(v_i, v_{i+1})$$

$$= d(s, v_{i+1}) \leq d(s, t).$$

Um die Laufzeit des Dijkstra-Algorithmus' abzuschätzen, überlegen wir uns zuerst, wie oft die einzelnen Operationen auf der Datenstruktur P ausgeführt werden. Sei $n = \|V\|$ die Anzahl der Knoten und $m = \|E\|$ die Anzahl der Kanten des Eingabegraphen.

- Die Init-Operation wird nur einmal ausgeführt.
- Da die while-Schleife für jeden Knoten höchstens einmal durchlaufen wird, wird die RemoveMin-Operation höchstens n-mal ausgeführt.
- Wie die Prozedur BFS-Explore besucht der Dijkstra-Algorithmus jede Kante maximal einmal. Daher wird die Update-Operation höchstens m-mal ausgeführt.

Beobachtung 97 Bezeichne In(n), RM(n) und Up(n) den Aufwand zum Ausführen der Operationen Init, RemoveMin und Update für den Fall, dass P nicht mehr als n Elemente aufzunehmen hat. Dann ist die Laufzeit des Dijkstra-Algorithmus' durch

$$O(n + m + In(n) + n \cdot RM(n) + m \cdot Up(n))$$

beschränkt.

Die Laufzeit hängt also stark davon ab, wie wir die Datenstruktur P implementieren. Falls alle Kanten die gleiche Länge haben, wachsen die Distanzwerte der Knoten monoton in der Reihenfolge ihres (ersten) Besuchs. D.h. wir können P als Warteschlange implementieren. Dies führt wie bei der Prozedur BFS-Explore auf eine Laufzeit von O(n+m).

Für den allgemeinen Fall, dass die Kanten unterschiedliche Längen haben, betrachten wir folgende drei Möglichkeiten.

- 1. Da die Felder g und done bereits alle nötigen Informationen enthalten, kann man auf die (explizite) Implementierung von P auch verzichten. In diesem Fall kostet die RemoveMin-Operation allerdings Zeit O(n), was auf eine Gesamtlaufzeit von $O(n^2)$ führt.
 - Dies ist asymptotisch optimal, wenn G relativ dicht ist, also $m = \Omega(n^2)$ Kanten enthält. Ist G dagegen relativ dünn, d.h. $m = o(n^2)$, so empfiehlt es sich, P als Prioritätswarteschlange zu implementieren.
- 2. Es ist naheliegend, P in Form eines Heaps H zu implementieren. In diesem Fall lassen sich die Update- und RemoveMin-Operationen in Zeit $O(\log n)$ implementieren.

Dies setzt allerdings voraus, dass wir beim Ausführen der Update-Operation nicht erst in H den Knoten v suchen müssen, dessen Wert erniedrigt werden soll. Die Suche nach v in H lässt sich vermeiden, indem wir die Update-Operation durch eine Insert-Operation ersetzen. Dies führt zwar dazu, dass der gleiche Knoten evtl. mehrmals mit unterschiedlichen Werten in H gespeichert wird.

Die Korrektheit bleibt aber dennoch erhalten, wenn wir nur die erste Entnahme eines Knotens aus H beachten und die übrigen ignorieren.

Da für jede Kante höchstens ein Knoten in H eingefügt wird, erreicht H maximal die Größe n^2 und daher sind die Heap-Operationen immer noch in Zeit $O(\log n^2) = O(\log n)$ ausführbar. Insgesamt erhalten wir somit eine Laufzeit von $O(n + m \log n)$.

Die Laufzeit von $O(n + m \log n)$ bei Benutzung eines Heaps ist zwar für dünne Graphen sehr gut, aber für dichte Graphen schlechter als die implizite Implementierung von P mithilfe der Felder q und done.

3. Als weitere Möglichkeit kann P auch in Form eines so genannten $Fibonacci-Heaps\ F$ implementiert werden. Dieser benötigt nur eine konstante amortisierte Laufzeit O(1) für die Update-Operation und $O(\log n)$ für die RemoveMin-Operation. Insgesamt führt dies auf eine Laufzeit von $O(m+n\log n)$.

