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The goal of this diploma thesis is to extend a scientific workflow management system running
on top of Hadoop with a database for storing statistical information persistently. Such statistics
are useful for many use cases, for instance for providing a scheduler with estimates on the runtime
of future tasks or for further applications like progress and time-remaining estimation.

1 Introduction
The development of computers, sensors and other technical instruments changed scientific re-
search. Current scientific experiments often contain a whole range of computational activities,
e.g: capturing and saving huge amounts of data in databases or flat files, analysis of data with
software and data visualization [1].
The complexity of these data intensive experiments led to new challenges. Developing and main-
taining the physical infrastructure to store the data and execute the analysis pipelines is expen-
sive [2]. Data provenance is also an important aspect - scientists need to ensure the origin of the
results and the underlying data. They need to share the knowledge and resulting information with
the community in order that other scientists can repeat and review the experiments.

Scientific workflows provide a means for representing and managing such analysis pipelines. An
activity of the analysis pipeline is encapsulated in a workflow step (task). A scientific workflow
is a directed, acyclic graph (DAG), in which individual tasks are represented as nodes. Edges
represent data dependencies between tasks. One task can be local software or a remote (web)
service call which transforms input data to output data. Task execution is constrained by data
dependencies [3]. An abstract workflow is a high-level workflow description. Scientists model
an abstract workflow by specifying a set of individual tasks and the data dependencies between
them [4]. Figure 2 shows an abstract workflow.

Scientific workflow management systems (SWfMS) are used to manage and execute scientific
workflows. In addition, they often support scientists to record provenance information and statis-
tics about the execution of the workflows. Provenance data is supposed to trace the flow of data
through the workflow tasks to reason about the results. Statistics about the execution of work-
flows and tasks are useful not only for provenance questions: Precise information about historical
executions of a workflow can help the SWfMS to execute the workflow faster or to present progress
and time-remaining estimation [5].
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Besides complex analysis pipelines which can be managed by SWfMS, scientists have to handle
the massive volume of data which is captured by today’s technical instruments. For instance,
the Australian Square Kilometre Array of Radio Telescopes Project1 or CERN’s Large Hadron
Collider2 generate several petabytes of data per day. In bioinformatics, next-generation sequencing
makes sequencing DNA more affordable and faster. A single sequencer is capable of generating
more than 5 TB3 per day and this technology is already provided by many sequencing labs [6,7].
It is more and more difficult to process the increasing amount of data on a single computer in decent
time. Parallelization and distribution provide means to handle such data analysis. In [2] Bux and
Leser present an overview of the current SWfMS and the way they implement parallelization and
scheduling. Scheduling a scientific workflow means assigning the individual tasks of an scientific
workflow to the available physical resource considering dependencies between the tasks. The usual
goal is to minimize overall job completion time but other goals are also possible [8]. Many of the
most well-performing schedulers make use of runtime estimations (execution time, data transfer
time) of each task on each worker node [3]. To get runtime estimations for a task the scheduler
can use historical statistics of previous runs of that task.

2 Motivation
Apache Hadoop has been developed as a distributed data processing system and an open source
implementation of Google’s MapReduce programming model. YARN (Yet Another Resource
Negotiator) is the next generation of Hadoop’s parallel compute platform [9]. The architecture of
YARN separates two major duties: resource management and job scheduling/monitoring. Figure
1 shows the shift from Hadoop 1.0 to 2.0. Similarly to Hadoop 1.0, file management is handled
by the Hadoop Distributed File System (HDFS). HDFS breaks data in several blocks and stores
them redundantly throughout the distributed compute environment.

