
HU M B O L D T-UN I V E R S I T Ä T Z U BE R L I N
MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT
INSTITUT FÜR INFORMATIK

Round-Trip Migration von objektorientierten
Datenmodell-Instanzen

Bachelorarbeit

zur Erlangung des akademischen Grades
Bachelor of Science (B. Sc.)

eingereicht von: Luca Mathias Beurer-Kellner
geboren am: 15.09.1994
geboren in: Stuttgart

Gutachter/innen: Prof. Dr. Timo Kehrer
Dr. Jens von Pilgrim

eingereicht am: verteidigt am:

Abstract

In distributed software systems, a shared data model often represents the common denominator between
components (e.g. database systems, applications, APIs). Over time, the data model must be changed in
order to accommodate for new requirements. This evolution can often not be performed at the same time and
completely, which implies that multiple versions of the same data model must be maintained.
In order to further guarantee the successful interoperation between components of different version, it must be
ensured that the model differences do not lead to loss of information or misinterpretation. A common solution to
this problem is to design data model changes in backward compatible fashion.

In this thesis, we propose an alternative solution to this problem by introducing a translation layer between
components of different data model version. This allows for greater flexibility when changing data models,
since is does not require backward compatibility. We introduce the term of successful round-trip migrations,
which describes the lossless forth-and-back translation of data model instances between versions. Based on
an object-oriented data modelling language, we present a framework for the execution and implementation of
round-trip migrations. During our work, we have identified traceability, as known from model-driven engineering,
as a core requirements to allow for successful round-trip migrations. We furthermore present a catalogue
of so-called round-trip migration scenarios, which discusses various challenges that need to be faced when
implementing round-trip migrations.

In order to evaluate our approach, we carried out a case study by implementing a translation layer for a real-world
data model. Using our framework and the scenario catalogue, we were successful in implementing a translation
layer which guarantees a successful round-trip migration of instances. Based on these results, we were able
further verify our framework, our scenario catalogue and the general concept of round-trip migrations. However,
overall we have also identified limits to the idea of round-trip migrations, especially with regard to the set of
possible data model changes.

We see potential in the idea of round-trip-migrating translation layers, as it allows for non-backward compatible
data model changes, while maintaining system interoperability. Future work will show how the applicability of
such layers is to be estimated in a real-world production environment.

1

Zusammenfassung

In verteilten Software-Systemen formen gemeinsame Datenmodelle oft die Grundlage für eine Kommunikation
zwischen Komponenten (z.B. Datenbanken, Anwendungen, APIs). Um veränderten Anforderungen gerecht
zu werden, müssen solche Datenmodelle mit der Zeit verändert werden. Oft kann diese Änderung jedoch
nicht für alle Komponenten zeitgleich und komplett vorgenommen werden. Deshalb können in einem solchen
System mehrere Versionen eines Datenmodells zum Einsatz kommen. Um weiterhin die Funktionalität und
Zuverlässigkeit des Systems zu garantieren, muss sichergestellt werden, dass die eingesetzten Versionen keine
Unterschiede aufweisen, die im Zusammenspiel zu Datenverlust oder Fehlinterpretation führen können. Dieses
Problem wird oftmals gelöst, indem Datenmodell-Änderungen eine Rückwärtskompatibilität garantieren.

Diese Arbeit bespricht einen alternativen Lösungsansatz, in dem mittels Übersetzungsschichten (translation
layers) zwischen Komponenten verschiedener Datenmodell-Versionen vermittelt wird. Dies erlaubt größere
Freiheiten bei der Änderung des Datenmodells, da Rückwärtskompatibilität kein essentielles Kriterium mehr
darstellt. Zunächst wird der Begriff einer erfolgreichen Round-Trip-Migration besprochen, welcher die verlustfreie
Übersetzung einer Datenmodell-Instanz in eine andere Version und wieder zurück beschreibt. Auf Basis einer
objektorientierten Datenmodellierungssprache wird ein Framework präsentiert, welches die Ausführung und
Implementierung solcher Round-Trip-Migrationen erlaubt. Während dieser Arbeit hat sich dabei insbesondere
Traceability, wie aus der modellgetriebenen Softwareentwicklung bekannt, als essentielles Hilfsmittel erwiesen.
Zusätzlich umfasst diese Arbeit einen Katalog sogenannter Round-Trip-Migrations Szenarien, welcher eine
Reihe an Problemen bespricht die bei der Implementierung von Round-Trip-Migrationen gelöst werden müssen.

Mit einer Fallstudie wurde das Konzept von Round-Trip-Migrationen weiter ausgewertet, indem für ein produktiv
eingesetztes Datenmodell eine Übersetzungsschicht implementiert wurde. Dabei konnte mit Hilfe des Frame-
works und Katalogs eine Übersetzungsschicht realisiert werden, welche die erfolgreiche Round-Trip-Migration
von Datenmodell-Instanzen erlaubt. Diese Ergebnisse ermöglichten eine initiale Verifikation des Frameworks,
des Katalogs und dem Konzept von Round-Trip-Migrationen im Allgemeinen. Insgesamt werden jedoch auch
Grenzen der Idee von Round-Trip-Migrationen deutlich, insbesondere bezüglich der Menge an möglichen
Datenmodell-Änderungen.

Diese Arbeit gibt einen Ausblick auf das Potenzial von Übersetzungsschichten und Round-Trip-Migrationen,
welche eine Änderung des Datenmodells erlauben, ohne dabei Rückwärtskompatibilität zu berücksichtigen.
In weiteren Arbeiten bleibt es zu ermitteln, wie die Anwendbarkeit von solchen Übersetzungsschichten in
Produktiv-Systemen zu bewerten ist.

2

Contents
1 Introduction 4

2 Foundations and Problem Statement 5
2.1 Terminology . 5
2.2 Round-Trip Migrations . 7
2.3 Conceptual Limits . 8
2.4 Instance Modifications . 8

3 A Framework for Executing Round-Trip Migrations 10
3.1 Type Declarations . 10
3.2 Versioned Types . 11
3.3 Data Model Instances in N4IDL . 11
3.4 Version Aware Contexts . 12
3.5 Migration Declarations in N4IDL . 12
3.6 Delegation between Migrations via Migration Calls . 13

3.6.1 Dynamic Dispatching of Migration Calls . 13
3.6.2 Fulfillment of Migration Calls . 15

3.7 Context Information in Migrations . 15
3.7.1 Traceability in N4IDL . 16

3.8 The N4IDL Migration Runtime . 18

4 A Reference Implementation of an N4IDL Migration Runtime 19
4.1 Binding Migrations . 19
4.2 Order of Execution . 19
4.3 Capturing and Providing Traceability Information . 21

5 Scenario Catalogue 23
5.1 Notation . 23
5.2 Round-Trip Migration Scenarios . 24
5.3 A Note on Completeness and How to Use This Catalogue . 24
5.4 Catalogue . 25
5.5 Learning Outcomes . 57

6 Case Study 59
6.1 Motivation . 59
6.2 Overview . 59
6.3 The Data Model . 59
6.4 Implementing Migrations . 60
6.5 Testing the Implemented Translation Layer . 61
6.6 Results . 62
6.7 Conclusion . 63

7 Related Work 64
7.1 Database Systems . 64

7.1.1 Schema Evolution . 64
7.1.2 View Update Translation . 65

7.2 Metamodel Co-Evolution . 66
7.3 Traceability . 68

8 Conclusion 70
8.1 Summary . 70
8.2 Discussion . 71
8.3 Future Work . 72

Appendices 74

3

1 Introduction

In large software systems, a data model often serves as a basis for the communication between components.
With such a model, developers aim to represent domain entities and relations. Based on it, other software
artifacts may be produced such as Application Programming Interfaces (APIs) and database schemas. By using
the same underlying data model, all software components are assured to operate on a compatible representation
of information and their interoperation is facilitated.

Due to changing system requirements during operation and development, data models are subject to change
and therefore undergo evolution. As a consequence, existing software components as well as existing data
model instances must be adapted to accommodate for model changes. In most cases however, a complete and
simultaneous upgrade of all concerned artifacts is not feasible. For instance, in distributed software systems it is
often not possible to simultaneously update all participants without compromising system availability. Sometimes,
the first party which issues a data model update may not even control some (third party) components that rely
on the previous data model version (cf. Figure 1.1).

To mitigate the problem of data model updates, the models are often developed in backward compatible fashion.
Over time, this legacy support can cause redundant model structures and decrease the maintainability of a
data model significantly. As a consequence, further development and usage of the model becomes more difficult.

As an alternative to such backward compatible model evolution, this thesis proposes an approach which is based
on data model instance migration. Rather than requiring the entire system to operate on the same version of a
data model, migration layers translate instances between different data model versions. All software components
operate on their version of the data model and all inter-component communication is translated accordingly.
This approach allows for all software components to remain unchanged and/or be upgraded gradually. Figure
1.1 illustrates an example of such a version-heterogeneous system with translation layers.

Due to the bilateral relationship of most components, the above-mentioned migration layers must be able to
translate instances forth and back from and to any data model version in use. In order to not compromise the
system functionality, such round-trip migrations (RTMs) must guarantee data consistency which, in particular,
implies the prevention of information loss throughout migrations.

This thesis approaches the problem of round-trip instance migrations in the context of object-oriented data
models. We present a framework to support the execution and implementation of round-trip migrations. As
a core feature we implement traceability, as known from model-driven engineering [33], on the data model
instance level. In many cases, this allows us to realize round-trip migrations without loss of information despite
the data model differences being comparatively destructive (e.g. the deletion of features).

In section 2, we formally define our notion of a round-trip migration and give a definition of a successful RTM. In
section 3 and 4, we introduce an algorithm and framework for the execution and implementation of round-trip
migrations. We based the general design of the framework on a systematic review of common data model
changes in the context of RTMs. The results of this review are documented in section 5 in the form of a catalogue
of 21 distinct round-trip migration scenarios. Section 7 puts this thesis in the context of related work. Lastly, we
evaluate the effectiveness of the algorithm and the completeness of the scenario catalogue using a case study,
which is based on the change history of a real-world data model. Section 8 concludes this thesis.

4

Storage

DBMS
access in v3

M1: Modern
Application

M2: Modern
Application

data model version 3

L1: Legacy
Application

L2: Legacy
ApplicationTr

an
sl

at
io

n
La

ye
r

Translation Layer Translation Layer

Public API

T1: Third Party
Application

T1: Third Party
Application

L3: Legacy
Application

protected environment

Version 3 Instance Data

Version 2 Instance Data

Version 1 Instance Data

DBMS
access in v1

data model version 2

data model version 1

Figure 1.1: An example of a version-heterogeneous distributed system. Modern Applications that use the current version of a data model
(version 3) reside next to Legacy Applications that use older versions of the model. Translation layers ensure a successful communication
between components across version boundaries. In this example, persisted data may exist in all available model versions (cf. Storage)
and can be translated to the required model version depending on the client version (cf. DBMS access). Using translation layers, modern
applications may be linked against the current data model version while older components and APIs (cf. Public API) can still be integrated.
Examples of legacy components in this illustration include first party applications which have not been updated yet (cf. L1, L2), third party
applications which can only be updated by their vendors (cf. T1, T2) and legacy components which cannot be updated since they are part of
a protected environment (e.g. certified hardware/software, hardware implementations, etc.).

2 Foundations and Problem Statement

2.1 Terminology
In order to define the problem of round-trip migrations formally, we first must establish a precise understanding
of the term data model and data model instance. To avoid implementation-dependent details at this point, this
section considers a graph-based representation of data models. That is, both on the instance as well as on the
model level we think of data models and instances in terms of graphs.

We rely on the concept of type graphs and (typed) instance graphs as described in [25]. A data model is
represented in terms of a type graph. An instance graph can then be typed over a type graph using a typing
morphism ([25] chapter 3). This is analogous with the common instanceof operator in many object-oriented
programming languages and formalisms. The nodes and edges of a type graph may additionally be annotated
with special markers which allow to model common object-oriented concepts such as inheritance, multiplicity or
containment relationships (see [25] for details). An example of a typing morphism is illustrated in Figure 2.1a.

Using this terminology, we now define the semantics of a data model as follows:

Definition 2.1. Data Model Semantics The semantics SM of a data model M is the set of all conceivable
instance graphs which are typed over M in terms of a typing morphism.

This set of conceivable instance graphs can further be seen as one large instance graph that is typed over M .
In the following, we will focus on connected sub-graphs in this large graph (cf. Figure 2.1b). We will regard
these connected sub-graphs as our notion of data model instances. They represent the domain and range for
round-trip migrations.

5

Person String
name

:Person “Susanne”
name

type type type

type graph (data model)

instance graph

Figure 2.1(a): An illustration of a typing morphism type = {
(:Person, Person), (name, name), (”Susanne”, String) }

data model M

semantics of

Figure 2.1(b): The semantics of a data model M . The dashed
line marks the connected sub-graphs in the semantics of M.
Since the semantics of M is possibly infinitely large, this illus-
tration only depicts representative parts of the instance graph.

Definition 2.2. Data Model Instance

• Let M be a data model with semantics SM .

• Let connected(SM) denote the set of connected sub-graphs of given semantics SM .

We define the set of data model instances of M as:

IM := connected(SM)

A single data model instance is thus a connected sub-graph in the semantics Sm of M .

Notation: Given two data models M1 and M2, a function f : M1 7→M2 denotes a function with domain IM1

and range IM2 .

It follows that the semantics of a data model M may alternatively be seen as the set of conceivable data model
instances of M . Observe that every data model instance of M is an instance graph that can be typed over M .
On the other hand, not all instance graphs that can be typed over M are data model instances of M .

This notion of a data model instance allows us to consider connected sub-graphs in the set of all conceivable
instances. We assume this perspective as we expect the different peers of a version-heterogeneous system to
exchange instance data of non-trivial structure. In particular, we expect data model instances that represent
multiple domain entities of strong and weak nature which in turn reference each other in arbitrary fashion (e.g.
circular references).

Using these definitions, we differentiate the migration and the modification of instances:

Definition 2.3. Instance Migration Given two data models M1 and M2, a total function f : M1 7→ M2 is
considered a migration from M1 to M2.

A migration can thus be seen as a mapping of the semantics of one data model (version) to the semantics of
another data model (version). In contrast, we define an instance modification as follows:

Definition 2.4. Instance Modification Given a data model M1, a total function f : M1 7→M1 is considered
an instance modification.

6

m1

g(f(m1)) = m2

f(m1)

f

g

M2 M1

Figure 2.2: A basic round-trip migration of an instance m1 ∈ M1 via data model M2.

2.2 Round-Trip Migrations
To allow two components which depend on different data models to robustly communicate with each other, all
messages (in the form of instances) have to be translated to the other model first. Therefore, a translation layer
must be provided, which handles the migration of instances. For such a layer to be considered efficient, it must
allow for the lossless 1 migration of instances of one data model to the other and back. Furthermore, to enable
both components to read and write, it must be possible to translate forth and back from both directions.

Definition 2.5. Translation Layer A translation layer is a tuple

T = (M1,M2, f : M1 7→M2, g : M2 7→M1)

• M1 and M2 denote the data models the layer translates from and to.

• f and g denote the migration functions of the translation layer. They map instances of M1 to M2 and
vice-versa.

Definition 2.6. Round-Trip Migration Given a translation layer T , we refer to the consecutive application of
f and g to an instance m1 ∈M1 : g(f(m1)) or m2 ∈M2 : f(g(m2)) as the round-trip migration of m1 ∈M1

via M2 or m2 ∈M2 via M1 respectively.

An illustration of a round-trip migration is given in Figure 2.2.

Due to their domain and range, the migration functions f and g guarantee the eventual conformance of migrated
instances with their original data model. However, based on our initial motivation this is not sufficient. For a
”useful” translation layer we furthermore require the preservation of instance identity:

Definition 2.7. Successful Round-Trip Migrations The round-trip migration of an instance m ∈ Mi via
another data model Mj is considered to be successful, if it holds true that:

g(f(m)) = m a

A translation layer T = (M1,M2, f, g) is considered successfully round-trip-migrating if it holds true that:

(∀m1 ∈M1 : g(f(m1)) = m1) ∧ (∀m2 ∈M2 : f(g(m2)) = m2)

aAssuming f : Mi 7→ Mj , g : Mj 7→ Mi

In this thesis we focus on how the concept of successful round-trip migrations limits the pairs of data models
(M1,M2) for which there exists a successfully round-trip-migrating translation layer. In particular, our work
evolves around object-oriented data models. We present a catalogue in which we list a collection of data model
changes which can successfully be round-trip migrated. Furthermore, we discuss general limits and challenges
in the problem domain of round-trip migrations.

1lossless as in loss of information.

7

2.3 Conceptual Limits
Definition 2.7 of successful round-trip migrations implies that g is the inverse of f . Therefore, it must be
guaranteed that the distinctiveness of two instances m1 and m2 is not lost in a round-trip migration. In other
words, f and g must not map two instances of one data model to the same instance of the other data model: f
and g must be injective.

It is easy to imagine a scenario in which this implication makes it impossible to provide migration functions f
and g which fulfil this injectiveness constraint:

Example 2.1. Consider the following data model in version 1 and 2:

Person#1

- name : string

Person#2

- name : string
- age? : integer

(Where the question mark denotes the optionality of field age in version 2.)

In this case, the semantics of model version 2 are a superset of the semantics of model version 1. Version 2
allows for another category of instances which also specify a value for field age.

It is clear that a migration function from version 2 to version 1 cannot fulfil the above-mentioned constraint of
being an injection. In version 1 there is just no means to express the additional field age.

In other cases, such as pure renamings of data model elements, such migration functions clearly exist. Based
on these two examples of data model differences, another notion of the round-trip migration problem manifests
itself.

Definition 2.8. Semantically equivalent data models Two data models M1 and M2 are considered to be
semantically equivalent, if and only if there exists a bijection b : M1 7→M2.