Eine offene Frage ist, ob es auch einen Algorithmus mit Laufzeit O(n+m) gibt. Wir fassen die verschiedenen Möglichkeiten zur Implementation der Datenstruktur P in folgender Tabelle zusammen.

	implizit	Heap	Fibonacci-Heap
Init	O(1)	O(1)	O(1)
Update	O(1)	$O(\log n)$	O(1)
RemoveMin	O(n)	$O(\log n)$	$O(\log n)$
Gesamtlaufzeit	$O(n^2)$	$O(n + m \log n)$	$O(m + n \log n)$

3.10 Kürzeste Pfade in Graphen mit negativen Kantengewichten

In vielen Anwendungen treten negative Kantengewichte auf. Gesucht ist dann meist ein kürzester Pfad (also ein kürzester Weg, der jeden Knoten höchstens einmal besucht). Will man beispielsweise einen längsten Pfad in einem Distanzgraphen bestimmen, so kann man dies leicht auf die Bestimmung eines kürzesten Pfades in einem Graphen mit negativen Kantengewichten zurückführen.

Die Komplexität des Problems hängt wesentlich davon ab, ob gerichtete Kreise mit negativer Länge zugelassen sind oder nicht. Falls solche Kreise existieren können, ist das Problem NP-hart. Andernfalls existieren effiziente Algorithmen wie z.B. der Bellman-Ford-Algorithmus (BF-Algorithmus) oder der Bellman-Ford-Moore-Algorithmus (BFM-Algorithmus). Diese Algorithmen lösen das single-source shortest-path Problem mit einer Laufzeit von O(nm) im schlechtesten Fall.

Der Ford-Algorithmus arbeitet ganz ähnlich wie der Dijkstra-Algorithmus, betrachtet aber jede Kante nicht nur ein- sondern mehrmals. In seiner einfachsten Form wählt der Algorithmus wiederholt eine Kante e=(u,v), so dass sich der aktuelle Distanzwert g(v) auf Grund der Ungleichung

$$\mathsf{g}(u) + \ell(u,v) < \mathsf{g}(v)$$

verkleinern lässt. Ein solcher Schritt wird auch als *Relaxation* von e bezeichnet, da e nun nicht mehr auf eine Veränderung der g-Werte "drängt". Es ist leicht zu zeigen, dass g(v) für jeden Knoten v den optimalen Wert g(v) = d(s,v) hat, sobald alle Kante relaxiert sind. Es ist klar, dass die Laufzeit stark von der Reihenfolge abhängt, in der die Kanten auf eine Relaxation überprüft werden.

3.10.1 Der Bellman-Ford-Algorithmus

Diese Variante prüft in n-1 Iterationen jeweils alle Kanten auf Relaxation. Sind danach weitere Relaxationen möglich, muss ein negativer Kreis existieren. Die Laufzeit ist offensichtlich O(nm) und die Korrektheit folgt leicht durch Induktion über die minimale Anzahl von Kanten eines kürzesten s-t-Weges. Wird bei jeder Relaxation einer Kante (u, v) der Vorgänger u im Feld parent (v) vermerkt, so lässt sich ein kürzester

Pfad von s zu allen erreichbaren Knoten rekonstruieren (bzw. ein negativer Kreis, falls dieser existiert).

Algorithmus 98 BF (V, E, ℓ, s)

```
for all v \in V do
      g(v) := \infty
      parent(v) := nil
    q(s) := 0
    for i := 1 to n - 1 do
      for all (u,v) \in E do
         if g(u) + \ell(u, v) < g(v) then
          g(v) := g(u) + \ell(u, v)
          parent(v) := u
9
    for all (u,v) \in E do
10
      if g(u) + \ell(u, v) < g(v) then
11
        error(es gibt einen negativen Kreis)
12
```

3.10.2 Der Bellman-Ford-Moore-Algorithmus

Die BFM-Variante erzielt im Durchschnittsfall eine deutliche Laufzeit-Verbesserung, da sie im i-ten Durchlauf nur solche Kanten (u,v) prüft, für die der Wert von g(u) im (i-1)-ten Durchlauf erniedrigt wurde. Am einfachsten lässt sich die BFM-Strategie unter Benutzung einer Schlange Q zur Speicherung der aktiven Knoten umsetzen.