Figure 1: The YARN-based architecture of Hadoop 2.0. In this architecture MapReduce is just
one of the applications running on YARN. (Image taken from http://hortonworks.com/hadoop/yarn/)

YARN’s ResourceManager is responsible for resource management in the distributed compute
environment. Applications in the system ask the ResourceManager for available physical resources
and get assigned slots on worker nodes to run their computations. A per-application Application-
Master (AM) is responsible for the application’s execution4. That involves negotiating resources
from the ResourceManager, tracking their status and monitoring progress. Users can use different
programming models and scheduling policies by implementing an ApplicationMaster running on

1www.ska.gov.au
2http://public.web.cern.ch/public/en/LHC/LHC-en.html
3http://blog.genohub.com/nextseq-500-and-hiseq-x-ten-services-coming-soon-to-genohub-com/
4http://hadoop.apache.org/docs/current2/hadoop-yarn/hadoop-yarn-site/YARN.html
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top of YARN [9]. The MapReduce AM is provided as part of the Hadoop installation. In addition,
there are already some frequently used AMs which implement a different programming model. For
instance, Apache Giraph5 which is a highly scalable iterative graph processing system.

2.1 The Hi-WAY AM for YARN
The research group of Knowledge Management in Bioinformatics at Humboldt-Universität zu
Berlin, in cooperation with the Information and Communications Technology department of
KTH Royal Institute of Technology Stockholm, develops a workflow management system on
top of YARN. The SWfMS comprises an ApplicationMaster named Hi-WAY (Heterogeneity-
incorporating Workflow ApplicationMaster for YARN), a scheduler (C3PO) and a workflow lan-
guage (Cuneiform). Figure 2 shows an abstract workflow modeled and visualized in Cuneiform.
Hi-WAY is capable of executing task parallel workflows. Task parallelism can be achieved by
distributing the tasks comprising a scientific on parallel computation infrastructures like clusters
or clouds [2]. Figure 3 shows a concrete workflow that has been executed by Hi-WAY. A concrete
workflow is generated by mapping the abstract tasks to concrete methods.

2.2 Runtime statistics in Hi-WAY
Each invocation in Figure 3 traces its own statistical information and writes a log file into HDFS
after the execution. Hi-WAY collects the log entries and concatenates them to a main log file
during workflow execution. Statistics in the log file are not suited for easy access, since the file
has no schema and is accessed sequentially. Applications have to parse the whole file and need to
interpret the data even if they just want to query certain parts of the file. Hi-WAY does not use
these statistics. Statistics in the current log files are only used by Cuneiform for the execution
plan of the remaining tasks.

Hi-WAY collects its own statistics by monitoring the execution of the invocations, e.g. exe-
cution time and input file size. These statistics are only available in main memory and are lost
after the execution of the workflow. Therefore Hi-WAY knows only the runtimes of the current
execution and nothing about the previous ones. To determine future runtime estimates for a task,
Hi-WAY make use of statistics about past invocations of that task on each worker node of the
compute environment.

2.3 Log Data in Cuneiform
Each entry in the log represents a tuple, which consists of eight fields. A field can be a value
(integer or string) or a complex type, e.g. a list of key-value pairs specified in JSON format. The
log file of an invocation contains statistics and provenance information about the execution of a
workflow task. The first seven fields are used for classification of the log entry. There are six types
of possible log entries:

• invoc-stat : Statistics about the invocation run.

• invoc-stagein : All staged in files and their sizes.

• invoc-stageout : All staged out files and their sizes.

• invoc-output : The values of all output variables.

• invoc-stdout : The content of the standard output channel.

• invoc-stderr : The content of the standard error channel.
Figure 4 shows examples for three of these types of log entries of an invocation. Execution

statistics, stagein and stageout information are the most important for the scheduler. No single
field is a primary key. However, the invocation signature and the type together constitute a
composite key.

5http://giraph.apache.org/
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The size of the statistic traces depends on the workflow task and data input. For example, the
workflow from Figure 2 and 3 produces a main log file of 1.5 MB. The SWfMS can run hundreds
of workflows simultaneously, assuming that the cluster or cloud has appropriate capabilities. In
these cases, the SWfMS can generate several GB of statistical data per day.

3 Goal of this Thesis
The goal of this diploma thesis is to extend the architecture of Hi-WAY by adding a database
which saves statistical information persistently and independently from the AM. The database is
supposed to supply the scheduler with latest and historical statistics about task executions as well
as data transfer times on different worker nodes. Furthermore the information can be used for
comparison between workflow executions, to answer provenance questions and to provide workflow
progress estimation.