Any two semantically un-equivalent data models cannot be successfully round-trip migrated, since, by definition,
a bijective mapping does not exist und therefore at least one of f and g cannot be injective. However, if we
consider the two data models to be two revisions in the development of one and the same model, we may
assume that most of the time they will differ in more than just semantics-preserving refactorings. A typical data
model evolution is more likely to be the active addition or removal of features and thus results in a semantically
un-equivalent new model version. Therefore, to overcome the conceptual limits as they were presented in
this section, we will focus on additional means of allowing for such model differences (e.g. the inclusion of
traceability information). Formally, this means that the domain and range of potential migration functions f and
g are extended by additional information in such that the their injectiveness can be guaranteed.

2.4 Instance Modifications
As discussed in the previous section, a successfully migrating translation layer is based on two migration
functions f and g that invert each other. We discussed the idea of migrating models in both ways and while
doing that, preserving the distinctiveness. One important detail however, was the direct application of the
function g on the result of function f . In real-world cases, this will happen rarely. A component will not directly
return the instance it just received but rather apply a modification to the instance before returning it.

Definition 2.9. Round-Trip Migration with Modification

• Let T = (M1,M2, f, g) be a translation layer

• Let c2 : M2 7→M2 be a function that represents a model modification of an instance m2 ∈M2.

The round-trip migration with modification of m1 ∈M1 via M2 is defined as:

(g ◦ c2 ◦ f)(m1) = g(c2(f(m1)))

For an illustration of a round-trip migration with modification see Figure 2.4.

8

Due to the modification of m2 ∈M2, the original definition of a successful round-trip migration (Def. 2.7) is not
suitable anymore. Because of the modification of the instance of M2, the result of a round-trip migration with
modification is not expected to be the original value. Intuitively, the result is rather expected to be an equivalently
modified instance of M1:

Definition 2.10. Successful Round-Trip Migration with Modification

• Let T = (M1,M2, f, g) be a translation layer where M1 and M2 model the same system S.

• Let c be a modification in system S.

• Let c1 : M1 7→M1 be a function that represents c in data model M1.

• Let c2 : M2 7→M2 be a function that represents c in data model M2.

The round-trip migration with modification of instance m ∈M1 via another data model M2 is considered to
be successful, if it holds true that:

g(c2(f(m))) = c1(m)

The relationship between c1, c2 and c is further illustrated in Figure 2.3.

c: Changes name
to “Peter”

system

data model v1

:Person#1

- name : string = “Max”

:Person#1

- name : string = “Peter”

c1: Set name
to “Peter”

data model v2

:Person#2

- firstName : string = “Max”

:Person#2

- firstName : string = “Peter”

c2: Set firstName
to “Peter”

models models

modification
mapping

Max

Figure 2.3: The relationship between instance modifications in different versions of a data model (c1, c2) and the modeled system (c).

Definition 2.10 demonstrates that the problem of round-trip migrations with modification adds another dimension
to the initial problem of (simple) round-trip migrations. The relationship between c1 and c2 imposes a new
challenge. The modification c itself does not have to and cannot always be specified formally. However, to
allow for this kind of round-trip migration, a translation layer must at least encode some kind of mapping of a
modification c2 to a corresponding modification c1 in the original data model M1. Based on how much information
on the applied modification is available at migration-time, a concrete implementation may deploy more or less
sophisticated strategies to map modifications c2 back into the original data model M1.

To conclude this section, we have learned that in order to support round-trip migrations with modification, a
translation layer does not only have to provide a bijective mapping between the instances of each data model
but also between the set of possible operations on the model instances.

9

m1

g(c(f(m1))) = m2

f(m1)

f

g

M2 M1

c(f(m1))

c

Figure 2.4: A round-trip migration with a modification of the migrated instance of M2.

3 A Framework for Executing Round-Trip Migrations

While, in the first section, we relied on a graph-based definition of the terms data model and data model instance,
we will, in the following, focus on a more practical representation. In the remainder of this thesis, we will make
use of the data modelling language N4IDL (NumberFour Interface Definition Language). In the following, we will
regard N4IDL data model specifications and corresponding instance data as a concrete example of the initially
introduced terms of data models and corresponding instances (cf. section 2). As a consequence, our definitions
of (successful) round-trip migrations from section 2 remain valid for the case of a concrete modelling syntax
such as N4IDL.

This section serves as an introduction to N4IDL and discusses its syntax and semantics. While the syntax
of N4IDL is heavily inspired by the related general-purpose programming language N4JS [1], the semantics
of its migrations concept was specified and implemented as part of this thesis. In particular, the scenario
catalogue as presented in section 5 was used to identify the core requirements of a framework which allows the
implementation and execution of successful round-trip migrations.

3.1 Type Declarations
As an object-oriented data modelling language, the main constructs of N4IDL are the declaration of classes,
interfaces and enums:

1 class A#1 { // declares a class
2 f : string
3 i : I
4 }
5
6 interface I#1 { // declares an interface
7 s : string
8 a : Array<A>
9

10 optional? : A
11 }
12 enum Coin#1 { // declares an enum
13 HEAD,
14 TAIL
15 }
16
17 // declares a sub-class of A which also implements interface I
18 class SubA#1 extends A implements I {}

Snippet 1: Simple type declarations in N4IDL.

Type declarations in N4IDL offer features which are very similar to object-oriented programming languages such
as Java. N4IDL is statically typed and supports common concepts such as inheritance and the differentiation
between interfaces and classes. One important syntactic difference to many well-known programming languages
is the inverted type notation (name : string vs. string name).

Classifiers (classes or interfaces) may declare fields of primitive type or reference type. In the given example,
the class A declares the field f of primitive type string. The field A.i is a reference to an instance of type I
which is declared as an interface (cf. line 6). Fields which are of reference type generally express a reference

10

between objects at runtime.

With regard to multiplicities as known from object-oriented modelling, N4IDL provides constructs for the following
cases:

• 0..1 is represented as an optional field (cf. I.optional in the given example). Instances with optional
fields may or may not hold a value for the given field (e.g. they hold a special null-value instead). In
different terminology, we refer to a field as present, if an instance provides a value for it, and as absent
otherwise.

• 1 is represented as a simple field (e.g. A.field). Such fields are regarded as mandatory and instances
are assumed to always provide a valid (non-null) value for them. While this is currently not enforced on a
language level, it does make a conceptual difference in the context of round-trip migrations.

• 0..n is represented as a field of parameterized type Array (cf. I.a). This includes support for common
array operations (e.g. insert, delete, append).

For now, N4IDL does not support any other types of multiplicity on a language level. However, it is possible
to model such constraints using custom types (e.g. a custom Array type which enforces upper and lower
bounds).

3.2 Versioned Types
One important feature of N4IDL is that it allows to declare types in multiple versions. The version of a type is
specified together with its name as demonstrated in Snippet 2:

1 class B#1 {} // declares type B in version 1
2 class B#2 {} // declares type B in version 2
3
4 class C#1 {
5 b : B // refers to B#1
6 }
7 class C#2 {
8 b : B // refers to B#2
9 }

Snippet 2: Versioned types in N4IDL.

In N4IDL, all supported type declarations (classes, interfaces and enums) are considered versionable.

As illustrated in Snippet 2, the version of the currently declared type determines the version of referenced
types. For instance, the reference to type B in the declaration of field C#1.b will always be bound to version
1 of B. This ensures that, within the data model, it is not possible to declare type references across version
boundaries. In N4IDL, the set of type declarations of one version declares a single revision of the specified
data model. Therefore, they must not reference each other since each revision of a data model stands on its own.

3.3 Data Model Instances in N4IDL
Initially we defined the subject of migration to be data model instances by which we understand connected
sub-graphs in a large instance graph, that is typed over a data model (cf. Def. 2.2). This idea applies analogously
to our runtime representation of N4IDL, where the subject of migrations are object graphs. These are arbitrarily
connected graphs of objects. The root of a migration (migration root) is always assumed to be one such object
(the initial migration argument), which in turn may refer to other objects that will be migrated recursively. In the
following we will therefore refer to the migration input as a whole, that is, the whole object graph which is being
migrated, as a data model instance. When referring to single nodes in this object graph, we will use the term
object.

11

version 1

data model versions

version 2 version 3

A#1

B#1

C#1

A#2

B#2

C#2

A#3

D#3

C#3D#2

version aware

Migration

Migration-
Helper

Test Suite

Figure 3.1: Version Aware declarations such as migrations may refer to specific versions of a type, while versioned declarations may only
reference types of the same version.

3.4 Version Aware Contexts
Versioned type declarations, as introduced above, can be used to specify the different revisions of a data model.
However, N4IDL also provides constructs that allow to write code that deals with and specifies the relationship
between different data model versions. In so-called version-aware contexts, references to specific versions of a
type are allowed. A version-aware context is declared by annotating a class or function as @VersionAware (cf.
Snippet 3).

Conceptually, version-aware N4IDL declarations do not adhere to the concept of versioned declarations since
they usually cannot be assigned to one specific version. Additionally, any reference to version-aware N4IDL
code from non-version-aware code (e.g. a versioned type declaration) is prohibited. Examples of version-aware
N4IDL declarations are migrations (introduced in the next section), migration helpers or test suites that test
version-related behavior. An illustration of how version-aware declarations relate to versioned declarations is
given in Figure 3.1.

1 class A#1 {}
2 class A#2 {}
3
4 @VersionAware
5 function versionAwareFunction() {
6 var a1 : A#1
7 var a2 : A#2
8 }
9

10 @VersionAware
11 class VersionAwareClass {
12 a : A#1
13 m(p : A#2) {}
14 }

Snippet 3: A version-aware function and class that explicitly refer to specific versions of type A.

3.5 Migration Declarations in N4IDL
An important example of version-aware declarations in N4IDL are migrations. An N4IDL migration is a function
that migrates between the different versions of a type. Migrations are unidirectional and implemented imperatively.
A migration from one version of a type to another is declared on the top-level of an N4IDL file (.n4idl) in terms
of an annotated function (see Snippet 4)

12

1 class A#1 {
2 f : string
3 }
4 class A#2 {
5 f : string
6 }
7
8 @Migration function migrateA(a1 : A#1) : A#2 {
9 const a2 = new A#2();

10
11 a2.f = a1.f;
12
13 return a2;
14 }

Snippet 4: A complete N4IDL module which declares two types and a migration of A#1 to A#2.

In this example, a simple migration of type A in version 1 to type A in version 2 is declared. Since migrations are
always version-aware, they can refer to specific versions of a type. To do so, the hash-character may be used in
combination with type and constructor references (e.g. line 8 and 9).

Migration declarations may also have multiple parameters and return types:

1 @Migration function migrateAB(a : A#1, b : B#1) : ˜Object with {a : A#2, b : C#2} {
2 return {
3 a: new A#2(),
4 b: new C#2()
5 }
6 }

Snippet 5: An N4IDL migration declaration with multiple parameters and return types.

Multiple migration parameters may simply be declared by adding additional parameters to the function declara-
tion. In order to declare more than one return type, one may use the syntax as demonstrated in Snippet 5. On a
technical level, the declared migration returns an anonymous object which holds the migration results as its fields.

3.6 Delegation between Migrations via Migration Calls
A very important design goal of N4IDL is modularity. More specifically, it aims at minimizing redundancy in
migration code. Therefore, N4IDL encourages to migrate references to other types by delegation. Consider the
following type declarations and migrations for type A and B.

1 class A#1 {}
2 class A#2 {}
3
4 class B#1 {
5 a : A
6 }
7 class B#2 {
8 renamedA : A
9 }

10
11 @Migration function migrateA(a1 : A#1) : A#2 {
12 return new A#2(); // there is nothing in A to migrate
13 }
14
15 @Migration function migrateB(b1 : B#1) : B#2 {
16 const b2 = new B#2();
17 b2.renamedA = migrate(b1.a); // delegate migration of b1.a
18 return b2;
19 }

Snippet 6: migrateB delegates the actual migration of b1.a to migration migrateA.

The migration migrateB makes use of the built-in migrate-function, which allows to delegate the migration of
b.a to another migration (in this case migrateA). As a consequence, the migration migrateB delegates the
migration of objects of type A to migrateA without declaring an explicit dependency on this specific migration.
The invocation of this migrate-function is also referred to as a migrate-call or migration call.

3.6.1 Dynamic Dispatching of Migration Calls

At runtime, migrate-calls are dispatched dynamically based on the arguments’ runtime types. More specifically,
a migrate-call will at runtime always bind to the migration whose parameters come closest to the arguments’
types. For an illustration consider the following example:

13

1 class A#1 {}
2 class A#2 {}
3
4 class SubA#1 extends A {}
5 class SubA#2 extends A {}
6
7 class B#1 {}
8 class SubB#1 {}
9

10 @Migration function migrateA(a : A#1) : A#2 { return new A#2(); }
11 @Migration function migrateSubA(subA : SubA#1) : SubA#2 { return new SubA#2(); }
12
13 @Migration function migrateB(b : B#1) : B#2 { return new B#2(); }

Snippet 7: Partly overlapping migration declarations with regard to type B, A and more specific subtype SubA.

In the example of Snippet 7, some exemplary migration argument types will be bound as follows:

Argument Type Bound Migration Note

SubA migrateSubA migrateA would be a valid fit, but migrate-
SubA is closer to the actual argument type
SubA.

A migrateA migrateA is the only migration that fits the
argument type.

SubB migrateB migrateB does not perfectly match the argu-
ment type since it only applies to super-type
B. However, none of the other migrations fits
the argument better.

To be more precise, we define type distance in the context of dynamic migration call dispatching:

Definition 3.1. Type Distance

• Let A be a subtype of B

• Let superClassifiers(A) denote the set of N4IDL super-classifiers (directly implemented interfaces
and super class) of type A.

The type distance of A to B is defined as:

dt(A,B) :=

{
1 +min {d(S,B) : ∀ S ∈ superClassifiers(A)} if A 6= B

0 if A = B

In case A is not a subtype of B, the type distance is defined as∞.

Since N4IDL allows to declare multiple migration parameters, we must extend this concept to multiple parameters
and arguments:

Definition 3.2. Migration Distance

• Let M be an N4IDL migration with parameter types (p1, . . . , pm).

• Let A = (a1, . . . , an) be a list of migration argument types.

We define the migration distance of M to A as follows:

dm(M,A) :=

{
dt(a1, p1) + · · ·+ dt(am, pn) if n = m

∞ otherwise

Comparable strategies for method binding can also be found in other programming languages. For instance in
Java, the support for method overloading implements a similar concept (cf. Chapter 8.4.9 Overloading in [16]).

Note that this metric of migration distance may cause ambiguities during the binding of migrations. An instance
of such is illustrated in Snippet 8.

14

1 class A#1 {}
2 class A#2 {}
3
4 class SubA#1 extends A {}
5 class SubA#2 extends A {}
6
7 @Migration function migrateSubAA(a1 : SubA#1, a2 : A#1) : A#2 { return null; }
8 @Migration function migrateASubA(a1 : A#1, a2 : SubA#1) : A#2 { return null; }

Snippet 8: The two migration declarations migrateSubAA and migrateSubA fit migration arguments of type (SubA#1, SubB#1)
equally-well in terms of migration distance.

Based on this definition of type and migration distance, a migrate-call always binds to the closest migration
in terms of migration distance. This ensures, that the executed migration always considers a maximum of the
characteristics of the migrated object in terms of its type. Furthermore, we accommodate for the situation that
no migration has been provided for a specific type but instead for one of its supertypes.

In some cases, resorting to a migration which was not declared for the concrete runtime type of an object but
rather for one of its (transitive) supertypes may also cause problems. Such cases will usually result in the loss of
information, since a supertype migration cannot migrate all fields of the concrete runtime type (but only those of
the supertype). While traceability support may allow to compensate for this, this feature may in some situations
yield undesired migration results.

The dynamic nature of migration call dispatching imposes another important constraint on the declaration of
migrations: In N4IDL, it is not possible to declare more than one migration for the same list of parameter types.
Since the binding of migration calls is purely based on the parameter types, this would always entail an ambiguity
during migration call binding and must therefore be prevented.

3.6.2 Fulfillment of Migration Calls

While migrate-calls may seem like regular function calls, it is important to note, that their runtime semantics
differ in one very important aspect. Unlike other function calls, a migrate-call may not directly return the
corresponding migration result. This entails that it is not possible to rely on the results of a migrate-call for any
further computations but simple assignments. The only guarantee that is given by a migration call is that the
returned value will eventually be replaced with the actual migration result. In that case, we speak of the eventual
fulfillment of a migration call.

The reason for this constraint, is the fact that N4IDL allows to issue migrate-calls for parts of the object graph,
that are currently being migrated. In other words, the result of a migration call may depend on the result of the
currently executed migration. Therefore, the order of executed migrations is not fully controlled by the order
in which migration calls are issued. While this imposes a limitation on migrations, it also lowers the overall
complexity since migrations can be implemented without minding any cyclic or redundant structures in the
migrated object graph.

To summarize, the fulfillment of migration calls are characterized by the following properties:

Definition 3.3. N4IDL Migration Call Fulfillment

The following properties always hold true for the fulfillment of migration calls:

1. A migration call may not directly return the corresponding migration result.

2. All migration calls will eventually be fulfilled.

3. Migration calls with identical migration arguments, result in the same instance of migration result. The
corresponding migration function is only executed once.

This minimal set of constraints allows to specify migrations independently from the order in which they are
executed. For an example of how the concrete order of execution can be determined, see the description of our
reference implementation in section 4.

3.7 Context Information in Migrations
Our initial consideration of the problem of round-trip migrations in section 2 has shown, that in some cases,
additional context information is required to implement successful round-trip migrations. In particular in the case

15

of semantically non-equivalent models, context information becomes essential (cf. section 2.3). In N4IDL, it
does therefore not suffice for migrations to be simple functions that return objects of another type version, purely
based on one or multiple objects of the original version.