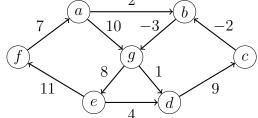
Algorithmus 99 BFM (V, E, ℓ, s)

```
for all v \in V do
      g(v) := \infty, parent(v) := \text{nil}, active(v) := \text{false}
    g(s) := 0, Init(Q), Enqueue(Q, (0, s)), active(s) := true
    while (i, u) := Dequeue(Q) \neq nil and i < n do
      active(u) := false
5
      for all v \in N^+(u) do
6
        if g(u) + \ell(u, v) < g(v) then
          g(v) := g(u) + \ell(u, v)
          parent(v) := u
          if active(v) = false then
10
            Enqueue(Q,(i+1,v))
11
            active(v) := true
    if i = n then
13
      error(es gibt einen negativen Kreis)
14
```

Zu Beginn wird nur der Startknoten s in Q eingefügt. Danach läuft der Algorithmus in *Phasen* ab, wobei die Phasennummer i zusammen mit den Knoten in Q gespeichert werden kann. Werden mehr als n-1 Phasen durchlaufen, so bricht der Algorithmus mit der Fehlermeldung ab, dass ein negativer Kreis existiert. Es ist leicht zu sehen, dass der BFM-Algorithmus genau dieselben Relaxationen ausführt wie der BF-Algorithmus und somit ebenfalls korrekt ist.

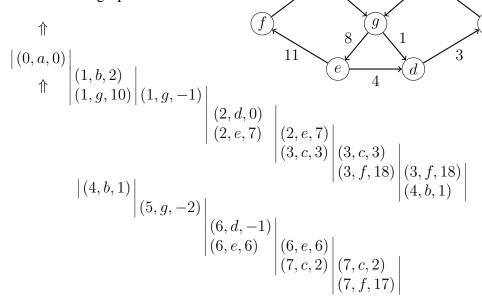
Für kreisfreie Graphen lässt sich die Laufzeit auf O(n+m) reduzieren, falls die Nachfolger in Zeile 6 in topologischer Sortierung gewählt werden. Dies liegt daran, dass in diesem Fall jeder Knoten nur einmal betrachtet werden muss.

Beispiel 100 Betrachte nebenstehenden kantenbewerteten Digraphen mit dem Startknoten a:



$$\uparrow \\ |(0,a,0)| \\ \uparrow \\ |(1,b,2)| \\ |(1,g,10)| \\ |(1,g,-1)| \\ |(2,d,0)| \\ |(2,e,7)| \\ |(3,c,9)| \\ |(3,f,18)| \\$$

Als nächstes betrachten wir folgenden kantenbewerteten Digraphen:



3.11 Berechnung von kürzesten Wegen zwischen allen Knoten

Sei G=(V,E) ein endlicher Digraph mit $V=\{1,\ldots,n\}$. Weiter sei ℓ eine Kantenbewertungsfunktion, die jeder Kante $(i,j)\in E$ eine Länge $\ell(i,j)\in \mathbb{Q}$ zuweist. Für einen Pfad $P=(v_1,v_2,\ldots,v_{k-1},v_k)$ heißen v_2,\ldots,v_{k-1} innere Knoten von P. Wir bezeichnen die Länge eines kürzesten Pfades von i nach j, dessen inneren Knoten alle aus der Menge $\{1,\ldots,k\}$ stammen, mit $d_k(i,j)$. Dann gilt

$$d_0(i,j) = \begin{cases} \ell(i,j), & (i,j) \in E, \\ \infty, & \text{sonst.} \end{cases}$$

Man beachte, dass wir $d_0(i,j)$ auch im Fall i=j auf ∞ setzen, falls keine Kante $(i,i) \in E$ existiert. D.h. wir betrachten nur Wege, die mindestens eine Kante enthalten. Sollen auch Wege, die nur aus einem Knoten bestehen, berücksichtigt werden, muss $d_0(i,i)$ für alle Knoten $i \in V$ mit dem Wert $\min\{0,\ell(i,j) \mid (i,j) \in E\}$ initialisiert werden. Weiter gilt

$$d_k(i,j) = \min \{d_{k-1}(i,j), d_{k-1}(i,k) + d_{k-1}(k,j)\}.$$

Der Algorithmus von Floyd-Warshall berechnet kürzeste Wege zwischen je zwei Knoten unter der Voraussetzung, dass kein Kreis eine negative Länge hat.

