EMES: Eigenschaften mobiler und eingebetteter Systeme

Dr. Felix Salfner, Dr. Siegmar Sommer Wintersemester 2010/2011

Anwendungsgebiete von Echtzeitsystemen

- Fahr- und Flugzeuge
- Industrie-Automatisierung
- Haus-Automatisierung
- Telekommunikation
- Medizin
- Robotik
- Multimedia
- Geschäftssysteme
- ...
- ⇒ Echtzeitsysteme sind überall anzutreffen

00101111010010011BeispielpHugzeug-Steuerung

Hauptziel: Menschen dürfen nicht zu Schaden kommen!

Untergeordnete Ziele (ohne Wertung):

- Material soll nicht zu Schaden kommen
- Flugziel soll pünktlich erreicht werden
- Flugziel soll kostenoptimal erreicht werden
- Komfort für Menschen soll maximal sein
- Umwelt soll wenig belastet werden durch Abgase und Lärm

Problem: Abbildung auf technische Anforderungen (Tasks, Deadlines)

Tasks

Welche Tasks werden gebraucht? (Beispiele)

- Aus Anforderungen der Flugzeugsteuerung:
 - Fluglage
 - Triebwerkssteuerung
- Aus Anforderungen der Mission:
 - Navigation
 - Kommunikation
 - Ortungssysteme
- Aus weitereren Anforderungen:
 - Komfortsteuerungen (Klima, Licht, Unterhaltungssysteme)
 - Service- und Diagnosesysteme

Deadlines

Woher kommen die Deadlines der Tasks? (Beispiele)

- Abgeleitet aus physikalischen Notwendigkeiten
 - regelungstechnische Gesetzmäßigkeiten
 - Aerodynamik des Flugzeuges
- Abgeleitet aus Spezifikationen
 - Verlangtes Verhalten auf Stimuli (z.B. Ortung eines anderen Flugzeuges erfordert Reaktion in einem Zeitrahmen)
 - "Überdefinition" physikalischer Notwendigkeiten (Komfortfunktionen)

Betriebsmodi I

Tasks und Deadlines sind nicht in jedem Fall statisch!

- Mission eines Echtzeit-Systems besteht oft aus verschiedenen Stadien
- Jedes Stadium hat andere Anforderungen
 - Flugzeug beim Rollen auf dem Boden
 - Flugzeug beim Starten
 - Flugzeug beim Reiseflug
 - Flugzeug beim Landeanflug
 - Flugzeug beim Landen
 - Flugzeug bei der Wartung
- Betriebszustand in einem Stadium nennt man "Modus" (mode)
- Deadlines und Tasks sind mode-spezifisch
- Wechsel zwischen Modi (mode changes) geben statischen Systemen dynamisches Verhalten
- Mode Changes sind ressourcenschonend

Betriebsmodi II

Variante eins: Zusammenführung aller Tasks in allen Modi in einen globalen Schedule.

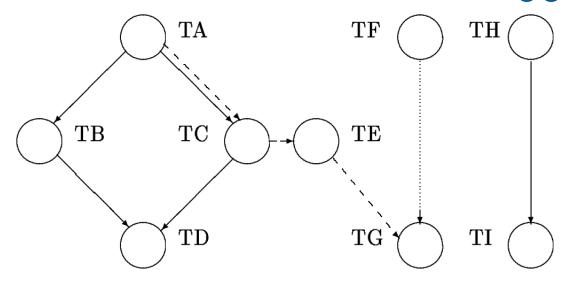
- → Führt zu massiv überschätzten Ressourcenbedarf
- ightarrow Benutzt kein Wissen $\tilde{\mathsf{A}} \frac{1}{4} \mathsf{ber}$ 'mutual exclusion"
 - Bei Änderung in einem Modus muss der gesamte Schedule neu berechnet werden
 - Großer Schedule ist schwieriger zu testen