To accommodate for this requirement of using context information in migrations, N4IDL introduces the notion of a
so-called migration context. The migration context manifests itself in terms of a designated context object that
is available in the scope of a migration declaration. From a developer’s perspective, a migration context mainly
serves the purpose of providing context information to migrations. More specifically, it allows migrations to
access traceability information with regard to the currently migrated instances. Snippet 9 illustrates an example
of how a migration may access context information via the context object.

On a language level, N4IDL supports three types of context information: (1) access to previous revisions of
an instance via trace links and (2) the detection of modifications of migrated instances. These two types of
context information allow for traceability which is detailed more thoroughly in section 3.7.1. Additionally, a simple
key-value storage for arbitrary values allows for the third type of context information of (3) generic user data.

1 class A#1 {
2 field1 : string
3 field2 : string
4 }
5
6 class A#2 {
7 field1 : string
8 }
9

10 @Migration function mA(a2 : A#2) : A#1 {
11 const a1 = new A#1();
12 const previousRevision = context.getTrace(a1)[0] as A#1;
13
14 // Check via the context whether ’a2.field1’ has been
15 // modified since it was migrated to the current version.
16 if (context.isModified(a2, ’field1’)) {
17 // special handling for that case
18 }
19
20 a1.field1 = a2.field1;
21 // use the value of field2 of a previous revision of a2
22 // or choose a default value if non-existent.
23 a1.field2 = previousRevision.field2 || "defaultValue";
24
25 return a1;
26 }

Snippet 9: An N4IDL migration which accesses the context object (migration context). In line 16, the migration checks for a modification
of field field1 since the last migration. In line 12, it obtains the previous revision of a2 via the captured trace links from previous
migrations.

3.7.1 Traceability in N4IDL

N4IDL explicitly integrates two types of traceability. Firstly, it provides one-to-many trace links with regard to
the currently migrated instance(s). Secondly, it provides migrations with the ability to detect modifications of
instances after they have been migrated to their current version. During the creation of the scenario catalogue
of this thesis (cf. section 5), these two types of traceability were identified as essential for successful round-trip
migrations. In the following we will detail the concrete concepts behind these two types of traceability in N4IDL.

Trace Links

The concept of trace links in N4IDL is comparable to their definition in model-driven engineering. N4IDL provides
traceability in terms of links between in- and output model instances. With that, support for traceability in N4IDL
closely corresponds to the definition of the term trace by the Object Management Group:

”A Trace [...] records a link between a group of objects from the input models and a group of objects
in the output models.” [13].

More specifically, a trace in N4IDL records a one-to-many relationship between the in- and outputs of executed
migrations. For more details on how the implementation of traceability in N4IDL relates to other approaches in
the field, please see section 7 on related work.

On a technical level, migrations may access traceability information via the context-object. An example of
how to obtain the trace of an instance is illustrated in Snippet 9, line 12. An invocation of method getTrace on

16

Migrated Object GraphOriginal Object Graph

:B#1

:A#1

a

:B#2

:A#2

renamedAmigrate

migrateA

migrateB

(2)(1)

Figure 3.2: The migration of an instance from version (1) to version (2). The light, dashed arrows indicate trace links between the two
revisions of the instance.

the context-object returns a list of all migration inputs of the previous migration that yielded the given object.
In case the given object is not part of a migration result, this list may be empty. On a conceptual level, this
corresponds to a one-to-many association. In the following, we will consider the instance(s) and value(s) that
are linked to an instance via its trace links, the previous revision of that instance. Here, the adjective previous
refers to the previous stage in the preceding chain of migrations.

Figure 3.2 further demonstrates the concept of trace links in N4IDL. The illustration is based on the set of
migrations declared in Snippet 6. The instance (1) represents the previous revision of the current revision (2).
The light, dashed arrows indicate trace links. As labelled in the illustration, both links can be attributed to the
execution of one of the declared migration functions (migrateB and migrateA). An attribution of trace links to
migrations is always possible, since in N4IDL, trace links are created as a side-product of executed migrations.

While the general concept of traceability does, on its own, not involve versions and round-trip migrations, we
need to additionally consider another perspective here. In the case of round-trip migrations, we assume that a
given instance represents the same system entities in all stages of a round-trip. Therefore, following the trace
link of a data model instance, to instances of another version, does not constitute a change of the system entities
in consideration. It rather constitutes a change in perspective on the very same set of entities. In migrations,
we can exploit this property by using this ability to make up for lost information (e.g. recovering the value of a
deleted field by looking at the previous revision).

Above, we assumed that the previous and current revision of a data model instance represent the same system
entity. However, this property does not always hold true. In case the instance of the current version has been
modified (cf. RTM with modification), this assumption is invalid. The previous revision of an instance now
becomes not only the previous revision in terms of the preceding chain of migrations but also in terms of
the instance state (the previous revision no longer represents the current state of the instance). Therefore, a
migration must always be implemented in accordance with potential functional dependencies and must take
the effect of modifications into consideration. Different notions of this problem are discussed in depth in the
scenario catalogue in section 5 of this thesis.

Modification Detection

The second type of traceability supported in N4IDL, is the detection of modifications of migrated instances. That
is, some migrations may need to incorporate information on whether an instance has been modified since it
was migrated to its current version. For an example of such a migration see scenario 5 or 7 in our scenario
catalogue. As opposed to trace links, which relate model element to each other, the detection of modifications is
supported at the finer granularity of fields. See Snippet 9, line 16 for an example.

The detection of modifications may at first sight not seem like an obvious case of traceability, since modification
information does not establish a relationship between elements/instances but rather indicates a fact (of a
modification). However, when looking at definitions of the term traceability in a broader sense, we may still
classify this ability as traceability. Gotel and Finkenstein [17], for instance, define traceability as ”the ability to
describe and follow the life of a requirement”. While their perspective on traceability is based in the field of
requirements engineering, we will see in section 7 on related work, that there exist parallels to our understanding
of traceability.

17

<<interface>>
MigrationContext

+ getTrace(object : Object) : [Object]
+ isModified(object : Object,

property : string) : boolean
+ setUserData(key : string, value : any)
+ getUserData(key : string) : any

<<interface>>
MigrationController

+ migrate(args : [any]) : Object
+ migrateWith(migration : Function,

args : [any]) : Object

1n
context

Figure 3.3: The language contract interface of the N4IDL migration runtime.

3.8 The N4IDL Migration Runtime
On the one hand, N4IDL serves as a specification formalism to specify data models and corresponding migra-
tions. However, by the notion of migration calls (cf. section 3.6), N4IDL also specifies a runtime behavior for
migrations. To implement this concept of migration calls, N4IDL requires a runtime environment that provides
corresponding functionality.

The core responsibilities of the runtime can be structured into three main activities:

1. Binding Migration Calls The runtime is responsible for the binding of migration calls given some migration
arguments. Based on a list of arguments, it must find the migration (in the set of all declared migrations)
that comes closest to the migration arguments’ types (cf. Migration Distance, Def. 3.2).

2. Order of Execution Given a data model instance, the runtime is responsible for triggering the actual
migration functions that are required to fully migrate the instance. This includes determining the order
in which migrations are executed. While a basic order of execution is given by how migrate-calls are
nested, the runtime manages the preservation of object identities and cyclic dependencies.

3. Capturing and Providing Traceability Information During the execution of migrations, the migration runtime
provides traceability information based on past migrations. Furthermore, it has the role of capturing new
traceability information based on the set of executed migrations and their in- and outputs.

Generally, we separate a migration runtime into two main components:

• Migration Controller The migration controller is responsible for the binding and execution of migrations. All
migration calls are dispatched via the migration controller. Therefore, it determines the order of execution
and has the role of populating the migration context with resulting context information (e.g. trace links).

• Migration Context The migration context is the central storage for information. Via the N4IDL context
object (cf. Section 3.7), it is directly exposed to migrations and provides them with traceability information
such as trace links and modification detection. It further serves as a global storage for arbitrary user data
that may be accessed from all migrations.

The concrete implementation of the runtime environment may vary and can be specified by the program that
initially triggers a migration. N4IDL as a language only defines a minimal interface as a contract between
language and runtime. In the following this interface will also be referred to as the N4IDL Language Contract.
The language contract is illustrated in terms of object-oriented interfaces in Figure 3.3.

Given an implementation of an N4IDL migration runtime, or more specifically, of a migration controller, the
migration of a data model instance can be triggered as follows:

1 let controller : MigrationController // obtain migration controller instance
2 let a : A#1 // some object of a type A in version 1
3
4 // Use controller to trigger the migration of the object
5 // graph reachable from a.
6 let a2 : A#2 = controller.migrate([a]) as A#2;
7
8 // After the migration one may access and evaluate the migration context using
9 let context : MigrationContext = controller.context;

Snippet 10: Triggering the migration of an N4IDL data model instance using a migration controller.

In the context of this thesis, we have implemented a reference implementation of an N4IDL migration runtime.
Please see section 4 for a description of our implementation..

18

4 A Reference Implementation of an N4IDL Migration Runtime

In this section we describe our reference implementation of an N4IDL migration runtime. While N4IDL is intended
as a modelling language which allows to be compiled to different targets (different programming languages),
this thesis is based on an N4IDL generator backend that emits ECMAScript 5 [10] compliant JavaScript code.
We furthermore provide a reference implementation of a migration runtime that works with the output of this
backend. This section discusses the inner-workings of our implementation which was specifically designed to
provide ideal support for the round-trip migration of data model instances. For instructions on how to inspect the
source code of the implementation, please see appendix B.

As mentioned earlier, the core activities of a migration runtime are (1) Binding Migration Calls, determining the
(2) Order of Execution and (3) Capturing and Providing Traceability Information. In the following, we will discuss
how our implementation approaches each of these points. An overview of the different steps, the reference
implementation performs during a migration, is given in Figure 4.1.

4.1 Binding Migrations
In order to accommodate for the requirements of type-distance based migration call binding, our reference
implementation leverages the support for reflection in the generated code. The backend emits meta-information
on both the model types as well as the migrations as part of its JavaScript output. This information provides the
runtime with access to type hierarchies and the set of declared migrations. It allows for the implementation of a
type-distance based migration binding strategy in full accordance with the specified binding of migration calls in
N4IDL.

4.2 Order of Execution
In contrast to an object graph as migration input, a single N4IDL migration implements only the partial mapping
of one object in the overall graph. The migration of the successor nodes (referenced objects) of a node, are
triggered by the use of migrate-calls. The outputs of these partial migrations must be assembled in a way that
ensures the successful migration of the complete object graph (cf. Figure 4.2).

data model v1 data model v2

Figure 4.2: A selection of N4IDL migrations (e.g. m1, m2, m3, m4) perform the migration on an object level. For the migration of the whole
instance (object graph), the migration runtime must construct the complete migrated instance from these intermediate results.

The nesting of N4IDL migrate-calls (cf. Section 3.6) imposes an initial order in which migrations can be
executed. However, naively fulfilling each migrate-call by simply executing the corresponding migration with
the given arguments, will not always yield correct results and does not adhere to the specified properties of
migration call fulfillment (cf. Def. 3.6.2, Property 3 in particular). Therefore, in a migration runtime we must
deploy a more sophisticated strategy.

For the migration of object graphs we differentiate between different classes of migration inputs. Note that at
this point, we assume all input object graphs to be represented as directed graphs. Furthermore, we assume
migration-by-traversal (cf. migrate-calls) which implies that all migration inputs must be connected graphs.
Precisely, we will consider three classes of inputs:

19

Request for the migration of migration argument A

Resolve migration for
arguments A

Start migration using
resolved migration M

Finished migration of A
with result R

Store trace links from
A to R

[already migrated] Return stored migration
result for the given

arguments.

[else]

M issues migrate-call
 for argument A2

Recursively migrate A2
and return result

repeat for every migrate-call M issues

Return migration
proxy for A

[A is currently being migrated]

Marks A as currently
being migrated

Un-marks A as
currently being

migrated

Resolve all migration
proxies in result R

Figure 4.1: The major steps of a migration using our reference implementation of a migration runtime. Green indicates steps related to
Resolving Migrations, red to Order of Execution and yellow to Capturing and Providing Trace Links.

20

b c

d e

a

1. Object Trees 2. Directed Acyclic Object Graphs

a

r

3. Directed Cyclic Object Graphs

1. Object Trees The input object graph has the properties of a directed tree. More specifically, the object
graph fulfils the constraint that there is exactly one path from the root to any node of the graph.

2. Directed Acyclic Object Graphs The input object graph is a directed acyclic graph. That is, there may
be nodes which can be reached from the root node by more than one path. For instance, in the given
example, node d can be reached from root r via nodes a or b. Despite its non-tree-like characteristics, this
class excludes graphs with cycles and thus maintains some of the advantages of object trees.

3. Directed Cyclic Object Graphs The input object graph is a directed graph with cycles. In the given example,
the edges ({(r, a), (a, r)}) form a cycle.

In N4IDL, a migration is expected to issue migrate-calls for all the successor nodes that need to be migrated,
based on the references found in the currently migrated object. Therefore, references in the input object graph
translate to dependencies between migrations. This leads to an important conclusion with regard to these
classes of migration inputs:

Object Trees can be migrated by directly fulfilling all migrate-calls. Due to the tree-property of the input, no
cyclic dependencies can arise and the dependencies of migrations are distinct.

To allow the migration of directed acyclic object graphs, we must prevent the duplicate migration of sub-graphs
that can be reached by more than one path. Multiple migrate-calls with the same inputs must therefore return
the same instance of result (cf. Def. 3.3 Migration Call Fulfillment). In our reference implementation, this is
achieved by caching intermediate migration results by their arguments.

In case of the migration of cyclic object graphs, the cycles in the object graphs translate to cyclic dependencies
between migrations. More specifically, a migration may potentially depend on its own output. Therefore, we
cannot guarantee the immediate fulfillment of migrate-calls in cyclic graphs. Our reference implementation
detects such cases and returns proxy-objects instead. These represent place-holders which are eventually
replaced by the corresponding sub-graph in the migration result. This guarantees the eventual restoration of the
original cyclic structures in the migration output. However, it restricts such migrations from further processing
the results of cyclic migrate-calls. Any operation on proxied migration results fails at runtime, since the actual
result is not yet available. To accommodate for this situation, N4IDL as a language, does not guarantee the
immediate fulfillment of migrate-calls (cf. 3.6.2 Fulfillment of Migration Calls).

Using these strategies for different migration inputs, our reference implementation supports the migration of
arbitrarily connected object graphs.

4.3 Capturing and Providing Traceability Information
Since by design, all migrations are dispatched via the migration controller, it has full access to all migration in-
and outputs. From this position, it can easily store mappings from instances of the source model (migration
arguments) to instances of the target model (migration results). Additionally, N4IDL allows for migrations with
multiple in- and outputs. Thus, a migration runtime is required to allow for a many-to-many mapping between
instances.

In our implementation, we first capture many-to-many trace links based on the executed set of migrations,
arguments and results. We then transform the links to one-to-many links and store them in the migration context.
As a consequence, these one-to-many links are exposed to migrations via the context object (cf. Context
Information in Migrations). To achieve this transformation between link cardinalities, we link each migration

21

(a) An exemplery many-to-many trace link as captured during the
execution of migrations in a migration context. Trace links associate
source element with target elements.

a

b

c

d

e

previous model current model

(b) Two exemplary one-to-many trace links as available from the
perspective of a migration (via the context-object). Trace links
associate current model elements with previous model elements.

Figure 4.4: Different representations of trace links in a migration context.

output with all of the corresponding migration inputs (cf. Figure 4.4a vs. Figure 4.4b).

This strategy allows to re-purpose the set of captured trace links (many-to-many) as cache with regard to the
duplicate migration of recurring sub-graphs (cf. directed acyclic object graphs in 4.2 Order of Execution). Fur-
thermore, it defers the transformation of directly inferable many-to-many links to more convenient one-to-many
links until the migration to another model version.

To achieve the detection of modifications of migrated instances, we make use of the concept of ECMAScript
Proxy Objects (see 26.2 Proxy Objects in [10]). This language construct allows to realize a limited implementation
of the well-known observer pattern for all migrated instances. With that, any modification of migrated instances
can easily be detected and captured as part of the traceability information in our migration context. In a more
practical implementation, it may be desirable to achieve the goal of modification detection in a less resource-
intensive way. Therefore, it can also be an option to require users of migrated instances to explicitly declare any
modification and manually register it with the corresponding migration context.

22

5 Scenario Catalogue

In this section we present a catalogue of round-trip migration scenarios. The scenarios are discussed in terms of
the changes that can be observed on the instance level. To approach the problem systematically, the examples
are based on an existing catalogue for object-oriented (meta)model evolution as published by Herrmannsdoerfer
et al. [21].

For the catalogue we assume the use of an N4IDL migration runtime as given by the reference implementation
of the previous section. On a more technical side, we actually used it to implement the scenario catalogue in
code. For instruction on how to inspect the source code of the catalogue, please see appendix C.

Section 5.1 and 5.2 introduce notational aspects and the term of a round-trip migration scenario. In 5.3, we
present instructions on how to use and understand this catalogue. Section 5.4 forms the main body of the
catalogue and discusses the various scenarios in detail. Finally, in section 5.5 we present a selection of our
main learning outcomes from the work on the scenarios.

5.1 Notation
In the following we will use a shorthand notation to refer to a round-trip migration. A round-trip migration of a
data model instance in version 1 via version 2 is denoted as #1 7→ #2 7→ #1.