4 Approach
The important question of how to save the data persistently will be investigated in the diploma
thesis. There are some requirements which narrow down the potential technologies we focus on.
The requirements are determined by Hi-WAY, since the AM will use the database for scheduling.

4.1 Requirements
• Low response time: Hi-WAY waits for the statistics before assigning the invocation to
a node. During this time the invocation can’t run, which is why this time span needs to
be as short as possible. SELECT statements to the statistic database should result in an
negligible overhead for the AM. Fast SELECT statements are the main requirement.

• Timeliness, Actuality: Runtime estimates can be unreliable or quickly outdated in shared
compute environments. In such settings the utilization of resources is unsteady and can
change dynamically at runtime [11]. That means that older statistics are not reliable any-
more, since the utilization of the cluster can already be different to the time the statistic was
obtained. It is important that the current invocations write their statistic into the database
as soon as possible, otherwise the AM can’t use latest statistics. Each invocation is supposed
to save their statistics into the database after their execution on the worker node. The need
for actuality implies a kind of garbage collection for old and outdated log entries.

• Read/Write ratio: Once stored in the database, log entries won’t have to be altered,
the writes are append-only. Each time the scheduler determines which task to assign to a
compute resource with available capacity, it reads parts of the log entries written by all tasks
on this node. Therefore we can assume that there is a workload with many reads and just
a few writes. The decision for a database technology should be focused on a system which
provides fast reads. Fast writes or updates are substantially less important for our use case.

4.2 Persistence Technology
SQL databases has been the dominating persistence technology for many years. The challenges
which have emerged in the last few years changed this situation. Many Web 2.0 startups started
their business without SQL databases in order to address the needs of modern applications. The
increasing volumes of data and the need for easy horizontal scaling on distributed compute en-
vironments have brought RDBMS to their limit. A number of specialized solutions for such use
cases have emerged in the last few years. Non-relational databases have proven their usability
here [12,13].
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4.2.1 SQL Database

The relational data model has been utilized for many years. Relational Database Management
System (RDBMS) like Oracle database6, Microsoft SQL Server7 or MySQL 8 are the most popular
database systems9. An RDBMS stores data in the form of tables with rows and columns. Due to
the relational model, it is easy to add, update or delete data in an RDBMS. The ACID (Atomicity,
Consistency, Isolation, Durability) properties guarantee that database transactions are processed
reliably. The data can be easily related by foreign keys and joins, therefore the same database
can be viewed or reassembled in many different ways [12]. Relational databases are well-known,
mature and flexible, hence one of the databases to investigate will be an SQL database. The SQL
database will be used as the baseline for further evaluations.
The relational data model suffers from a number of drawbacks. One of these drawbacks is the
difference between the relational model and the in-memory object model. Mapping objects and
classes of an object oriented concept to a relational data model leads to a set of conceptual and
technical difficulties, which are called the impedance mismatch. For this reason, developers usually
use an object-relational mapper to bridge the gap between objects and relations automatically [14].
The strict schema of a table can be another drawback, especially if the structure of data often
changes or if the data is unstructured, this leads to high complexity and schema migrations. The
rich feature set of SQL databases can be drawback as well. Join operations and transaction lead
to inefficient and complex operations in distributed environments.

4.2.2 NoSQL

The term NoSQL encompasses a number of recent non-relational databases, which have some
common characteristics but are still very different. A database system referring to NoSQL does
not use the relational model, runs well on clusters, has no strong schema (schemaless) and is mostly
an open-source project [14]. Example Projects are Riak10, Oracle’s Berkley DB11, MongoDB12

or Cassandra13. NoSQL databases are commonly classified by their data model: Key-Value,
Document, Column Family and Graph databases [13–15]. Prof. Dr.-Ing. S. Edlich give an
overview about current NoSQL databases on14.
Graph databases are out of focus because they are specialized for handling data whose relations
are well represented as a graph, such as social network data. All other systems have an aggregate-
oriented data model. An aggregate is a collection of data with a key that is stored as a unit [14].
A log entry of an invocation can be seen as an aggregate. An aggregate can save complex types
of values whereas a row in an RDBMS consists of a tuple of single values (which are related). An
aggregate is the unit of work for a NoSQL database. Therefore data which is accessed together
should be stored within one aggregate. Aggregates are useful to manage data storage over clusters,
since they are a suitable unit for distribution [14]. Aggregate-oriented databases differ in the way
they store data physically and this affects the way a user can access the data.