Daher: Betrachtung jedes Modus einzeln + Betrachtung der Modus- Übergänge

Betriebsmodi III

Problem: Verhalten beim Mode Change

- Es gibt Tasks, die nur in einem Mode vorhanden sind: kein Problem, Starten, bzw. Beenden
- Es gibt Tasks, die übernommen werden müssen
 - Jitter oder verpaßte Deadlines beim Wechsel stören nicht
 - → Einfache Behandlung (einfach umschalten)
 - Tasks, deren Deadlines auch beim Umschalten eingehalten werden müssen und weitgehend jitterfrei laufen müssen, erfordern den größten Aufwand

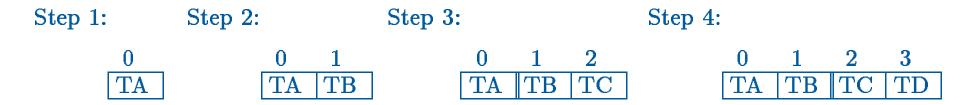

- Mode Change ist ein eigener Schedule zur Überführung (Überführungs-Schedule)
 - Beispiel: Umschaltung eines Druckbehälters von Befüllungsmodus in Heizmodus benötigt vorhergehende Sicherheitsprüfungen
- Deadline für Mode Change (vom Request bis zum Beginn des neuen Modes)
- Da das System statisch ist, kann der Mode Change Schedule vor Laufzeit erzeugt werden

Problem: Wie wird ein solcher Schedule berechnet?

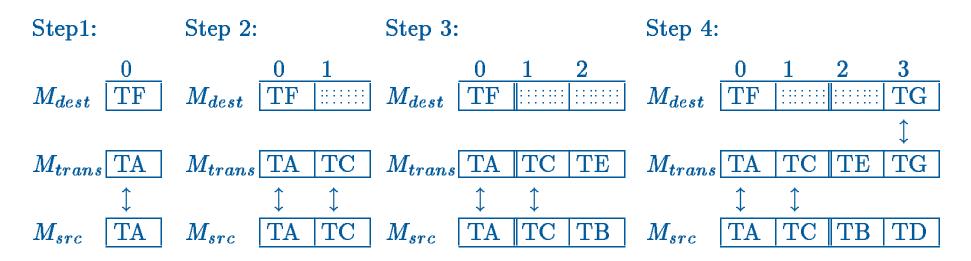
Laufzeit: Abarbeitung des vorberechneten Umschalt-Schedules

00101111010 Betriebsmodionach Gerhard Fohler

Konstruktion eines statischen Schedules nach Abhängigkeiten


- "Zweidimensionaler" Taskset: Abhängigkeiten in verschiedenen Modi
- Im Bild: Drei Modi:
 - M_{src} (durchgezogen), M_{trans} (gestrichelt), M_{dest} (gepunktet)
 - M_{src} , M_{dest} laufen periodisch, M_{trans} einmal
 - $-M_{trans}$ beinhaltet "shutdown" und "prepare" von Subsystemen

001011110Betriebsmodimachi Gerhard Fohler II


- Übertrage Single-Mode Scheduling-Verfahren:
 - Gegeben die Menge der "Ready tasks"
 - Scheduling besteht aus: "Zum Zeitslot x, aus Tasks A,B,C,D wähle A zur Ausführung aus"
 - in Multi-Mode Problem.
- Traversiere alle Graphen aller Modi parallel:
 - "Zum Zeitslot x, aus Tasks A, B, D wähle A zur Ausführung in Modus M_0 und aus Tasks E, C wähle C zur Ausführung in Modus M1".
 - Finde individuellen Schedule für jeden Modus
 - Tritt Task in verschiedenen Modi auf, soll er zur gleichen Zeit geplant werden \rightarrow Umschaltung ohne Mehraufwand