Furthermore, we will make use of object-graph diagrams to visualize the effects of a round-trip migration.
An example of such a visualization is given in Fig. 5.1. Such round-trip migration diagrams can usually be
structured into four consecutive stages: Original Object Graph, Migrated Object Graph, Modified Migrated
Object Graph and Round Trip Object Graph. They correspond to the (up to) 4 stages of a round-trip migration
(with modification) (cf. Def. 2.6 and 2.9). The stages are illustrated in the form of lighter shaded rectangles with
corresponding labels. They contain object graphs which depict the data model instances between the application
of the different migration and modification functions. In case of a round-trip scenario without modification, the
stage Modified Migrated Object Graph is omitted.

The black, solid arrows relate the different stages to the application of migrations. The dashed, black arrows
indicate a modification from one object graph to the other. The light-green, dashed arrows indicate the trace
links that were constructed based on the executed set of migrations and their in- and outputs.

Round Trip Object Graph Modified Migrated Object Graph

Migrated Object GraphOriginal Object Graph

:AddField#1

-field1 : string = "value1"

:AddField#2

-field1 : string = "value1"
-field2 : string = "defaultValue2"

:AddField#2

-field1 : string = "modifiedValue"
-field2 : string = "defaultValue2"

:AddField#1

-field1 : string = "modifiedValue"

migrate

modify

migrate back

Figure 5.1: An example of a round-trip migration visualization.

Shortened migration listings

In some scenarios, the listings to illustrate the exemplary implementation of migrations is shortened for the sake
of brevity. In these cases, the listings were reduced to demonstrate only the core ideas of a migration strategy.
However, the full implementation can be found in the source code representation of the scenario catalogue. All
shortened listings are marked with an appropriate note.

23

5.2 Round-Trip Migration Scenarios
A round-trip migration scenario is defined by the following parameters:

• A data model difference D (e.g. ”add a field f to class C”).

• Two versions of an exemplary data model M1 and M2 which differ in difference D.

• Implementations of migration functions f and g (cf. Def. 2.5).

• An example instance m1 ∈M1.

In many cases we will also consider a modification of the migrated instance (cf. section 2.4). In these cases, a
scenario is additionally specified by:

• A modification c1 of the migrated instance m2 ∈M2.

• A modification c2 of the original instance m1 ∈M1 which represents c1 in terms of M1 (cf. Def. 2.10).

Given a model difference D, we may construct corresponding M1 and M2 as well as f and g. However, other
parameters such as m1, c1 and c2 need to be varied to cover all possible scenarios that stem from D. Further-
more, for each scenario we must consider both directions, resulting in the discussion of RTMs M1 7→M2 7→M1

and M2 7→M1 7→M2.

In this catalogue, the general goal is to provide exemplary migrations f and g for each listed model difference D
such that for any possible variation of m1, c1 and c2, the migrations allow for a successful round-trip migration
(with modification). The catalogue is backed by an executable set of test suites, each representing one scenario.
Such a suite makes assertions, assuring the above-mentioned properties of f and g when run as a test.

5.3 A Note on Completeness and How to Use This Catalogue
When compiling a catalogue round-trip scenarios, we may consider the concept of completeness. In other words,
we ask the question whether this catalogue contains enough exemplary scenarios to compose a round-trip
migration strategy for arbitrary model differences? Simply put, the answer to this question is no. To be more
precise, we must further define the term completeness in the context of round-trip migrations.

With regard to round-trip migrations, we understand the term completeness as follows: Given two data model
versions, can the difference between the versions be decomposed into smaller (maybe even atomic) differences,
for which fully implemented migration strategies can be found in the catalogue? And further, can the migration
strategies of those smaller differences be recomposed into a migration strategy that maintains correctness on a
higher level? Authors of related fields (e.g. metamodel co-evolution) argue that such completeness is hard to
achieve since higher level changes often entail migration strategies that differ from the simple concatenation
of the strategies that fit their atomic constituents [21][25]. A simple example of this, is the model change of
renaming a field (cf. scenario 1 Rename Field) as opposed to the consecutive deletion of the old and creation of
a new field (cf. scenario 2). Based on this insight, we do not claim the completeness of our scenario catalogue
and assume a different standpoint.

Rather than completeness, we aim for a more practical use of the catalogue. It was designed to serve as a
knowledge base and guide for the implementation of round-trip migrations. While some scenarios may be
applicable exactly as they are presented in this catalogue, others may be more suitable as a demonstration
of abstract aspects. As we will see later in our case study, in practice, it often helps to first consider related
round-trip scenarios before implementing a concrete migration. Furthermore, we see our catalogue as an initial
listing of elementary data model changes, which in the future can be extended by additional and more complex
scenarios (e.g. discovery of new scenarios during use, introduction of new modelling features in N4IDL, etc.).

24

5.4 Catalogue
In this catalogue, we will discuss the following list of scenarios in detail.

No. Name Description tr
ac

e
lin

ks

m
od

ifi
ca

tio
n

de
-

te
ct

io
n

P
ag

e

1 Rename Field The name of a field changes. 26

2 Create/Delete Field (functionally in-
dependent field)

A new functionally independent field is added/removed
to/from a class of the data model.

3 26

3 Create/Delete Field (functionally de-
pendent field)

A field is removed from a class of the data model (or added
respectively). The field is functionally dependent on other
still-existing fields.

3 27

4 Create/Delete Reference A field of reference type is removed from a class of the data
model (or added respectively).

3 29

5 Declare Class as Abstract A class is declared abstract/concrete. 3 30

6 Add/Remove a Supertype A new supertype is declared for a classifier (or removed
respectively).

3 32

7 Generalize/Specialize Field Type The type of a field is generalized to a supertype or special-
ized to a subtype respectively.

3 33

8 Change Field Multiplicity: 0..1 - 1 The multiplicity of a field is specialized from multiplicity
0..1 to 1 or generalized from 1 to 0..1 respectively.

3 3 34

9 Change Field Multiplicity: 0..n - 0..1 The multiplicity of a field is generalized from 0..1 to 0..n or
specialized from 0..n to 0..1.

3 3 35

10 Change Field Multiplicity: 0..n - 1 The multiplicity of a field is specialized from multiplicity
0..n to 1 or generalized from 1 to 0..n respectively.

3 3 38

11 Pull Up / Push Down Field A field is pulled up into a superclass (or pushed down
respectively).

40

12 Split/Merge Type Based on a specified criteria, instances of a type of one
model version, translate to different (unrelated) types of the
other model version.

3 41

13 Specialize/Generalize Superclass The supertype of a class is changed to one of the super-
type’s subclasses/superclasses.

3 43

14 Extract/Inline Superclass A new superclass is extracted from the set of fields of an
existing type.

3 3 45

15 Fold/Unfold Superclass A new superclass is declared for a type. Common fields
of the superclass and the type are then removed from the
type (folded into superclass).

46

16 Extract/Inline Subclass A selection of fields is extracted into a new subclass (or
inlined respectively).

3 3 47

17 Extract/Inline Class A selection of fields is extracted into a new delegate class. 49

18 Fold/Unfold Class A selection of fields is folded into an existing delegate class. 51

19 Collect Field over Reference A field is collected/pushed over a reference. 3 3 52

20 Aggregate Instances Multiple instances are aggregated into a single primitive
value (e.g. computing the average of a value).

54

21 Split/Merge Fields A type is split by moving its fields to two new types and
correspondingly replacing all references to it by references
to the new types.

56

25

Scenario 1: Rename Field
The name of a field changes.

In the example model, the field field1 is renamed to field2.

Data Models

1 export public class RenameField#1 {
2 field1 : string
3 }

Version 1

1 export public class RenameField#2 {
2 field2 : string
3 }

Version 2

Discussion Since the the data model semantics of both versions are equal except for names, a round-trip
migration can be performed without using any traceability features. Furthermore, any modification of field1
will be reflected by field2 and vice-versa.

Migrations

1 @Migration
2 export function migrate(o1 : RenameField#1) : RenameField#2 {
3 let o2 = new RenameField#2();
4
5 // renamed field
6 o2.field2 = o1.field1;
7
8 return o2;
9 }

10
11 @Migration
12 export function migrateBack(o2 : RenameField#2) : RenameField#1 {
13 let o1 = new RenameField#1();
14
15 // undo field renaming
16 o1.field1 = o2.field2;
17
18 return o1;
19 }

Round Trip Object Graph

Migrated Object Graph

Original Object Graph

:RenameField#1
-field1 : string = "value1"

:RenameField#2
-field2 : string = "value1"

:RenameField#1
-field1 : string = "value1"

migrate

migrate back

Round-Trip 1.1: #1 7→ #2 7→ #1

Round Trip Object Graph

Migrated Object Graph

Original Object Graph

:RenameField#2
-field2 : string = "value2"

:RenameField#1
-field1 : string = "value2"

:RenameField#2
-field2 : string = "value2"

migrate

migrate back

Round-Trip 1.2: #2 7→ #1 7→ #2

Scenario 2: Create/Delete Field (functionally independent field)
A new functionally independent field is added/removed to/from a class of the data model.

In this scenario we assume, that there do not exist any functional dependencies between field1 and field2
in version 2 of the data model.

26

Data Models

1 export public class AddField#1 {
2 public field1 : string
3 }

Version 1

1 export public class AddField#2 {
2 public field1 : string
3 public field2 : string
4 }

Version 2

Discussion In a #1 7→ #2 7→ #1 RTM, field2 is set to a default value since the original instance does not
provide a value for this field on its own.

In a #2 7→ #1 7→ #2 RTM, the migration leverages the support for trace links (cf. green links in the RTM graphs),
and recovers the value of field2 from the original instance. A simple copying of the previous value of field2
is feasible in this scenario, since we assume a functional independence of field1 and field2. Therefore, a
potential modification of field1 in version 2 cannot have any effect on field2.

Migrations

1 @Migration
2 export public function migrate(o1 : AddField#1) : AddField#2 {
3 // obtain previous revision
4 const previousRevision = context.getTrace(o1)[0] as AddField#2 ||Â {} as AddField#2;
5
6 // instantiate an empty instance
7 let o2 = new AddField#2();
8
9 // transfer value for field ’field1’

10 o2.field1 = o1.field1;
11 // use previous value or a default value alternatively
12 o2.field2 = previousRevision.field2 || "defaultValue2";
13
14 return o2;
15 }
16
17 @Migration
18 export public function migrateBack(o2 : AddField#2) : AddField#1 {
19 let o1 = new AddField#1();
20 // transfer field value for ’field1’
21 o1.field1 = o2.field1;
22
23 return o1;
24 }

Round Trip Object Graph

Migrated Object Graph

Original Object Graph

:AddField#1
-field1 : string = "value1"

:AddField#2
-field1 : string = "value1"
-field2 : string = "defaultValue2"

:AddField#1
-field1 : string = "value1"

migrate

migrate back

Round-Trip 2.1: #1 7→ #2 7→ #1

Round Trip Object Graph

Migrated Object Graph

Original Object Graph

:AddField#2
-field1 : string = "value1"
-field2 : string = "value2"

:AddField#1
-field1 : string = "value1"

:AddField#2
-field1 : string = "value1"
-field2 : string = "value2"

migrate

migrate back

Round-Trip 2.2: #1 7→ #2 7→ #1

Scenario 3: Create/Delete Field (functionally dependent field)
A field is removed from a class of the data model (or added respectively). The field is functionally dependent on
other still-existing fields.

27

In the example data model, version 1 declares a field hereToStayTwice. By an informal data invariant, it is
specified to always hold a value that equals the concatenation of field hereToStay with itself. This implies
a functional dependency between the fields. In version 2 of the same class, the field hereToStayTwice is
removed.

Data Models

1 export public class CreateDeleteDependentField#1 {
2 hereToStay : string
3 /**
4 * The value of this field should always be
5 * ’hereToStay’, but concatenated with
6 * itself twice (e.g. ’A’ -> ’A A’).
7 */
8 hereToStayTwice : string
9 }

Version 1

1 export public class CreateDeleteDependentField#2 {
2 hereToStay : string
3 }

Version 2

Discussion The migration from version 2 to 1 must consider the potentially new value of field hereToStay
to compute the corresponding new value of hereToStayTwice. Although traceability would allow to access
the previous value of hereToStayTwice, the migration cannot just copy it, since the functional dependency
between hereToStay and hereToStayTwice may be violated.

For a #2 7→ #1 7→ #2 RTM, the migration computes the missing value of field hereToStayTwice from field
hereToStay in the original instance of version 2. Although hereToStayTwice is modified, this modification
is not mapped back to the value of hereToStay in version 1.

While intuitively this may not seem like a successful round-trip migration, it formally is one according to our
initial definition. Nonetheless, the given example demonstrates an issue regarding functional dependencies
between fields: A modification of only one of the instances of a redundant bit of information (e.g. the value
of field hereToStayTwice) causes an inconsistent state, which may in turn result in unexpected behavior.
However, this is not an issue with round-trip migrations specifically, but rather with data modeling in general.

Migrations

1 @Migration
2 export function migrate(o1 : CreateDeleteDependentField#1) : CreateDeleteDependentField#2 {
3 let o2 = new CreateDeleteDependentField#2();
4
5 // copy value for field ’hereToStay’
6 o2.hereToStay = o1.hereToStay;
7
8 return o2;
9 }

10
11 @Migration
12 export function migrateBack(o2 : CreateDeleteDependentField#2) : CreateDeleteDependentField#1 {
13 let o1 = new CreateDeleteDependentField#1();
14
15 o1.hereToStay = o2.hereToStay
16 o1.hereToStayTwice = o2.hereToStay + "␣" + o2.hereToStay
17
18 return o1;
19 }

28

Round Trip Object Graph

:CreateDeleteDependentField#1

-hereToStay : string = "newHereToStay"
-hereToStayTwice : string = "newHereToStay newHereToStay"

Modified Migrated Object Graph

:CreateDeleteDependentField#2

-hereToStay : string = "newHereToStay"

Migrated Object Graph

:CreateDeleteDependentField#2

-hereToStay : string = "valueToStay"

Original Object Graph

:CreateDeleteDependentField#1

-hereToStay : string = "valueToStay"
-hereToStayTwice : string = "valueToStay valueToStay"

migrate

modify

migrate back

Round-Trip 3.1: #1 7→ #2 7→ #1 In version 2, the value of field valueToStay is modified.

Round Trip Object Graph

:CreateDeleteDependentField#2

-hereToStay : string = "hereToStayValue"

Modified Migrated Object Graph

:CreateDeleteDependentField#1

-hereToStay : string = "hereToStayValue"
-hereToStayTwice : string = "modified"

Migrated Object Graph

:CreateDeleteDependentField#1

-hereToStay : string = "hereToStayValue"
-hereToStayTwice : string = "hereToStayValue hereToStayValue"

Original Object Graph

:CreateDeleteDependentField#2

-hereToStay : string = "hereToStayValue"

migrate

modify

migrate back

Round-Trip 3.2: #2 7→ #1 7→ #2 In version 1, the value of hereToStayTwice is modified.

Scenario 4: Create/Delete Reference
A field of reference type is removed from a class of the data model (or added respectively).

In the example data models, the reference to an instance of type ReferencedElement is removed in version
2.

Data Models

1 export public class CreateDeleteReference#1 {
2 reference : ReferencedElement
3
4 unrelated : string
5 }
6
7 export public class ReferencedElement#1 {
8 public value : string
9 constructor(@Spec spec : ˜i˜this) {}

10 }

Version 1

1 export public class CreateDeleteReference#2 {
2 unrelated : string
3 }
4
5
6 export public class ReferencedElement#2 {
7 public value : string
8 constructor(@Spec spec : ˜i˜this) {}
9 }

Version 2

Discussion This scenario exhibits similar properties to those of its counterpart for primitively typed fields in
scenario 2 Create/Delete Field (functionally independent field) and 3 Create/Delete Field (functionally dependent
field). It only differs in that the value which is recovered via trace links, is not of primitive type but an instance of
type ReferencedElement.

Analogously, this scenario poses the same challenges with regard to potential functional dependencies between
different references (cf. discussions in scenario 2 and 3).

29

Migrations

1 @Migration
2 export function migrate(o1 : CreateDeleteReference#1) : CreateDeleteReference#2 {
3 let o2 = new CreateDeleteReference#2();
4
5 o2.unrelated = o1.unrelated;
6
7 return o2;
8 }
9

10 @Migration
11 export function migrateBack(o2 : CreateDeleteReference#2) : CreateDeleteReference#1 {
12 // obtain previous revision
13 const previousRevision = context.getTrace(o2)[0] as CreateDeleteReference#1
14 || {} as CreateDeleteReference#1;
15
16 let o1 = new CreateDeleteReference#1();
17
18 o1.unrelated = o2.unrelated;
19 // choose a default value for ’reference’ or recover previous value
20 o1.reference = previousRevision.reference
21 || new ReferencedElement#1({value: "defaultValue"});
22
23 return o1;
24 }

Round Trip Object Graph

:ReferencedElement#1

-value : string = "referencedElementValue"

:CreateDeleteReference#1

-unrelated : string = "someUnrelatedValue"Migrated Object Graph

:CreateDeleteReference#2

-unrelated : string = "someUnrelatedValue"

Original Object Graph

:ReferencedElement#1

-value : string = "referencedElementValue"

:CreateDeleteReference#1

-unrelated : string = "someUnrelatedValue"

reference referencemigrate migrate back

Round-Trip 4.1: #1 7→ #2 7→ #1

Round Trip Object Graph

:CreateDeleteReference#2

-unrelated : string = "someUnrelatedValue"

Migrated Object Graph

:ReferencedElement#1

-value : string = "defaultValue"

:CreateDeleteReference#1

-unrelated : string = "someUnrelatedValue"Original Object Graph

:CreateDeleteReference#2

-unrelated : string = "someUnrelatedValue"
referencemigrate migrate back

Round-Trip 4.2: #2 7→ #1 7→ #2

Scenario 5: Declare Class as Abstract
A class is declared abstract/concrete.