• Key-Value databases are simple hash tables where data is stored and accessed by a key.
Behind a key there can be an arbitrary aggregate which is opaque to the system. It is not
possible to query a part of the aggregate.

• Document databases are key-value databases whose value can be interpreted by the system.
The value is a structured document, e.g. key-value pairs in JSON. A document database
provides more query features than a key-value database.

6http://www.oracle.com/us/products/database/overview/index.html
7http://www.microsoft.com/en-us/sqlserver/default.aspx
8http://www.mysql.com/
9http://db-engines.com/en/ranking

10http://basho.com/riak/
11http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/index.html
12http://www.mongodb.org/
13http://cassandra.apache.org/
14http://nosql-database.org/
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• Column-Family databases are motivated by Google Big Table and the need for a distributed
storage system which can scale to a very large size [16]. Column-family stores are designed
for distributing huge data sets with different kinds of attributes on large clusters [15]. That
comes at the cost of a complex data model and less query features. Even if the SWfMS
generates several GB of statistical data per day, the log data that we want to store cannot
be described as a very large data set. We have a constantly small number of attributes and
easy horizontal scaling is not important in our use case. Therefore, Column-Family stores
are out of focus as well.

Figure 5: NoSQL data models [13]. Key-Value databases are simple hash tables where data is
stored and accessed by a key. Document databases are key-value databases whose value can be
interpreted by the system. Column-Family databases are key-value pairs (Column) which are
grouped into a column family. Logical related data is stored in a row which consists of several
column families and a row key. Graph databases are specialized on handling heavily linked data.

Following the ACID principles, RDBMS guarantee that a database transaction is processed
reliably. A transaction is a set of data manipulation tasks that brings a database from one
consistent state to another consistent state [17]. NoSQL systems have a different focus: In order
to achieve better performance, availability and data distribution, they sacrifice consistency [14].

Aggregate-oriented NoSQL databases do not support transactions over multiple aggregates but
provide atomic manipulation of a single aggregate at a time. Since an aggregate is the unit of work
with the database it is very important to design a well-suited aggregate. Developers have to decide
which data is accessed by the application as a unit. Naturally different applications manipulate the
same data in different ways, which makes it difficult to design one suitable aggregate for different
use cases. Evidently, NoSQL databases lack the flexibility provided by SQL databases.

4.3 Choosing a certain System
The statistic collector which will be implemented in this diploma thesis consists of two major
parts, a lightweight logical layer and a data store. The logical layer is only responsible for saving
log entries into the data store. It will run on each worker node and is called right after an
invocation has finished. The data store is responsible for saving the statistics persistently and for
answering queries from Hi-WAY. The investigation of different database systems, with focus on
the requirements outlined above, will show which technology is suitable.

4.3.1 SQL

MySQL is the most used open-source database15. In combination with memcached16 it is a good
choice for applications requiring high scalability17. Memcached is an open-source, distributed
memory caching system designed to speed up performance by caching data and objects in RAM.
Many of the largest web sites like Facebook, YouTube, Yahoo, and Wikipedia deploy memcached

15http://db-engines.com/en/ranking
16http://memcached.org/
17http://highscalability.com/blog/2010/2/26/mysql-and-memcached-end-of-an-era.html.

6



and MySQL. MySQL Cluster has been part of the MySQL release since 2004. It works with a
distributed layer called NDB. MySQL Cluster uses a ’shared nothing’ architecture and distributes
data over multiple servers. MySQL and memcached will be investigated in this diploma thesis as
well as MySQL Cluster.