00101111 Betriebsmodi mach Gerhard Fohler III

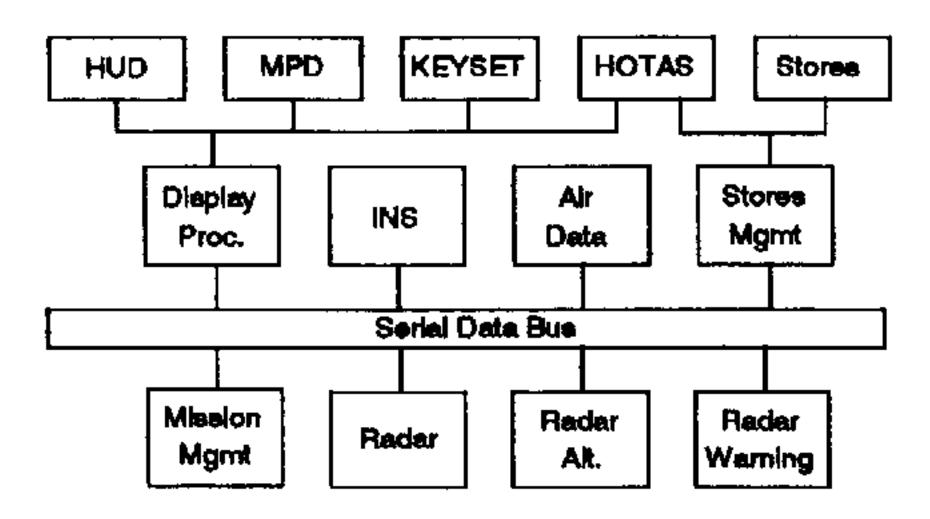
• Single-Mode Schedule für M_{src} :

Multi-mode Schedule für alle Modi:

- GAP Generic Avionics Platform: Systementwurf für ein Echtzeitsystem zur Steuerung eines Militärflugzeuges
- Steuer- und Diagnosesysteme in Fahrzeugen

00101111010GAP11101Ceneric Avionics Platform

aus: C. Douglas Locke, David R. Vogel und Thomas J. Mesler: Building a Predictable Avionics Platform in Ada: A Case Study


IEEE RTSS 1991

Ziele:

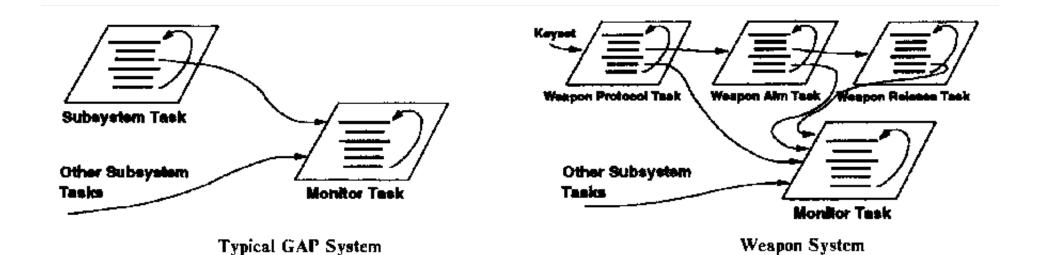
- Anwendung von RMS auf ein existierendes RT-Problem
- Benutzung moderner Software-Engineering-Methoden
 - Information Hiding (Encapsulation)
 - Separation of Concerns
- Benutzung von ADA-Tasking
- Erzielen einer hohen Auslastung

00101111010GAP11101Ceneric Avionics Platform

- GAP ist ein Modell eines Flugzeug-Missions-Computer-Systems
- Identisch zu existierenden US-Navy Flugzeugen nach der *Generic Avionics Software Specification*
- Modelliert das Missionsprogramm in
 - Timing
 - Komplexität
 - Datenabhängigkeiten
 - Funktionalität, soweit erforderlich für
 - * Einhaltung von zeitlichen Anforderungen
 - * robustes Softwaredesign