In the exemplary data model of this scenario, the class Value#1 is declared abstract in model version 2. The
concrete subclass SubValue exists in both versions and is not changed from version 1 to 2.

30

Data Models

1 export public class MakeClassAbstract#1 {
2 public field : Value
3 }
4
5 export public class Value#1 {
6 public commonField : string
7 }
8
9 export public class SubValue#1 extends Value {

10 public field1 : string
11 }

Version 1

1 export public class MakeClassAbstract#2 {
2 public field : Value
3 }
4
5 export public abstract class Value#2 {
6 public commonField : string
7 }
8
9 export public class SubValue#2 extends Value {

10 public field1 : string
11 }

Version 2

Discussion The core challenge of this scenario lies in the successful migration of instances of Value#1 to
one of its concrete subclasses in version 2. Instances of SubValue can be represented in both versions by
the identical and correspondingly named types and are thus not of much interest. Concerning the migration of
Value#1 instances however, there are three main points that need to be addressed:

1. A migration must choose a concrete subclass in version 2, which Value#1 instances are migrated to.
Furthermore, default values must be chosen to compensate for missing information. In this example,
the migration statically assumes that Value#1 instances are represented as SubValue#2 instances in
version 2. Assuming there are multiple concrete subclasses to choose from however, it is also possible to
make this choice at runtime (e.g. based on a designated field which indicates which type of version 2 to
migrate to).

2. In order to successfully round-trip migrate Value#1 instances, migrations must ensure that SubValue1#2
instances that originate from a Value#1 instance, maintain their original type in a round-trip. For instance,
a SubValue#2 instance must always be migrated back to a Value#1 instance, if it was originally
represented as such in version 1 (cf. Round-Trip 5.1). However, this case must be differentiable from
SubValue#2 instances that actually do stem from SubValue#1 instances. By leveraging the support
for traceability, this can be implemented by a runtime type check on the previous revision instance (cf.
migrateBackValue in the migrations listing).

Migrations

1 @Migration
2 export function migrateValue(o1 : Value#1) : Value#2 {
3 const previousRevision = context.getTrace(o1)[0] || {};
4
5 const sv = new SubValue#2();
6 // obtain value of field1 from previous revision or choose a default
7 sv.field1 = (previousRevision as SubValue#2).field1 || "defaultValue";
8 sv.commonField = o1.commonField;
9 return sv;

10 }
11
12 @Migration
13 export function migrateBackValue(o2 : SubValue#2) : Value#1 {
14 const previousRevision = context.getTrace(o2)[0] as Value#1
15 || {} as Value#1;
16
17 // If in a previous migration we were forced to migrate
18 // from Value to SubValue, and ’field1’ has not been modified,
19 // migrate-back to Value
20 if (context.getTrace(o2).length > 0
21 && !(previousRevision instanceof SubValue#1)
22 && !(context.isModified(o2, "field1"))) {
23 const v = new Value#1();
24 v.commonField = o2.commonField;
25 return v;
26 }
27
28 // otherwise just migrate SubValue#2 to an instance of identical type SubValue#1
29 const sv = new SubValue#1();
30 sv.commonField = o2.commonField;
31 sv.field1 = o2.field1;
32
33 return sv;
34 }

Shortened: For the full implementation of this scenario see the appended source code of the catalogue.

31

Round Trip Object Graph

:Value#1

-commonField : string = "commonValue1"

:MakeClassAbstract#1

Migrated Object Graph

:SubValue#2

-field1 : string = "defaultValue"
-commonField : string = "commonValue1"

:MakeClassAbstract#2

Original Object Graph

:Value#1

-commonField : string = "commonValue1"

:MakeClassAbstract#1

field field fieldmigrate migrate back

Round-Trip 5.1: #1 7→ #2 7→ #1 Instances of type Value#1 are migrated to SubValue#2 by choosing a default value
for field1.

Round Trip Object Graph

:SubValue#2

-field1 : string = "value1"
-commonField : string = "commonValue"

:MakeClassAbstract#2

Migrated Object Graph

:SubValue#1

-field1 : string = "value1"
-commonField : string = "commonValue"

:MakeClassAbstract#1

Original Object Graph

:SubValue#2

-field1 : string = "value1"
-commonField : string = "commonValue"

:MakeClassAbstract#2

field field fieldmigrate migrate back

Round-Trip 5.2: #2 7→ #1 7→ #2 An instance of SubValue#2 is migrated via SubValue#1 without any modifications
in between.

Round Trip Object Graph

:SubValue#1

-field1 : string = "modified"
-commonField : string = "commonValue1"

:MakeClassAbstract#1

Modified Migrated Object Graph

:SubValue#2

-field1 : string = "modified"
-commonField : string = "commonValue1"

:MakeClassAbstract#2

Migrated Object Graph

:SubValue#2

-field1 : string = "defaultValue"
-commonField : string = "commonValue1"

:MakeClassAbstract#2

Original Object Graph

:Value#1

-commonField : string = "commonValue1"

:MakeClassAbstract#1

field field field fieldmigrate modify migrate back

Round-Trip 5.3: #1 7→ #2 7→ #1 The field field1 is modified in model version 2. As a consequence its type in the original
version is changed to SubValue#1 in order to represent the modification.

Scenario 6: Add/Remove a Supertype
A new supertype is declared for a classifier (or removed respectively).

In version 2 of the example data model, the class AddSuperType#1 gains the supertype SuperType#2.

Data Models

1 export public class AddSuperType#1 {
2 public ownedField : string
3 }

Version 1

1 export public class AddSuperType#2
2 extends SuperType {
3
4 public ownedField : string
5 }
6
7 export public class SuperType#2 {
8 public superField1 : string
9 public superField2 : string

10 }

Version 2

Discussion In version 2 of the data model, instances of type AddSuperType#2 gain the fields superField1
and superField2 which are consumed from the new supertype SuperType#2. Therefore, this scenario
exhibits the same properties as scenario 2 (Create/Delete Field) for each of the consumed fields. If, in the
context of a concrete data model, the consumed fields maintain functional dependencies on existing fields in
AddSuperType#2, the discussion of scenario 3 may also apply.

32

Migrations

1 @Migration
2 export function migrate(o1 : AddSuperType#1) : AddSuperType#2 {
3 // obtain previous revision
4 const previousRevision = context.getTrace(o1)[0] as AddSuperType#2
5 || {} as AddSuperType#2;
6
7 let o2 = new AddSuperType#2();
8
9 o2.ownedField = o1.ownedField;

10 o2.superField1 = previousRevision.superField1 || "defaultSuperValue1";
11 o2.superField2 = previousRevision.superField2 || "defaultSuperValue2";
12
13 return o2;
14 }
15
16 @Migration
17 export function migrateBack(o2 : AddSuperType#2) : AddSuperType#1 {
18 let o1 = new AddSuperType#1();
19
20 o1.ownedField = o2.ownedField;
21
22 return o1;
23 }

Round Trip Object Graph

:AddSuperType#1

-ownedField : string = "ownedValue"

Migrated Object Graph

:AddSuperType#2

-ownedField : string = "ownedValue"
-superField1 : string = "defaultSuperValue1"
-superField2 : string = "defaultSuperValue2"

Original Object Graph

:AddSuperType#1

-ownedField : string = "ownedValue"

migrate

migrate back

Round-Trip 6.1: #1 7→ #2 7→ #1 The migration chooses de-
fault values for the newly introduced fields superField1 and
superField2 in version 2.

Round Trip Object Graph

:AddSuperType#2

-ownedField : string = "ownedValue"
-superField1 : string = "superValue1"
-superField2 : string = "superValue2"

Migrated Object Graph

:AddSuperType#1

-ownedField : string = "ownedValue"

Original Object Graph

:AddSuperType#2

-ownedField : string = "ownedValue"
-superField1 : string = "superValue1"
-superField2 : string = "superValue2"

migrate

migrate back

Round-Trip 6.2: #1 7→ #2 7→ #1 Using trace links, the the
original values of the new field superField1 and superField2
can be restored.

Scenario 7: Generalize/Specialize Field Type
The type of a field is generalized to a supertype or specialized to a subtype respectively.

In the example model, the type of field field is generalized from FieldType to the supertype Super-
FieldType. The types FieldType and SuperFieldType remain unchanged from version 1 to version
2.

Data Models

1 export public class GeneralizeFieldType#1 {
2 public field : FieldType
3 }
4
5 export public class SuperFieldType#1 {
6 public generic : string
7 }
8
9 export public class FieldType#1

10 extends SuperFieldType {
11
12 public specific : string
13 }

Version 1

1 export public class GeneralizeFieldType#2 {
2 public field : SuperFieldType
3 }
4
5 export public class SuperFieldType#2 {
6 public generic : string
7 }
8
9 export public class FieldType#2

10 extends SuperFieldType {
11
12 public specific : string
13 }

Version 2

33

Discussion This scenario exhibits similar properties to those of scenario 5 Declare Class as Abstract. This
is due to the fact that this scenario requires the migration of an instance of more specific type to an instance
of less specific type (cf. FieldType vs. SuperFieldType). The migrations need to make use of traceability
information to differentiate between the different cases of FieldType instances in version 1 (cf. Fig. 7.1 vs
Fig. 7.2). These are those that originally stem from a FieldType and those migrated from the supertype.
Furthermore, a modification of field specific may further affect the migration strategy (cf. Fig. 7.3). See
scenario 5 for a thorough discussion.

Migrations

1 @Migration
2 export function migrateBackSuperAttribute(a2 : SuperFieldType#2) : FieldType#1 {
3 // obtain previous revision
4 const previousRevision = context.getTrace(a2)[0] as FieldType#1 || {} as FieldType#1;
5
6 const a1 = new FieldType#1();
7 a1.generic = a2.generic;
8 a1.specific = previousRevision.specific ||Â "defaultSpecificValue";
9

10 return a1;
11 }
12
13 @Migration
14 export function migrateAttribute(a1 : FieldType#1) : SuperFieldType#2 {
15 const previousRevision = (context.getTrace(a1)[0] || {}) as SuperFieldType#2;
16
17 let a2 : SuperFieldType#2
18
19 // If field has been of type SuperAttributeType but not
20 // of AttributeType, and field ’specific’ has not been changed
21 if (previousRevision instanceof SuperFieldType#2
22 && !(previousRevision instanceof FieldType#2)
23 && !(context.isModified(a1, "specific"))) {
24 // migrate back to SuperAttribute type
25 a2 = new SuperFieldType#2();
26 } else { // no previous revision, or a previous revision of type AttributeType
27 a2 = new FieldType#2();
28 (a2 as FieldType#2).specific = a1.specific;
29 }
30
31 // set generic field in any case
32 a2.generic = a1.generic;
33
34 return a2;
35 }

Shortened: For the full implementation of this scenario see the appended source code of the catalogue.

Round Trip Object Graph

:SuperAttributeType#2

-generic : string = "genericValue"

:GeneralizeAttributeType#2

Migrated Object Graph

:AttributeType#1

-specific : string = "defaultSpecificValue"
-generic : string = "genericValue"

:GeneralizeAttributeType#1

Original Object Graph

:SuperAttributeType#2

-generic : string = "genericValue"

:GeneralizeAttributeType#2

field field fieldmigrate migrate back

Round-Trip 7.1: #2 7→ #1 7→ #2 with initial field type SuperFieldType.

Round Trip Object Graph

:AttributeType#2

-specific : string = "specificValue"
-generic : string = "genericValue"

:GeneralizeAttributeType#2

Migrated Object Graph

:AttributeType#1

-specific : string = "specificValue"
-generic : string = "genericValue"

:GeneralizeAttributeType#1

Original Object Graph

:AttributeType#2

-specific : string = "specificValue"
-generic : string = "genericValue"

:GeneralizeAttributeType#2

field field fieldmigrate migrate back

Round-Trip 7.2: #2 7→ #1 7→ #2 with initial field type FieldType.

34

Round Trip Object Graph

:AttributeType#2

-specific : string = "modified"
-generic : string = "genericValue"

:GeneralizeAttributeType#2

Modified Migrated Object Graph

:AttributeType#1

-specific : string = "modified"
-generic : string = "genericValue"

:GeneralizeAttributeType#1

Migrated Object Graph

:AttributeType#1

-specific : string = "defaultSpecificValue"
-generic : string = "genericValue"

:GeneralizeAttributeType#1

Original Object Graph

:SuperAttributeType#2

-generic : string = "genericValue"

:GeneralizeAttributeType#2

field field field fieldmigrate modify migrate back

Round-Trip 7.3: #2 7→ #1 7→ #2 with a modification of field specific.

Scenario 8: Change Field Multiplicity: 0..1 - 1
The multiplicity of a field is specialized from multiplicity 0..1 to 1 or generalized from 1 to 0..1 respectively.

In the example data model, the mandator field field of model version 1 is declared optional in version 2.

Data Models

1 export public class GeneralizeAttributeOptional#1 {
2 public field : string
3 }

Version 1

1 export public class GeneralizeAttributeOptional#2 {
2 public field? : string
3 }

Version 2

Discussion Model version 2 is more generic, as it allows for additional instances that hold a null-value for
field field. To accommodate for this difference, a migration must choose a default value for field when
migrating a null-value from model version 2 to 1. In a #2 7→ #1 7→ #2 round-trip, it must further be assured,
that a default value is not translated back into version 2 but rather detected and therefore mapped to the original
null-value (cf. Round-Trip 8.1).

Migrations

1 @Migration
2 export function migrate(o1 : GeneralizeAttributeOptional#1) : GeneralizeAttributeOptional#2 {
3 let o2 = new GeneralizeAttributeOptional#2();
4
5 const previousRevision = context.getTrace(o1)[0] as GeneralizeAttributeOptional#2
6
7 // If ’field’ has not been modified, and a previous revision could
8 // be obtained
9 if (previousRevision != undefined

10 && !context.isModified(o1, "field")) {
11 // re-use the previous value for ’field’
12 o2.field = previousRevision.field;
13 } else {
14 // otherwise copy over the value in ’field’
15 o2.field = o1.field;
16 }
17
18 return o2;
19 }
20
21 @Migration
22 export function migrateBack(o2 : GeneralizeAttributeOptional#2) : GeneralizeAttributeOptional#1 {
23 let o1 = new GeneralizeAttributeOptional#1();
24
25 // use default value in case ’o2.field’ is null
26 o1.field = o2.field || "defaultValue";
27
28 return o1;
29 }

35

Round Trip Object Graph

:GeneralizeAttributeOptional#1

-field : string = "defaultValue"

Modified Migrated Object Graph

:GeneralizeAttributeOptional#2

-field : <unknown> = null

Migrated Object Graph

:GeneralizeAttributeOptional#2

-field : string = "someValue"

Original Object Graph

:GeneralizeAttributeOptional#1

-field : string = "someValue"

migrate

modify

migrate back

Round-Trip 8.1: #1 7→ #2 7→ #1 A modification in version 2
sets field to null. This results in a default value in version 1.

Round Trip Object Graph

:GeneralizeAttributeOptional#2

-field : undefined = undefined

Migrated Object Graph

:GeneralizeAttributeOptional#1

-field : string = "defaultValue"

Original Object Graph

:GeneralizeAttributeOptional#2

-field : undefined = undefined migrate

migrate back

Round-Trip 8.2: #2 7→ #1 7→ #2 In version 1, field is set
to a default value, which is later not translated back to model
version 2.

Scenario 9: Change Field Multiplicity: 0..n - 0..1
The multiplicity of a field is generalized from 0..1 to 0..n or specialized from 0..n to 0..1.

In the exemplary data model, the type of field field is changed from an optional reference to an instance of
type Element to an array with element type Element.

Data Models

1 export public class GeneralizeAttributeOptional2Array#1 {
2 public field? : Element
3 }
4 export public class Element#1 {
5 public value : string
6 }

Version 1

1 export public class GeneralizeAttributeOptional2Array#2 {
2 public field : Array<Element>
3 }
4 export public class Element#2 {
5 public value : string
6 }

Version 2

Discussion The general migration strategy we propose for this scenario, is to introduce a mapping of the value
of field to a specific index in the array in model version 2 (See 20 Aggregate Instances for an alternative). For
the sake of simplicity, we will assume for further discussion that this designated array index is always the first
element (0). However, it may of course be any other index or even a dynamically chosen index.

For this scenario, there are two main observations to be made:

1. The migrations need to translate any change to the designated index in the array of model version 2 to
version 1 and vice-versa. Since an array may be mutated using common operators such as insert and
delete, we must consider the situation in which the array does not hold an element for that specific index.
Therefore, this scenario can be seen as an instance of scenario 8 where we migrate between a mandatory
and an optional field. This migration from version 2 to 1 can be implemented using the following mappings:

field in version 2 field in version 1

Empty Array field is set to null.

Array without an element at the desig-
nated index.

field is set to null.

Array with an instance of Element#2
at the designated index.

field is set to the migrated equivalent
of the element at the designated index.

Note that with this strategy we bind the value of field in version 1 to an index in the array of version 2,
not a specific element. For instance, when a new element is inserted at index 0 of the array in version
2, this new element will replace the current value of field in version 1 (cf. Round-Trip 9.1). Another
instance of this behavior is demonstrated in Round-Trip 9.4.

2. When round-trip migrating an instance of version 2 via version 1, a migration needs to update the desig-
nated array element with the potentially changed value of field from version 1. Apart from that, it needs
to restore all other array elements using trace links (see line 17-19 in migrate).

36

The Round-Trips 9.2, 9.3 and 9.4 demonstrate how this migration strategy maps common modifications (set null,
delete element, insert element) of field in version 1 and 2 to the other model version.