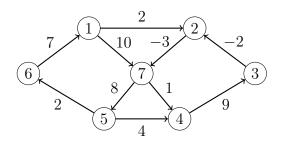
3.11.1 Der Floyd-Warshall-Algorithmus

Algorithmus 101 Floyd-Warshall(V, E, ℓ)

```
\begin{array}{lll} & \textbf{for} & i := 1 \ \textbf{to} & n \ \textbf{do} \\ & \textbf{for} & j := 1 \ \textbf{to} & n \ \textbf{do} \\ & \textbf{if} & (i,j) \in E \ \textbf{then} \  \, \texttt{d}_0(i,j) := \ell(i,j) \ \textbf{else} \  \, \texttt{d}_0(i,j) := \infty \\ & \textbf{for} & k := 1 \ \textbf{to} & n \ \textbf{do} \\ & \textbf{for} & i := 1 \ \textbf{to} & n \ \textbf{do} \\ & \textbf{for} & j := 1 \ \textbf{to} & n \ \textbf{do} \\ & \texttt{d}_k(i,j) = \min \left\{ \texttt{d}_{k-1}(i,j), \texttt{d}_{k-1}(i,k) + \texttt{d}_{k-1}(k,j) \right\} \end{array}
```

Die Laufzeit ist offenbar $O(n^3)$. Da die d_k -Werte nur von den d_{k-1} -Werten abhängen, ist der Speicherplatzbedarf $O(n^2)$. Die Existenz negativer Kreise lässt sich daran erkennen, dass mindestens ein Diagonalelement $d_k(i,i)$ einen negativen Wert erhält.

Beispiel 102 Betrachte folgenden kantenbewerteten Digraphen:



d_0	1	2	3	4	5	6	7
1	∞	2	∞	∞	∞	∞	10
2		∞					
3	∞	-2	∞	∞	∞	∞	∞
4	∞						
5	∞	∞					∞
6	7				∞	∞	∞
7	∞	∞	∞	1	8	∞	∞

d_2	1	2	3	4	5	6	7
1	∞	2	∞	∞	∞	∞	-1
2	∞	∞	∞	∞	∞	∞	-3
3	∞	-2	∞	∞	∞	∞	- 5
4	∞	∞	3	∞	∞	∞	∞
5	∞	∞	∞	4	∞	2	∞
6	7	9	∞	∞	∞	∞	6
7	∞	∞	∞	1	8	∞	∞

d_4	1	2	3	4	5	6	7
1		2					
2	∞	∞	∞	∞	∞	∞	-3
	∞						
	∞						
5	∞	11	13	4	∞	2	8
6	7	_	∞	~ •	~ •	~ ~	_
7	∞	8	10	1	8	∞	5

d_6	1	2	3	4	5	6	7
1	∞	2	∞	∞	∞	∞	-1
2	∞	∞	∞	∞	∞	∞	-3
3	∞	-2	∞	∞	∞	∞	-5
4	∞	7	9	∞	∞	∞	4
5	9	11	13	4	∞	2	8
6	7	9	∞	∞	∞	∞	6
7	17	8	10	1	8	10	5