- Navigation: berechnet Position, Flughöhe und Geschwindigkeiten
- Radar Kontrolle: liefert Zielpositionen
- Radar Warnsystem
- Waffen-Steuerung
- Display: aktualisiert die Informationen für den Piloten
- Tracking: aktualisiert Informationen über das Ziel
- Test
- Datenbus: ermöglicht Kommunikation zwischen dem Mission Control Computer (MCC) und externen Systemen

- Navigation
 - 20 hz Frequenz auf Basis der erforderlichen Genauigkeit (bei Mach 2 30 m Flugstrecke in 50 ms)
- Display
 100 ms auf Basis der menschlichen Wahrnehmung, 65 ms, wenn kontinuierlich erscheinen soll
- Ballistische Berechnungen
 5 ms für Genauigkeit auf Basis von Geschwindigkeiten der verschiedenen Flugkörper
- Sensorsteuerung angepaßt an Hardware: 10 Hz für Radar, mehr als 1 KHz für elektromagnetische Beobachtung


,	Table 1. GAP Timing Requirements			
System	Subsystem	Periodicity or Response Time (ms.)	E	U
Display	Status Update Keyset Hook Update Graphic Display Stores Update	200 200 80 80 200	3 1 2 9	1.50 0.50 2.50 11.25 0.50
RWR	Contact Mgmt.	25	5	20.00
Radar	Target Update Tracking Filter	50 25	5 2	10.00 8.00
NAV	Nav Update Steering Cmds Nav Status	59 200 1000	8 3 1	13.56 1.50 0.10
Tracking	Target Update	100	5	5.00
Weapon	Weapon Protocol Weapon Release Weapon Aim	A 200 A 200* A 50	1 3 3	0.50 1.50 6.00
BIT	Equ. Status Update	1000	1	0.10
Data Bus	Poll Bus Devices	40	. l	2.50

00101111010010 GAPI Datenabhängigkeiten I

Table 2. GAP Data Flow				
System	Subsystem	Input	Output	
Display	Status Update Keyset Hook Update Graphic Display Stores Update	all DB DB all W	DB all DB DB	
RWR	Contact Mgmt.	DB,N,K, W	D,DB,T	
Radar	Target Update Tracking Filter	DB,N,K DB,N	D,T,DB D,T,DB	
NAV	Nav Update Steering Cmds Nav Status	DB,K,R D DB	R,T,DB, W,D,RW D D	
Tracking	Target Update	N,DB,K, R,RW	D,W	
Weapon	Weapon Protocol Weapon Aim Weapon Release	K N,T n/a	DB DB,D DB	
BIT	Equ. Status Update	n/a	D	
Data Bus	Poll Bus Devices	al1	n/a	
LEGEND				
B - BM K = Ke RW = RV	Γ Status D — Display yset N = Nav Γ	$\mathbf{R} =$	Data Bus Radar Weapon	

- Keine gemeinsamen Daten zwischen Subsystemen ("separation of concerns")
- Benutzung eines separaten Daten-Managers pro Subsystem
- Daten-Manager speichert Daten des Subsystems
- Daten-Manager behandelt Transfers zu anderen Subsystemen
- Benutzung von Priority Ceiling, um Prioritäts-Invertierungen zu verhindern
- Ausnahme: Waffen-System als aperiodischer Vorgang: Tasks der Waffensteuerung sind nur aktiv, wenn Waffensteuerung aktiviert wurde