Migrations

1 @Migration
2 export function migrate(o1 : GeneralizeAttributeOptional2Array#1) : GeneralizeAttributeOptional2Array#2 {
3 // obtain previous revision
4 const previousRevision = context.getTrace(o1)[0] as GeneralizeAttributeOptional2Array#2
5 || {} as GeneralizeAttributeOptional2Array#2;
6
7 let o2 = new GeneralizeAttributeOptional2Array#2();
8
9 let elements : Array<Element#2> = [];

10
11 // if o1.field is present
12 if (o1.field != null) {
13 // add migrated field value as first array element
14 elements.push(Migrations.copy(Element#2, o1.field));
15 }
16
17 // add all previousRevision elements, but the first one
18 (previousRevision.field || []).slice(1)
19 .forEach(e => elements.push(Migrations.copy(Element#2, e)));
20
21 o2.field = elements;
22
23 return o2;
24 }
25
26 @Migration
27 export function migrateBack(o2 : GeneralizeAttributeOptional2Array#2) : GeneralizeAttributeOptional2Array#1 {
28 let o1 = new GeneralizeAttributeOptional2Array#1();
29
30 // migrate the element at index 0, if not present set ’o1.field’ to null
31 o1.field = Migrations.migrateElementAt(o2.field, 0, null);
32
33 return o1;
34 }

Shortened: For the full implementation of this scenario see the appended source code of the catalogue.

Round Trip Object Graph

:Element#1

-value : string = "newElementValue"

:GeneralizeAttributeOptional2Array#1

Modified Migrated Object Graph

:Element#2

-value : string = "originalValue"

:Element#2

-value : string = "newElementValue"

:GeneralizeAttributeOptional2Array#2

Migrated Object Graph

:Element#2

-value : string = "originalValue"

:GeneralizeAttributeOptional2Array#2

Original Object Graph

:Element#1

-value : string = "originalValue"

:GeneralizeAttributeOptional2Array#1

field field[0]

field[0] field[1]field

migrate

modify

migrate back

Round-Trip 9.1: #1 7→ #2 7→ #1 In version 2, a new element is inserted into the array at index 0. As a consequence, the
new element of the array replaces the value of field in version 1.

37

Round Trip Object Graph

:Element#1

-value : string = "newElementValue"

:GeneralizeAttributeOptional2Array#1

Modified Migrated Object Graph

:Element#2

-value : string = "newElementValue"

:GeneralizeAttributeOptional2Array#2

Migrated Object Graph

:GeneralizeAttributeOptional2Array#2

-field : Array = []

Original Object Graph

:GeneralizeAttributeOptional2Array#1

-field : undefined = undefined

field[0]field

migrate

modify

migrate back

Round-Trip 9.2: #2 7→ #1 7→ #2 An absent value of field in
version 1 translates to an empty array in version 2. Adding a new
element to the array in version 2, results in setting the value of
field in version 1.

Round Trip Object Graph

:GeneralizeAttributeOptional2Array#1

-field : <unknown> = null

Modified Migrated Object Graph

:GeneralizeAttributeOptional2Array#2

-field : Array = []

Migrated Object Graph

:Element#2

-value : string = "originalValue"

:GeneralizeAttributeOptional2Array#2

Original Object Graph

:Element#1

-value : string = "originalValue"

:GeneralizeAttributeOptional2Array#1

field field[0]migrate

modify

migrate back

Round-Trip 9.3: #2 7→ #1 7→ #2 Removing all elements from
the array of version 2, translates to setting field in version 1
to null.

Round Trip Object Graph

:Element#2

-value : string = "value2"

:GeneralizeAttributeOptional2Array#2
Modified Migrated Object Graph

:GeneralizeAttributeOptional2Array#1

-field : <unknown> = null

Migrated Object Graph

:Element#1

-value : string = "value1"

:GeneralizeAttributeOptional2Array#1

Original Object Graph

:Element#2

-value : string = "value2"

:Element#2

-value : string = "value1"

:GeneralizeAttributeOptional2Array#2

field[0] field[1] field

field[0]

migrate

modify

migrate back

Round-Trip 9.4: #2 7→ #1 7→ #2 Setting field to null in version 1, results in removing the corresponding element from the
array of version 2.

Scenario 10: Change Field Multiplicity: 0..n - 1
The multiplicity of a field is specialized from multiplicity 0..n to 1 or generalized from 1 to 0..n respectively.

In our example data model, the type of field field is changed from Element to Array<Element>.

Data Models

1 export public class GeneralizeAttributeArray#1 {
2 public field : Element
3 }
4 export public class Element#1 {
5 public value : string
6 }

Version 1

1 export public class GeneralizeAttributeArray#2 {
2 public field : Array<Element>
3 }
4 export public class Element#2 {
5 public value : string
6 }

Version 2

Discussion This scenario exhibits similar characteristics to those of scenario 9. Therefore, we propose an
analogous migration strategy of introducing a mapping of the value of field in version 1 to a designated index
in the corresponding array in model version 2.

38

As opposed to scenario 9 however, model version 1 does not allow to set field to null when the corresponding
array index does not hold a value at migration time. Instead, we propose the use of default values. The following
mapping between states of field in version 1 and 2 may then be used:

field in version 2 field in version 1

Empty Array Default Value for Element#1

Array without an element at the desig-
nated index.

Default Value for Element#1

Array with an instance of Element#2
at the designated index.

Migrated version of the instance.

Similar to other scenarios in which we resort to default values, we need to make sure that a default instance
for field is not translated back into version 2. Instead, we want to assure that we restore the original value
of field using trace links. See line 11 to 14 in migrate for an exemplary implementation. Round-Trip 10.2
demonstrates such a situation.

Based on this migration strategy, we inherit a similar behavior as in scenario 9 (cf. Round-Trip 10.1 and 10.3).
Overall however, we rate this scenario to be slightly more complex. Since in version 1 the field is mandatory, we
rely on default values which in turn require the use of modification detection. This significantly increases the
complexity of the migration code.

Migrations

1 @Migration
2 export function migrate(o1 : GeneralizeAttributeArray#1)
3 : GeneralizeAttributeArray#2 {
4 let o2 = new GeneralizeAttributeArray#2();
5
6 let elements : Array<Element#2> = [];
7
8 const previousRevision = context.getTrace(o1)[0] as GeneralizeAttributeArray#2;
9

10 // detect default value of ’o1.field’
11 if (previousRevision !== undefined
12 && previousRevision.field.length == 0 && !context.isModified(o1, "field")) {
13 // restore empty array, if default value in ’o1.field’ remained unmodified
14 elements = [];
15 } else {
16 // add migrated field value as first array element
17 elements.push(migrate(o1.field));
18
19 // if a previous revision can be obtained
20 if (previousRevision != undefined) {
21 // add all previousRevision elements, but the first one
22 previousRevision.field.slice(1)
23 .forEach(e => elements.push(Migrations.copy(Element#2, e)));
24 }
25 }
26
27 // Finally assign the array of migrated elements to
28 // the migrated instance field ’field’
29 o2.field = elements;
30
31 return o2;
32 }
33 @Migration
34 export function migrateBack(o2 : GeneralizeAttributeArray#2) : GeneralizeAttributeArray#1 {
35 let o1 = new GeneralizeAttributeArray#1();
36
37 // migrate only the first element of the array
38 o1.field = Migrations.migrateElementAt(o2.field, 0, createDefaultElement());
39
40 return o1;
41 }

Shortened: For the full implementation of this scenario see the appended source code of the catalogue.

39

Round Trip Object Graph

:Element#1

-value : string = "defaultValue"

:GeneralizeAttributeArray#1
Modified Migrated Object Graph

:GeneralizeAttributeArray#2

-field : Array = []

Migrated Object Graph

:Element#2

-value : string = "someValue"

:GeneralizeAttributeArray#2

Original Object Graph

:Element#1

-value : string = "someValue"

:GeneralizeAttributeArray#1

field field[0]

field

migrate

modify

migrate back

Round-Trip 10.1: #1 7→ #2 7→ #1 In version 2 the only element
in array field is removed. This results in a default instance of
Element#1 in version 1.

Round Trip Object Graph

:GeneralizeAttributeArray#2

-field : Array = []

Migrated Object Graph

:Element#1

-value : string = "defaultValue"

:GeneralizeAttributeArray#1

Original Object Graph

:GeneralizeAttributeArray#2

-field : Array = []

field

migrate

migrate back

Round-Trip 10.2: #2 7→ #1 7→ #2 An empty array is migrated
to a default instance of Element#1. When migrating back, the
(unchanged) default value is recognized and the original empty
array is restored.

Round Trip Object Graph

:Element#1

-value : string = "insertedElement"

:GeneralizeAttributeArray#1

Modified Migrated Object Graph

:Element#2

-value : string = "appendedElement"

:Element#2

-value : string = "insertedElement"

:GeneralizeAttributeArray#2

Migrated Object Graph

:Element#2

-value : string = "originalValue"

:GeneralizeAttributeArray#2

Original Object Graph

:Element#1

-value : string = "originalValue"

:GeneralizeAttributeArray#1

field field[0]

field[0] field[1]field

migrate

modify

migrate back

Round-Trip 10.3: #1 7→ #2 7→ #1 In version 2, a new element is inserted into the array at index 0. As a consequence, the
new element of the array replaces the value of field in version 1.

Scenario 11: Pull Up / Push Down Field
A field is pulled up into a superclass (or pushed down respectively).

In our exemplary data model, the field f is pulled up into the supertype SuperClass in version 2 of the model.

Data Models

1 export public class SuperClass#1 {}
2 export public class PullUpFeature#1 extends SuperClass {
3 public f : string
4 }

Version 1

1 export public class SuperClass#2 {
2 public f : string
3 }
4 export public class PullUpFeature#2 extends SuperClass {}

Version 2

Discussion On an instance level, the origin of field f (super field or local field) is not of importance since all
fields of the supertype are consumed. Therefore we may migrate instances of PullUpFeature by copying.

40

Another change that can be observed in this scenario, is that in model version 2, the class SuperClass
gains the field f. This must be handled separately in the corresponding migration for type SuperClass (see
scenarios 2, 3, 4 for a discussion).

Migrations

1 @Migration
2 export public function migratePullUpFeature(o1 : PullUpFeature#1) : PullUpFeature#2 {
3 const o2 = new PullUpFeature#2();
4
5 // simple copy the value of ’f’
6 o2.f = o1.f;
7
8 return o2;
9 }

10
11 @Migration
12 export public function migrateBackPullUpFeature(o2 : PullUpFeature#2) : PullUpFeature#1 {
13 const o1 = new PullUpFeature#1();
14
15 // simple copy the value of ’f’
16 o1.f = o2.f;
17
18 return o1;
19 }

Round Trip Object Graph

:PullUpFeature#2

-f : string = "modified"

Modified Migrated Object Graph

:PullUpFeature#1

-f : string = "modified"

Migrated Object Graph

:PullUpFeature#1

-f : string = "value"

Original Object Graph

:PullUpFeature#2

-f : string = "value"

migrate

modify

migrate back

Round-Trip 11.1: #2 7→ #1 7→ #2 Instance of type PullUpFea-
ture can simply be migrated by copying. Modifications equally
apply in both model version.

Round Trip Object Graph

:PullUpFeature#1

-f : string = "modified"

Modified Migrated Object Graph

:PullUpFeature#2

-f : string = "modified"

Migrated Object Graph

:PullUpFeature#2

-f : string = "value"

Original Object Graph

:PullUpFeature#1

-f : string = "value"

migrate

modify

migrate back

Round-Trip 11.2: #1 7→ #2 7→ #1 A round-trip in the other
direction almost looks identical except for the type versions.

Scenario 12: Split/Merge Type
Based on a specified criteria, instances of a type of one model version, translate to different (unrelated) types of
the other model version.

In the example data model, the type Combined indicates by a type field, which of the optional fields intValue
and stringValue hold the actual data 2. In other words, it models the concept of union types. In model version
2, Combined#2 is split into two separate types. The referring class SplitClass#2 furthermore specializes
the type of its field f, as it now only allows instances of type IntValue#2.

Data Models

1 export public class SplitClass#1 {
2 public f : Combined
3 }
4 export public enum CombinedType#1 { INT, STRING }
5 export public class Combined#1 {
6 public type : CombinedType
7 public stringValue? : string
8 public intValue? : int
9 }

Version 1

1 export public class SplitClass#2 {
2 public f : IntValue
3 }
4
5 export public class IntValue#2 {
6 public intValue : int
7 }
8
9 export public class StringValue#2 {

10 public stringValue : string
11 }

Version 2

2At this point we assume that the informal contract of the type field of Combined#1 is not violated (e.g. stringValue is null even
though type is STRING.

41

Discussion Since migrations operate on the instance level, we may evaluate the value of the type field during
migration. Based on this information, we can decide whether to use the value in intValue of Combined#1
(line 32) or whether we must provide a default value (line 29/30). Migrating instances of type IntValue#2
back to Combined#1 can be implemented by setting the type field to the corresponding INT literal (e.g. line 40).

Since we are dealing with default values, we must detect those and replace them with the previous revision if no
modification can be detected (cf. line 16).

Migrations

1 @Migration
2 function migrate(sc1 : SplitClass#1) : SplitClass#2 {
3 const sc2 = new SplitClass#2();
4
5 // delegate migration of ’f’
6 sc2.f = migrate(sc1.f);
7
8 return sc2;
9 }

10
11 @Migration
12 function migrateBack(sc2 : SplitClass#2) : SplitClass#1 {
13 const sc1 = new SplitClass#1();
14 const previousRevision = context.getTrace(sc2)[0] as SplitClass#1;
15
16 if (previousRevision && !context.isModified(sc2.f)) {
17 sc1.f = copy(Combined#1, previousRevision.f);
18 } else {
19 // migrate instance of IntValue to Combined by delegation
20 sc1.f = migrate(sc2.f);
21 }
22 return sc1;
23 }
24
25 @Migration
26 function migrateIntValue(combined : Combined#1) : IntValue#2 {
27 const iv = new IntValue#2();
28 if (combined.type != CombinedType#1.INT) {
29 // choose default value if ’combined’ is of wrong type
30 iv.intValue = 12;
31 } else {
32 iv.intValue = combined.intValue;
33 }
34 return iv;
35 }
36
37 @Migration
38 function migrateBackIntValue(iv : IntValue#2) : Combined#1 {
39 const c = new Combined#1();
40 c.type = CombinedType#1.INT;
41 c.intValue = iv.intValue;
42 return c;
43 }

Shortened: For the full implementation of this scenario see the appended source code of the catalogue.

42

Round Trip Object Graph

:Combined#1

-type : CombinedType#1 = INT
-stringValue : undefined = undefined
-intValue : number = 42

:SplitClass#1

Migrated Object Graph

:IntValue#2

-intValue : number = 42

:SplitClass#2

Original Object Graph

:Combined#1

-type : CombinedType#1 = INT
-stringValue : undefined = undefined
-intValue : number = 42

:SplitClass#1

f

f

f

migrate

migrate back

Round-Trip 12.1: #1 7→ #2 7→ #1 In case the instance of
Combined#1 represents an integer value, the migration can be
performed without the use of any default values.

Round Trip Object Graph

:Combined#1

-type : CombinedType#1 = STRING
-stringValue : string = "someValue"
-intValue : undefined = undefined

:SplitClass#1

Migrated Object Graph

:IntValue#2

-intValue : number = 12

:SplitClass#2

Original Object Graph

:Combined#1

-type : CombinedType#1 = STRING
-stringValue : string = "someValue"
-intValue : undefined = undefined

:SplitClass#1

f

f

f

migrate

migrate back

Round-Trip 12.2: #1 7→ #2 7→ #1 If the instance of Com-
bined#1 does not represent an integer value, the migration strat-
egy makes use of default values in model version 2.

Scenario 13: Specialize/Generalize Superclass
The supertype of a class is changed to one of the supertype’s subclasses/superclasses.

In the example data model, the supertype of class SpecializeSuperType is specialized to SuperType from
SuperSuperType in version 2 of the model.

Data Models

1 export public class SuperSuperType#1 {
2 // no fields
3 }
4
5 export public class SuperType#1 extends SuperSuperType {
6 public superField : string
7 }
8
9 export public class SpecializeSuperType#1

10 extends SuperSuperType {
11 // Inheriting all fields of SuperSuperType,
12 // therefore this type does not have
13 // any fields in version 1.
14 }

Version 1

1 export public class SuperSuperType#2 {
2 // no fields
3 }
4
5 export public class SuperType#2 extends SuperSuperType {
6 public superField : string
7 }
8
9 export public class SpecializeSuperType#2

10 extends SuperType {
11 // Inheriting all fields of HighestSuperType,
12 // therefore this type inherits field ’superField’
13 }

Version 2

Discussion Since the specialization/generalization of the supertype can be seen as the removal and the
addition of two unrelated supertypes, the migration strategy of this scenario is similar to that of scenario
6 Add/Remove a Supertype. Therefore, the actually migrated change is the creation/deletion of fields. Depending
on potential functional dependencies between existing fields and fields that are introduced by the changed
supertype, the scenarios 2, 3, 4 are then applicable.

43

Migrations

1 @Migration
2 function migrate(sst1 : SpecializeSuperType#1) : SpecializeSuperType#2 {
3 const sst2 = new SpecializeSuperType#2();
4 const previousRevision = context.getTrace(sst1)[0] as SpecializeSuperType#2;
5
6 if (previousRevision) {
7 // re-use previous revision ’superField’ value, if present
8 sst2.superField = previousRevision.superField;
9 } else {

10 // otherwise, choose a default value for ’superField’
11 sst2.superField = "defaultValue";
12 }
13
14 return sst2;
15 }
16
17 @Migration
18 function migrateBack(sst2 : SpecializeSuperType#2) : SpecializeSuperType#1 {
19 // empty type, nothing to migrate
20 return new SpecializeSuperType#1();
21 }

Round Trip Object Graph

:SpecializeSuperType#1

Migrated Object Graph

:SpecializeSuperType#2

-superField : string = "defaultValue"

Original Object Graph

:SpecializeSuperType#1 migrate

migrate back

Round-Trip 13.1: #1 7→ #2 7→ #1 For the newly introduced field
superField, a default value is chosen.