4.3.2 NoSQL

There are several surveys which compare NoSQL systems over a number of dimensions [13,15,18].
Besides data model the most important aspects are: Query capabilities, consistency, distribution
model and performance. All surveys recommend systems for a certain use case and point out that
NoSQL is a large and expanding field. Therefore, choosing a suitable data store for a given use
case scenario is a challenging task [13].
It is most important to find a suitable data model for the given data to avoid unnecessary com-
plexity due to the transformation or mapping of tasks. The data model is closely related to the
query capabilities of a database. Therefore queries which should be supported by the database
have to be taken into account.
Choosing a suitable NoSQL database involves trading between high performance through parti-
tioning and load balanced replica servers, high availability supported by asynchronous replication
and strict consistency [15].

All surveys state that key-value stores should be used for very fast and simple operations
like storing session data or shopping cart data. Document stores should be used for applications
dealing with data that can be easily interpreted as documents or for storing items of similar nature
that may have different structures, e.g. content management systems or event logging. Due to
their flexible data model, document stores offer more query possibilities.
A Key-Value database would be a reasonable choice, but fast SELECT statements is not the
only requirement. A certain flexibility in accessing the data for different use cases like time
estimation would be desirable. According to the recommendations in the literature [13–15, 18]
a document database provides a reasonable trade-off between flexibility and scalability. The log
data is perfectly suitable for a document database. Each message type can be interpreted as a
document with a key. Programming complexity will be low because the data structure used in the
log can be saved without transformation. Document databases combine the access performance
of a key-value database with more query features.

DB-Ranking18 mention that the most popular document databases are MongoDB19, Apache
CouchDB20 and Couchbase21. While MongoDB and CouchDB are mature NoSQL databases,
Couchbase was founded in 2011 by the former chief of Apache CouchDB.

Couchbase merged with an open source distributed key-value database called Membase to
built a database which combines the indexing and querying capabilities of a document database
with the high performance of a key-value data base22. Documents in Couchbase are stored as
JSON objects. Couchbase provides low-latency read and write operations with linearly scalable
throughput due to built-in caching [19]. According to latest benchmarks Couchbase performs very
well not only in a heavy read scenario like the one described in Section 2 [19, 20]. In addition,
Couchbase has several distribution possibilities which enable better read performance through load
balancing. Couchbase will be the NoSQL database which is investigated in this diploma thesis.

5 Expected Results

This diploma thesis will investigate two database systems (MySQL and Couchbase) with different
data models and evaluate their response times to Hi-WAY. Both technologies can be used on a

18http://db-engines.com/en/ranking
19http://www.mongodb.org/
20http://couchdb.apache.org/
21http://www.couchbase.com/
22http://www.couchbase.com/couchbase-vs-couchdb
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single server or with distributed data, which will also be a test scenario. The absence of transac-
tions in the classical sense and the limited query features of NoSQL databases makes them less
flexible than SQL databases but they promise a better performance. Independent of the actual
database technology there are some expected outcomes. Hi-WAY is supposed to be the main user
of the statistics database and the technology should be suited to its needs. It is expected that
Hi-WAY can use the database to get runtime statistics for every task of a workflow on each node
in the compute environment. The information used by Hi-WAY is expected to be up to date and
the overhead for the select statement should be negligible.

Additionally, the statistics are usable for the user of the workflows. They can compare several
runs of the same workflow and find errors in workflow design. The provenance information in the
database can be used to reason about results and to verify the underlying data. In the best case
scenario the diploma thesis results in an application which provides time-remaining and progress
estimation to the user of the SWfMS.
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Figure 2: An abstract bioinformatics workflow which processes genomic sequencing data [10]. The
workflow is modeled and visualized by Cuneiform. Boxes correspond to individual tasks named by
dotted arrows. The solid arrows show data dependencies between tasks. It is possible to declare
variables for intermediate results.
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Figure 3: Invocation graph of the abstract workflow modeled and visualized by Cuneiform. Each
blue line in is an executed invocation of a task on a worker node. Data dependencies are shown
by black lines between tasks. Orange lines denotes input and output files.
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Figure 4: Three log entries: Each entry belongs to an invocation (invocation signature), the
invocation is an instance of a task (task signature or name), a task is part of a workflow (workflow
name) which has a UUID that identifies the workflow run, that produced the tuple.
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