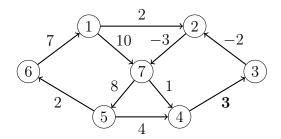
d_1	1	2	3	4	5	6	7
1	∞	2	∞	∞	∞	∞	10
2	∞	∞	∞	∞	∞	∞	-3
	∞						
	∞						
5	∞	∞	∞	4	∞	2	∞
6	7	9	∞	∞	∞	∞	∞
7	∞	∞	∞	1	8	∞	∞

d_3	1	2	3	4	5	6	7
1	∞	2	∞	∞	∞	∞	-1
2	∞	∞	∞	∞	∞	∞	-3
	∞						
4	∞	7	9	∞	∞	∞	4
5	∞	∞	∞	4	∞	2	∞
6	7			∞			
7	∞	∞	∞	1	8	∞	∞

d_5	1	2	3	4	5	6	7
1	∞	2	∞	∞	∞	∞	-1
2	∞	∞	∞	∞	∞	∞	-3
3	∞	-2	∞	∞	∞	∞	-5
4	∞	7	9	∞	∞	∞	4
5	∞	11	13	4	∞	2	8
6	7	9	∞	∞	∞	∞	6
7	∞	8	10	1	8	10	5
	•						

d_7	1	2	3	4	5	6	7
1				0			
2	14	5	7	- 2	5	7	-3
3	$\begin{array}{c} 12 \\ 21 \end{array}$	-2	5	-4	3	5	-5
4	21	7	9	5	12	14	4
5	9	11	13	4	16	2	8
6	7	9	16	7	14	16	6
7	17	8	10	1	8	10	5

Als nächstes betrachten wir folgenden kantenbewerteten Digraphen:



d_0	1	2	3	4	5	6	7
1	∞	2	∞	∞	∞	∞	10
2	∞	∞	∞	∞	∞	∞	-3
3	∞	-2	∞	∞	∞	∞	∞
4		∞					
5	∞	∞	∞	4	∞	2	∞
6	7	∞	∞	∞	∞	∞	∞
7	∞	∞	∞	1	8	∞	∞

d_2	1	2	3	4	5	6	7
1	∞	2	∞	∞	∞	∞	-1
2	∞	∞	∞	∞	∞	∞	-3
	∞						
4	∞	∞	3	∞	∞	∞	∞
5	∞	∞	∞	4	∞	2	∞
6	7	9	∞	∞	∞	∞	6
7	∞	∞	∞	1	8	∞	∞

d_4	1	2	3	4	5	6	7
1	∞	2	∞	∞	∞	∞	-1
2	∞	∞	∞	∞	∞	∞	-3
3	∞	-2	∞	∞	∞	∞	-5
4	∞	1	3	∞	∞	∞	-2
5	∞	5	7	4	∞	2	2
6	7	9	∞	∞	∞	∞	6
7	∞	2	4	1	8	∞	-1

d_6	1	2	3	4	5	6	7
1	∞	2	∞	∞	∞	∞	-1
2	∞	∞	∞	∞	∞	∞	-3
3	~ ~	-2					
4	∞	1	3	∞	∞	∞	-2
5	9	5	7	4	∞	2	2
6	7	9	∞	∞	∞	∞	6
7	17	2	4	1	8	10	-1

d_1	1	2	3	4	5	6	7
1	∞	2	∞	∞	∞	∞	10
2	∞	∞	∞	∞	∞	∞	-3
	∞						
4	∞	∞	3	∞	∞	∞	∞
5	∞	∞	∞	4	∞	2	∞
6	7	9	∞	∞	∞	∞	∞
7	∞	∞	∞	1	8	∞	∞

d_3	1	2	3	4	5	6	7
1	∞	2	∞	∞	∞	∞	-1
2	∞	∞	∞	∞	∞	∞	-3
	∞						
4	∞	1	3	∞	∞	∞	- 2
5	∞	∞	∞	4	∞	2	∞
6	7			∞			
7	∞	∞	∞	1	8	∞	∞

d_5	1	2	3	4	5	6	7
1	∞	2	∞	∞	∞	∞	-1
2	∞	∞	∞	∞	∞	∞	-3
	∞						
4	∞	1	3	∞	∞	∞	-2
5	∞	5	7	4	∞	2	2
6	7	9	∞	∞	∞	∞	6
7	∞	2	4	1	8	10	-1

		2					
1	16	$\begin{array}{c} 1 \\ -1 \end{array}$	3	0	7	9	-1
2	14	-1	1	- 2	5	7	-3
3	12	-3	-1	-4	3	5	-5
4	15	0	2	-1	6	8	-2
5	9	4	6	3	10	2	2
6	7	9	10	7	14	16	6
7	17	2	4	1	8	10	-2