Round Trip Object Graph

:SpecializeSuperType#2

-superField : string = "someValue"

Migrated Object Graph

:SpecializeSuperType#1

Original Object Graph

:SpecializeSuperType#2

-superField : string = "someValue"
migrate

migrate back

Round-Trip 13.2: #2 7→ #1 7→ #2 If a previous revision can
be obtained via trace links, the original value of superField
is restored.

44

Scenario 14: Extract/Inline Superclass
A new superclass is extracted from the set of fields of an existing type.

In the example data model, in version 2 the field genericField is extracted into the new superclass Super-
Class#2.

Data Models

1 export public class ExtractSuperClass#1 {
2 public specificField : string
3 public genericField : string
4 }

Version 1

1 export public class SuperClass#2 {
2 public genericField : string
3 }
4
5 export public class ExtractSuperClass#2 extends SuperClass {
6 public specificField : string
7 }

Version 2

Discussion Similar to scenario 11 Pull Up / Push Down Field, the migration for this scenario can be performed
by copying, since the data model change is not visible on an instance level. However, by extracting a class,
a new class is added to the data model. Therefore, we must also consider the migration of SuperType#2
instances back to model version 1 (cf. Round-Trip 14.1 and 14.3). With the exemplary migration strategy below,
we propose a similar solution as in scenario 5 Declare class as abstract.

Alternatively, we can avoid the migration of SuperType#2 instances, by additionally declaring the extracted
superclass as abstract. As a consequence, the data model change of this scenario becomes fully transparent
from an instance perspective (semantically equivalent data models as defined in Def. 2.8).

Migrations

1 @Migration
2 function migrate(e1 : ExtractSuperClass#1) : SuperClass#2 {
3 const previousRevision = context.getTrace(e1)[0] as SuperClass#2;
4
5 // if a previous revision can be obtained
6 if (previousRevision &&
7 // and e1 has originally been an instance of SuperClass ...
8 (previousRevision instanceof SuperClass#2) &&
9 !(previousRevision instanceof ExtractSuperClass#2) &&

10 // and e1.specificField has not been modified (is default)
11 !(context.isModified(e1, "specificField"))) {
12
13 // ... migrate back to a SuperClass instance
14 const s = new SuperClass#2();
15 s.genericField = e1.genericField;
16 return s;
17 }
18
19 // otherwise copy all values over to a new instance
20 // of type ExtractSuperClass#2
21 return copy(ExtractSuperClass#2, e1);
22 }
23
24 @Migration
25 function migrateBack(e2 : ExtractSuperClass#2) : ExtractSuperClass#1 {
26 // copy all values over to new instance of type ExtractSuperClass#1
27 return copy(ExtractSuperClass#1, e2);
28 }
29
30 @Migration
31 function migrateSuperClass(s : SuperClass#2) : ExtractSuperClass#1 {
32 // migrate instances of SuperClass#2 back to ExtractSuperClass#1
33 // as there is no other means to represent them in model version 1
34 const e = new ExtractSuperClass#1();
35
36 e.genericField = s.genericField;
37 e.specificField = "defaultValue";
38
39 return e;
40 }

45

Round Trip Object Graph

:SuperClass#2

-genericField : string = "genericValue"

Migrated Object Graph

:ExtractSuperClass#1

-specificField : string = "defaultValue"
-genericField : string = "genericValue"

Original Object Graph

:SuperClass#2

-genericField : string = "genericValue" migrate

migrate back

Round-Trip 14.1: #2 7→ #1 7→ #2 An instance of Super-
Type#2 is migrated to an instance of ExtractSuperClass in
version 1. For the additional field specificField, a default value
must be chosen.

Round Trip Object Graph

:ExtractSuperClass#2

-specificField : string = "specificValue"
-genericField : string = "genericValue"

Migrated Object Graph

:ExtractSuperClass#1

-specificField : string = "specificValue"
-genericField : string = "genericValue"

Original Object Graph

:ExtractSuperClass#2

-specificField : string = "specificValue"
-genericField : string = "genericValue" migrate

migrate back

Round-Trip 14.2: #1 7→ #2 7→ #1 On an instance-level, moving
fields into a superclass is not visible.

Round Trip Object Graph

:ExtractSuperClass#2

-specificField : string = "modifiedSpecific"
-genericField : string = "modifiedGeneric"

Modified Migrated Object Graph

:ExtractSuperClass#1

-specificField : string = "modifiedSpecific"
-genericField : string = "modifiedGeneric"

Migrated Object Graph

:ExtractSuperClass#1

-specificField : string = "defaultValue"
-genericField : string = "genericValue"

Original Object Graph

:SuperClass#2

-genericField : string = "genericValue"

migrate

modify

migrate back

Round-Trip 14.3: #2 7→ #1 7→ #2 A modification of speci-
ficField of an ExtractSuperClass#1 instance that originally
stems from a SuperType#2 instance, is mapped back to an in-
stance of ExtractSuperClass in version 2.

Scenario 15: Fold/Unfold Superclass
A new superclass is declared for a type. Common fields of the superclass and the type are then removed from
the type (folded into superclass).

In our exemplary data model, the class FoldSuperType gains the new supertype SuperClass. As a
consequence its fields f1 and f2 can be folded into SuperClass.

Data Models

1 export public class SuperClass#1 {
2 public f1 : string
3 public f2 : string
4 }
5 export public class FoldSuperClass#1 {
6 public f1 : string
7 public f2 : string
8 }

Version 1

1 export public class SuperClass#2 {
2 public f1 : string
3 public f2 : string
4 }
5 export public class FoldSuperClass#2 extends SuperClass {}

Version 2

Discussion This scenario is closely related to scenario 14 Extract Super Class. It only differs in the fact that
the superclass already existed in model version 1. Therefore, there is no need to further consider a migration of
SuperClass#2 instances. Since the changes to the class hierarchy are transparent on the instance level, a
migration-by-copying strategy can be deployed.

46

Migrations

1 @Migration
2 function migrateFoldSuperClass(f : FoldSuperClass#1) : FoldSuperClass#2 {
3 const fs2 = new FoldSuperClass#2();
4
5 // simply copy over values of ’f1’ and ’f2’
6 fs2.f1 = f.f1;
7 fs2.f2 = f.f2;
8
9 return fs2;

10 }
11
12 @Migration
13 function migrateBackFoldSuperClass(f : FoldSuperClass#2) : FoldSuperClass#1 {
14 const fs1 = new FoldSuperClass#1();
15
16 // simply copy over values of ’f1’ and ’f2’
17 fs1.f1 = f.f1;
18 fs1.f2 = f.f2;
19
20 return fs1;
21 }

Round Trip Object Graph

:FoldSuperClass#1

-f1 : string = "value1"
-f2 : string = "value2"

Migrated Object Graph

:FoldSuperClass#2

-f1 : string = "value1"
-f2 : string = "value2"

Original Object Graph

:FoldSuperClass#1

-f1 : string = "value1"
-f2 : string = "value2" migrate

migrate back

Round-Trip 15.1: #1 7→ #2 7→ #1 On an instance-level, the
changes in the class hierarchy are transparent.

Round Trip Object Graph

:FoldSuperClass#2

-f1 : string = "value1"
-f2 : string = "value2"

Migrated Object Graph

:FoldSuperClass#1

-f1 : string = "value1"
-f2 : string = "value2"

Original Object Graph

:FoldSuperClass#2

-f1 : string = "value1"
-f2 : string = "value2" migrate

migrate back

Round-Trip 15.2: #2 7→ #1 7→ #2 Apart from the concrete type
versions, this round-trip equals the other direction.

Scenario 16: Extract/Inline Subclass
A selection of fields is extracted into a new subclass (or inlined respectively).

In our example data model, the field specificField is extracted into a new subclass SubA#2 of type A.
The field genericField remains part of the original type A. The class ExtractSubClass only serves as a
container that holds a reference to an instance of type A.

Data Models

1 export public class A#1 {
2 public specificField : string
3 public genericField : string
4 }
5
6 export public class ExtractSubClass#1 {
7 public f1 : A
8 }

Version 1

1 export public class A#2 {
2 public genericField : string
3 }
4
5 export public class SubA#2 extends A {
6 public specificField : string
7 }
8
9 export public class ExtractSubClass#2 {

10 public f1 : A
11 }

Version 2

Discussion Since references to instances of type A#2 can always refer to an instance of type SubA#2 as well,
migrating from model version 1 to 2, can simply be implemented by migrating all instances of A#1 to instances
of SubA#2.

For #2 7→ #1 7→ #2 round-trips however, we must consider the case of direct instances of A#2 (cf. Round-Trip
16.1 and 16.2). Similar to scenario 5 Declare Class as Abstract, we need to make use of traceability features
in order to detect A#1 instances with default values that have previously been A#2 instances (line 7-14 in
migrateA).

47

Migrations

1 @Migration
2 function migrateA(a : A#1) : A#2 {
3 const previousRevision = context.getTrace(a)[0] as A#2;
4
5 let a2 : A#2;
6
7 // if previous revision exists, is of type SubA...
8 if (previousRevision instanceof SubA#2 ||
9 // ..or ’specificField’ has been modified

10 context.isModified(a, "specificField")) {
11
12 // migrate-back to an instance of SubA
13 a2 = new SubA#2();
14 (a2 as SubA#2).specificField = a.specificField;
15 } else {
16 // otherwise migrate-back to A
17 a2 = new A#2();
18 }
19
20 // copy over value of ’genericField’
21 a2.genericField = a.genericField;
22
23 return a2;
24 }
25
26 @Migration
27 function migrateBackA(a : A#2) : A#1 {
28 const a1 = new A#1();
29
30 a1.genericField = a.genericField;
31 // use default value for missing field ’specificField’
32 a1.specificField = "defaultValue";
33
34 return a1;
35 }
36
37 @Migration
38 function migrateBackSubA(a : SubA#2) : A#1 {
39 const a1 = new A#1();
40
41 a1.genericField = a.genericField;
42 a1.specificField = a.specificField;
43
44 return a1;
45 }

Shortened: For the full implementation of this scenario see the appended source code of the catalogue.

Round Trip Object Graph

:A#2

-genericField : string = "genericValue1"

:ExtractSubClass#2

Migrated Object Graph

:A#1

-specificField : string = "defaultValue"
-genericField : string = "genericValue1"

:ExtractSubClass#1

Original Object Graph

:A#2

-genericField : string = "genericValue1"

:ExtractSubClass#2

f1

f1

f1

migrate

migrate back

Round-Trip 16.1: #2 7→ #1 7→ #2 An instance of A#2 is mi-
grated to A#1 using a default value. When migrating back however,
the default value is detected and the instance is again represented
as A#2

Round Trip Object Graph

:SubA#2

-specificField : string = "modified"
-genericField : string = "genericValue1"

:ExtractSubClass#2

Modified Migrated Object Graph

:A#1

-specificField : string = "modified"
-genericField : string = "genericValue1"

:ExtractSubClass#1

Migrated Object Graph

:A#1

-specificField : string = "defaultValue"
-genericField : string = "genericValue1"

:ExtractSubClass#1

Original Object Graph

:A#2

-genericField : string = "genericValue1"

:ExtractSubClass#2

f1 f1

f1f1

migrate

modify

migrate back

Round-Trip 16.2: #2 7→ #1 7→ #2 An instance of A#2 is mi-
grated to A#1 using a default value. After a modification of field
specificField, the instance is migrated back to SubA#2 to
represent the modification in version 2.

48

Scenario 17: Extract/Inline Class
A selection of fields is extracted into a new delegate class.

In the example data model, the field f is moved from class ExtractClass to class DelegateClass. Instead,
ExtractClass holds a mandatory reference to an instance of DelegateClass in version 2 of the data model.

Data Models

1 export public class ExtractClass#1 {
2 public f : string
3 }

Version 1

1 export public class ExtractClass#2 {
2 public delegate : DelegateClass
3 }
4 export public class DelegateClass#2 {
5 public f : string
6 }

Version 2

Discussion Since the field delegate is mandatory, a migration can collect the value of field f via the del-
egate reference (line 17 in migrateBackExtractClass). This means, that version 2 of the data model is
semantically equivalent to model version 1 and no traceability features are required to successfully migrate
instances.

In model version 2, instances of the new class DelegateClass may occur. In our exemplary migration
implementation, we do not implement the migration of such DelegateClass instances back to model version
1, since we assume that those only occur in combination with ExtractClass instances. In a concrete case,
this assumption may be invalid when there exists another use of DelegateClass instances. Depending on
the nature of such, further scenarios must then be consulted.

A modification of field f can simply be mapped in both directions, by applying it to the corresponding field of
DelegateClass or ExtractClass respectively.

Migrations

1 @Migration
2 function migrateExtractClass(ec : ExtractClass#1) : ExtractClass#2 {
3 const ec2 = new ExtractClass#2();
4
5 // create new delegate class to hold value of ’field’’
6 ec2.delegate = new DelegateClass#2();
7 ec2.delegate.f = ec.f;
8
9 return ec2;

10 }
11
12 @Migration
13 function migrateBackExtractClass(ec : ExtractClass#2) : ExtractClass#1 {
14 const ec1 = new ExtractClass#1();
15
16 // collect value of ’field’ via ’delegate’’
17 ec1.f = ec.delegate.f;
18
19 return ec1;
20 }

49

Round Trip Object Graph

:ExtractClass#1

-f : string = "someValue"

Migrated Object Graph

:DelegateClass#2

-f : string = "someValue"

:ExtractClass#2

Original Object Graph

:ExtractClass#1

-f : string = "someValue"

delegate

migrate

migrate back

Round-Trip 17.1: #1 7→ #2 7→ #1 The value of field f is moved
into a new DelegateClass instance.

Round Trip Object Graph

:DelegateClass#2

-f : string = "someValue"

:ExtractClass#2

Migrated Object Graph

:ExtractClass#1

-f : string = "someValue"

Original Object Graph

:DelegateClass#2

-f : string = "someValue"

:ExtractClass#2

delegate

delegate

migrate

migrate back

Round-Trip 17.2: #2 7→ #1 7→ #2 The value of field f in model
version 1 is collected from the DelegateClass instance of model
version 2.

50

Scenario 18: Fold/Unfold Class
A selection of fields is folded into an existing delegate class.

In the example data model, the field f is folded into class OtherClass. Instead, FoldClass holds a reference
to delegate class OtherClass in version 2 of the data model.

Data Models

1 export public class OtherClass#1 {
2 public f : string
3 }
4
5 export public class FoldClass#1 {
6 public f : string
7 }

Version 1

1 export public class OtherClass#2 {
2 public f : string
3 }
4
5 export public class FoldClass#2 {
6 public delegate : OtherClass
7 }

Version 2

Discussion Similar to scenario 17 Extract/Inline Class, the two data model versions in the scenario represent
semantically equivalent models. Thus, a round-trip migration can be performed without the use of any traceability
features (see scenario 17 for further discussion).

Since the class into which the fields are folded, already existed in version 1 of the model, we do not have to
further consider the migration of OtherClass instances.

Migrations

1 @Migration
2 function migrateFoldClass(fc : FoldClass#1) : FoldClass#2 {
3 const fc2 = new FoldClass#2();
4
5 fc2.delegate = new OtherClass#2();
6 // move value of ’f’ to delegate instance
7 fc2.delegate.f = fc.f;
8
9 return fc2;

10 }
11 @Migration
12 function migrateBackFoldClass(fc : FoldClass#2) : FoldClass#1 {
13 const fc1 = new FoldClass#1();
14
15 // collect value of ’f’ from delegate instance
16 fc1.f = fc.delegate.f;
17
18 return fc1;
19 }

Round Trip Object Graph

:FoldClass#1

-f : string = "someValue"

Migrated Object Graph

:OtherClass#2

-f : string = "someValue"

:FoldClass#2

Original Object Graph

:FoldClass#1

-f : string = "someValue"

delegate

migrate

migrate back

Round-Trip 18.1: #1 7→ #2 7→ #1 The value of field f is moved
to delegate class OtherClass#2.

Round Trip Object Graph

:OtherClass#2

-f : string = "someValue"

:FoldClass#2

Migrated Object Graph

:FoldClass#1

-f : string = "someValue"

Original Object Graph

:OtherClass#2

-f : string = "someValue"

:FoldClass#2

delegate

delegate

migrate

migrate back

Round-Trip 18.2: #2 7→ #1 7→ #2 The value of field f is col-
lected from delegate class OtherClass#2.

51

Scenario 19: Collect Field over Reference
A field is collected/pushed over a reference.

In our example data model, field is collected from SuperClass via field reference into the class Collect-
Field. As a consequence, field of CollectField#2 assumes the multiplicity (0..1) of field reference.

Data Models

1 export public class CollectField#1 {
2 public reference? : SourceClass
3 }
4 export public class SourceClass#1 {
5 public field : string
6 public someOtherField : string
7 }

Version 1

1 export public class CollectField#2 {
2 public reference? : SourceClass
3 public field? : string
4 }
5
6 export public class SourceClass#2 {
7 public someOtherField : string
8 }

Version 2

Discussion In a migration strategy for this scenario, we mainly need to decide on a mapping between
potential null-values for the optional fields CollectField#1.reference, CollectField#2.reference and
CollectField#2.field. Specifically, for a migration of CollectField from model version 2 to 1 we need
to consider a trade-off between default values and loss of information. In our exemplary migration strategy, we
propose the following mapping:

Version 2 Version 1

CollectField#2.reference CollectField#2.field

null value Set reference to an instance
of SourceClass and choose
a default value for Source-
Class#1.someOtherField.

value null Migrate the instance of Source-
Class#2 of field reference to ver-
sion 1 by choosing a default value for
SourceClass#1.field.

value value Migrate the instance of Source-
Class#2 of field reference to ver-
sion 1 using the value in field.

null null Set CollectField#1.reference
to null.