00101111010016AP0100Patenabhängigkeiten III

001011110100100101010101GAP — Task Set

Tæsk	Priority (PCP)	Period (ms)	Exec. Time (ms)	Unil. (%)
Timer_Interrupt	101	1.00	0.051	5.10
Weapon_Release	98	200.00	3.000	1.05
Rader_Tracking_Filter	84	25.00	2.000	8.00
RWR_Contact_Mgmt	72	25.00	5.000	20.00
Data_Bus_Poll_Device	68	40.00	1.000	2.50
Weapon_Aiming	64	50.00	3.000	6.00
Radar Target_Update	60	50.00	5.000	10.00
Nav_Update	56	59.00	8.000	13.56
Display_Graphic	40	80.00	9.000	11.25
Display_Hook_Update	36	80.00	2,000	2.50
Tracking Target_Upd	32	100.00	5,000	5.00
Weapon_Protocol	28	Α	1.000	
Nav Steering Cmds	24	200.00	3.000	1.50
Display Stores Update	20	200.00	1.000	0.50
Display Keyset	16	200.00	1.000	020
Display Stat_Update	12	200.00	3.000	1.50
BET B Status Update	8	1000.00	1.900	0.10
Nev Status	4	1000.00	1.000	0.10

18 Tasks, Gesamtlast
$$0.8406 > 18\left(2^{\frac{1}{n}} - 1\right) = 0.70666$$

Time Demand Analysis:

- Die acht höchstprioren Tasks halten immer ihre Deadlines ein
- Zwei mittelpriore Tasks verpassen ihre Deadlines
 - dennoch: niederpriore Tasks halten Deadlines ein!
 - Ursache: kurzzeitige Überlastsituationen durch aperiodische Tasks
 - Abhilfe: Diese Situation tritt nur theoretisch auf durch sich aufgrund der Anwendungslogik ausschließende Tasks (Weapon_Aim und Weapon_Release)

- Elektronik in Fahrzeugen hat sich in den letzten Jahren immer weiter entwickelt durch
 - Neue Anforderungen: ABS, Airbags, ESP, ...
 - Integration verschiedener Systeme
 - Kostenersparnis trotz neuer Funktionen
 - Kostenersparnis durch Übergang Mechanik zu Elektronik
- Vorteil: Komplexe elektronische Baugruppen als Blackbox, "einfacher"
 Service
- Nachteil: Service-Personal ist ungeachtet erweiterter Möglichkeiten "überfordert"

0010111101001011Evolution1eines KFZ-Systems

- Elektrische Verkabelung ohne jede Elektronik, Steuerungen elektromechanisch
- Vereinzelte Benutzung elektronischer Baugruppen (Zündung, Radio)
- Komplexere Einzelsysteme
- ullet Zusammenfassung von Einzelsystemen (Zündung + Einspritzung + Abgasreglung = Motorsteuergerät)
- Aufbau von Punkt-zu-Punkt-Verbindungen zwischen einzelnen Systemen (Beispiel: Motorsteuerung zu Instrumenten)
- Diagnosemöglichkeiten für komplexere Einzelsysteme
- Diagnosemöglichkeiten für alle Systeme zusammen (VAG: K-Signal)
- Datenbus zur Verbindung von Steuergeräten (VAG: CAN)
- Vereinheitlichung auf ein Bus-System (VAG: CAN)

0010111101001001010101010Echtzeit-Probleme

- "Mischung" von verschieden kritischen Tasks in System-Komponenten oder Kommunikationssystemen erfordert
 - Saubere Trennung
 - Nichtbeeinflußung der kritischen Tasks durch unkritische
- Architekturunterstützung für "Komponierbarkeit"
 - Einfaches Hinzufügen und Entfernen von Komponenten (Komposition)
 - Vorhersagbares zeitliches Verhalten bei Kompositionen

0010111010010011010Beispiel: VAG-Diagnose I

038906018FB 1.91 R4 EDC G000SG 2170 Codierung 00005 WSC 06402

kein Fehler erkannt

1J0907379AF ASR 20 IE CAN 0001 Codierung 13404 WSC 00001

kein Fehler erkannt

6K0035186C Radio GRO Codierung 00403 1V32 WSC 06402

3 Fehler erkannt

00855 049

Verbindung zum CD-Wechsler keine Kommunikation

00856 036

Antenne, am Radio Unterbrechung

01465 049

Signalleitung vom Kombiinstrument keine Kommunikation