Round-Trip 19.1, 19.2, 19.3 and 19.4 demonstrate how this strategy affects different cases. In general, we aim
to minimize the use of default values while also minimizing the loss of information (e.g. field is set to a value
in one version, but the change is not visible in the other version).

The overall challenge this scenario poses, is the combinations of multiplicities in SourceClass as well as of
field reference. Since both fields of SourceClass are mandatory, they are coupled. More specifically, we
cannot only represent the presence of one of the fields. In model version 2 however, the fields are decoupled in
that we may represent the presence of only one of field and someOtherField. In our migration strategy,
we propose to compensate for this semantic difference, by the use of default values.

52

Migrations

1 @Migration function migrateCollectField(cf : CollectField#1) : CollectField#2 {
2 const cf2 = new CollectField#2();
3
4 // migrate value of ’field’, if ’reference’ is present
5 cf2.field = cf.reference == null ? null : cf.reference.field;
6
7 if (cf.reference == null) {
8 cf2.reference = null;
9 } else {

10 const previousRevision = context.getTrace(cf)[0] as CollectField#2;
11 // If in the previous revision ’reference’ was null
12 // and ’reference.someOtherField’ holds the unmodified default value...
13 if (previousRevision &&
14 previousRevision.reference == null &&
15 !context.isModified(cf.reference, "someOtherField")) {
16 // ... migrate back to ’reference’ being null
17 cf2.reference = null;
18 } else {
19 // otherwise, ’someOtherField’ holds new information (changed))
20 cf2.reference = migrate(cf.reference);
21 }
22 }
23
24 return cf2;
25 }
26
27 @Migration
28 function migrateBackSourceClass(s : SourceClass#2, fieldValue : string) : SourceClass#1 {
29
30 const sc1 = new SourceClass#1();
31
32 // migrate ’someOtherField’
33 sc1.someOtherField = s.someOtherField;
34 // use given value for ’field’ or a default value
35 sc1.field = fieldValue || "defaultValue";
36
37 return sc1;
38 }
39
40 @Migration function migrateBackCollectField(cf : CollectField#2) : CollectField#1 {
41 const cf1 = new CollectField#1();
42
43 if (cf.reference != null) {
44 cf1.reference = migrate(cf.reference, cf.field);
45 } else {
46 if (cf.field != null) {
47 cf1.reference = new SourceClass#1();
48 cf1.reference.field = cf.field;
49 cf1.reference.someOtherField = "someOtherDefaultValue";
50 } else {
51 cf1.reference = null;
52 }
53 }
54
55 return cf1;
56 }

Shortened: For the full implementation of this scenario see the appended source code of the catalogue.

Round Trip Object Graph

:SourceClass#1

-field : string = "someValue"
-someOtherField : string = "someOtherValue"

:CollectField#1

Migrated Object Graph

:SourceClass#2

-someOtherField : string = "someOtherValue"

:CollectField#2

-field : string = "someValue"

Original Object Graph

:SourceClass#1

-field : string = "someValue"
-someOtherField : string = "someOtherValue"

:CollectField#1

reference

reference

reference

migrate

migrate back

Round-Trip 19.1: #1 7→ #2 7→ #1 The value of field is col-
lected into class CollectField in model version 2.

Round Trip Object Graph

:SourceClass#2

-someOtherField : string = "someOtherValue"

:CollectField#2

-field : string = "someValue"

Migrated Object Graph

:SourceClass#1

-field : string = "someValue"
-someOtherField : string = "someOtherValue"

:CollectField#1

Original Object Graph

:SourceClass#2

-someOtherField : string = "someOtherValue"

:CollectField#2

-field : string = "someValue"

reference

reference

reference

migrate

migrate back

Round-Trip 19.2: #2 7→ #1 7→ #2 Via reference, field is
pushed back to class SourceClass in model version 1.

53

Round Trip Object Graph

:SourceClass#1

-field : string = "Hello"
-someOtherField : string = "someOtherDefaultValue"

:CollectField#1

Modified Migrated Object Graph

:CollectField#2

-reference : <unknown> = null
-field : string = "Hello"

Migrated Object Graph

:CollectField#2

-reference : <unknown> = null
-field : <unknown> = null

Original Object Graph

:CollectField#1

-reference : <unknown> = null

reference

migrate

modify

migrate back

Round-Trip 19.3: #1 7→ #2 7→ #1 A null-value for refer-
ence in model-version 1 translates to null-values for both field
and reference in model version 2. A modification sets a value
for field only. As a consequence, a default value is chosen for
someOtherField in version 1 of the model.

Round Trip Object Graph

:CollectField#2

-reference : <unknown> = null
-field : string = "someValue"

Migrated Object Graph

:SourceClass#1

-field : string = "someValue"
-someOtherField : string = "someOtherDefaultValue"

:CollectField#1

Original Object Graph

:CollectField#2

-reference : <unknown> = null
-field : string = "someValue"

reference

migrate

migrate back

Round-Trip 19.4: #2 7→ #1 7→ #2 The use of a SourceClass
default instance is detected when migrating back to model ver-
sion 2.

Scenario 20: Aggregate Instances
Multiple instances are aggregated into a single primitive value (e.g. computing the average of a value).

In our example data model, a list of Exam instances, which each have a field for an individual mark, are
aggregated into an average mark value in model version 2 (cf. Course#2.averageMark).

Data Models

1 export public class Exam#1 {
2 public mark : number
3 }
4
5 export public class Course#1 {
6 public exams : Array<Exam>
7 }

Version 1

1 export public class Course#2 {
2 public averageMark : number
3 }

Version 2

Discussion A migration from version 1 to 2 can easily be implemented by computing the average mark in
the migration. However, a migration in the other direction cannot always be performed successfully. While we
could leverage traceability information to restore the original list of exams, a modification of field averageMark
cannot be translated back into model version 1. The reason for this, is the non-injective character of the average
operation. Given an average value, it is not possible to reconstruct the different components that formed the
operands of the operation. Therefore, it is not clear how to translate a modified average mark in version 2 back
to the list of exams in version 1.

Below, we propose a migration strategy that allows for limited correctness according to our definition of suc-
cessful round-trip migrations (cf. Def. 2.7). In particular, a #2 7→ #1 7→ #2 round-trip (cf. Round-Trip 20.2) is
successful. Nonetheless, a loss of information cannot be avoided, as the round-trips 20.1 and 20.3 illustrate.

Another possible strategy to resolve the core problem of this scenario, is to declare the averageMark field
in data model version 2 as @Final (read-only). This change on the model level circumvents the problem of
mapping back modifications of field averageMark to the original model version. Furthermore, a read-only
constraint renders the complete migration from version 2 to version 1 obsolete. Since in version 2 no modification
can be performed, we may then directly re-use the original instance when migrating back.

54

Migrations

1 @Migration function migrateCourse(c : Course#1) : Course#2 {
2 const c2 = new Course#2();
3
4 // compute average mark of all exams
5 c2.averageMark = (c.exams.map(e => e.mark) as [number])
6 .reduce((acc, m) => acc + m, 0) / c.exams.length;
7
8 return c2;
9 }

10
11 @Migration function migrateBackCourse(c : Course#2) : Course#1 {
12 const c1 = new Course#1();
13
14 c1.exams = [new Exam#1()Â]
15 c1.exams[0].mark = c.averageMark;
16
17 return c1;
18 }

Round Trip Object Graph

:Exam#1

-mark : number = 1.5

:Course#1

Migrated Object Graph

:Course#2

-averageMark : number = 1.5

Original Object Graph

:Exam#1

-mark : number = 2

:Exam#1

-mark : number = 1.5

:Exam#1

-mark : number = 1

:Course#1

exams[0] exams[1] exams[2]

exams[0]

migrate

migrate back

Round-Trip 20.1: #1 7→ #2 7→ #1 With multiple exams in version 1 of the model, the round-trip migration is not successful
as information on the individual exam marks is lost.

Round Trip Object Graph

:Course#2

-averageMark : number = 2.24

Migrated Object Graph

:Exam#1

-mark : number = 2.24

:Course#1

Original Object Graph

:Course#2

-averageMark : number = 2.24

exams[0]

migrate

migrate back

Round-Trip 20.2: #2 7→ #1 7→ #2 With our proposed migration
strategy, this round-trip can be performed successfully.

Round Trip Object Graph

:Exam#1

-mark : number = 3

:Course#1

Modified Migrated Object Graph

:Course#2

-averageMark : number = 3

Migrated Object Graph

:Course#2

-averageMark : number = 1.5

Original Object Graph

:Exam#1

-mark : number = 2

:Exam#1

-mark : number = 1.5

:Exam#1

-mark : number = 1

:Course#1

exams[0] exams[1] exams[2]

exams[0]

migrate

modify

migrate back

Round-Trip 20.3: #1 7→ #2 7→ #1 A modification of the aver-
ageMark in version 2, leads to the creation of a single exam with
that exact mark. All information on individual marks is lost.

55

Scenario 21: Split/Merge Fields
A type is split by moving its fields to two new types and correspondingly replacing all references to it by
references to the new types.

In the example data model, in version 2 the type X is split into Y and Z. Its field a is moved to Y and its field b is
moved to Z. The type SplitField#1 holds a reference to an X instance in version 1 and to corresponding
instances of Y and Z in version 2.

Data Models

1 export public class SplitFields#1 {
2 public x : X
3 }
4
5 export public class X#1 {
6 public a : string
7 public b : string
8 }

Version 1

1 export public class SplitFields#2 {
2 public y : Y
3 public z : Z
4 }
5 export public class Y#2 {
6 public a: string
7 }
8
9 export public class Z#2 {

10 public b: string
11 }

Version 2

Discussion The one-to-one correspondence of an instance of X and instances of Y and Z implies a semantic
equivalence between the data model versions. Therefore, we may deploy a migrations strategy which does not
use any traceability features. Furthermore, our proposed migration strategy leverages the support for multiple
migration parameters and return types in N4IDL. This also becomes apparent in the Round-Trip 21.1 and 21.2.

Due to the one-to-one correspondence of the fields in type X and the fields in Y and Z, any modifications of the
fields a and b, can directly be mapped to the other version.

Migrations

1 @Migration function migrateSplitFields(sf : SplitFields#1) : SplitFields#2 {
2 const sf2 = new SplitFields#2();
3
4 // migrating X#1 by splitting it into Y#2, Z#2
5 const yAndZ = migrate(sf.x);
6 sf2.y = yAndZ.y;
7 sf2.z = yAndZ.z;
8
9 return sf2;

10 }
11
12 @Migration function migrateBackSplitFields(sf : SplitFields#2) : SplitFields#1 {
13 const sf1 = new SplitFields#1();
14
15 // migrate back to X#1 based on Y#2, Z#2
16 sf1.x = migrate(sf.y, sf.z);
17
18 return sf1;
19 }
20
21 @Migration function migrateYZ(y : Y#2, z : Z#2) : X#1 {
22 const x = new X#1();
23
24 x.a = y.a;
25 x.b = z.b;
26
27 return x;
28 }
29
30 @Migration function migrateX(x : X#1) : ˜Object with {y : Y#2, z : Z#2} {
31 const y = new Y#2();
32 const z = new Z#2();
33
34 // copy over the values of field ’a’ and ’b’ to
35 // the instances of X and Z respectively
36 y.a = x.a;
37 z.b = x.b;
38
39 return {y: y, z: z};
40 }

56

Round Trip Object Graph

:X#1

-a : string = "valueA"
-b : string = "valueB"

:SplitFields#1

Migrated Object Graph

:Z#2

-b : string = "valueB"

:Y#2

-a : string = "valueA"

:SplitFields#2

Original Object Graph

:X#1

-a : string = "valueA"
-b : string = "valueB"

:SplitFields#1

x

y z

x

migrate

migrate back

Round-Trip 21.1: #1 7→ #2 7→ #1 The fields a and b are dis-
tributed between the instances of Y and Z in model version 2.

Round Trip Object Graph

:Z#2

-b : string = "valueB"

:Y#2

-a : string = "valueA"

:SplitFields#2

Migrated Object Graph

:X#1

-a : string = "valueA"
-b : string = "valueB"

:SplitFields#1

Original Object Graph

:Z#2

-b : string = "valueB"

:Y#2

-a : string = "valueA"

:SplitFields#2

y z

x

y z

migrate

migrate back

Round-Trip 21.2: #1 7→ #2 7→ #1 Due to the use of migrations
with multiple parameters and return types, the instances of Y and
Z both link back to the same instance of X in version 1.

5.5 Learning Outcomes
During our work on the catalogue, we were able to identify a selection of recurring problems that must be solved
when implementing round-trip migrations. In the following, we discuss some of these problems by reformulating
them independently from the concrete cases in which they appear.

Using Default Values

Many of the represented migration strategies leverage the use of default values. This is usually required when
the target model version requires some sort of information to be available, while the source model version
allows for the omission of said information. In round-trip migrations this imposes a challenge: When migrating
back to the original model version, we must be able to detect default values so that we can avoid to introduce
redundant information into the original model instance. Furthermore, our criteria for successful RTMs without
modification require that default values do not appear in the round-trip migrated instance (cf. g(f(m)) = m
Def. 2.7). To address this issue, we recommend the use of modification detection in order to detect unmodified
default values and replace them with their original representation (e.g. an absent optional field). In case a
modification introduces instance data that is equal to the corresponding default values, we assume an explicit
user intent and therefore migrate such changes back to the original model version. For these cases, the criteria
for successful RTMs with modification apply. Therefore, using default values in migrations always entails the
need for modification detection in order to distinguish explicit user intent from implicitly-set default values.

Information Redundancy

Redundancy of information imposes another challenge. More specifically, let us consider an original model
version that models a certain bit of information using a single construct (e.g. a single field). Let us further
consider another model version in which this bit of information is to be found in two different places (e.g. two
separate fields). Informally, a functional dependency exists between these two sites and modifications must
always equally apply to both sites. However, in the concrete case this may not always hold true. Therefore, the
implementation of a migration usually encodes a precedence between the two redundant sites of information.
As a consequence, if a modification updates the information inconsistently, a round-trip migration may dismiss
the change and prioritize differently. While in data modeling, redundancy is usually undesired, it may still exist
and it is important to note this implication for round-trip migrations.

57

A#1

B#1

data model v1

A#2

B#2

data model v2

:B

:A

A

B

Figure 5.2: Schematic illustration of type A and B in different versions with corresponding representative objects in their instance sets
(white nodes). The arrows demonstrate the mapping of objects that is imposed by a translation layer. Most objects are migrated within type
boundaries (e.g. object of type A#1 to object of type A#2). The marked objects :B and :A however, are migrated across type boundaries.
In these cases, the same system entity is represented as B in model version 1 and as A in model version 2.

Migration Across Type Boundaries

Finally, another recurring challenge is the migration across type boundaries. In some cases, it is required to
migrate objects of a type A of the first model version to a type B of the second model version. This is to be
differentiated from a simple type renaming, since we further assume that the types A and B exist in both of the
model versions. However, some of the objects in the corresponding instance sets of A and B conceptually need
to be moved to the other set during migration: The objects are migrated across type boundaries. An illustration
of this idea is given in Figure 5.2. In migrations that face this issue, we must differentiate between objects that
originally stem from the same type (e.g. B#1 to B#2) and objects that originally stem from a different type (e.g.
A#1 to B#2). In order to fulfill our criteria of successful RTMs in these cases, we have found the use of trace
links and runtime type checks to be an effective measure. More specifically, using trace links and runtime type
checks we can differentiate the two types of objects and apply according migration strategies.

58

6 Case Study

6.1 Motivation
In this section we present a case study that we conducted to evaluate the results of this thesis in three main
regards: (1) We evaluate how the presented framework for executing round-trip migrations can be applied to
the concrete case of a real-world data model. (2) We evaluate the coverage and effectiveness of our scenario
catalogue. More specifically, we determine whether the discussed scenarios appear in real-world models and
vice-versa. Furthermore, we re-evaluate whether the various assumptions made in the scenario catalogue,
similarly apply to the concrete case. And lastly, (3) we examine how feasible our requirements of successful
round-trip migrations (with modifications) are for a real-world data model.

6.2 Overview
On an abstract level, our efforts for this case study can be structured into the following consecutive steps:

1. At first, we examined the main subject of the case study: A real-world data model that originates from an
e-commerce web application. The application is still in active use and development. Therefore, the data
model undergoes constant evolution. See section 6.3 for an overview of the data model.

2. In a second step, we examined the changes that were made to the model during a time period of 3 months.
Since all changes to the data model were captured by a version control system, we were able to fully
reconstruct an old version of the model. Using the current and the reconstructed old version, we extracted
two snapshots to use in the case study. We will consider the reconstructed old version, the model version
1, and the version at the time of writing, the model version 2. Based on these two sources, we translated
the original data model sources into an equivalent N4IDL representation using the versioned type syntax
of N4IDL (see 3.2 Versioned Types).

3. Based on the first N4IDL implementation of the data model, we identified 12 concrete changes that could
be observed between the two model versions (the two snapshots). Using our scenario catalogue, we
related the observed changes to the discussed scenarios and designed a first migration strategy. For a
further classification of the observed changes, see 6.3. Based on the initial design, we implemented a
translation layer using N4IDL migrations. The implementation of the migrations is discussed in section 6.4.

4. To evaluate the fully implemented translation layer, we used randomly generated instance data to perform
a large number of migrations. We checked each executed round-trip migration for our defined requirements
of a successful RTM. For the case of RTMs with modification, we also generated random modifications of
the data model instances and used a transformational approach to map those modifications back to the
other model version. Using this test setup, we were able to check each executed RTM with modification
for our defined requirements of successful RTMs with modification. For more details on this test setup,
see section 6.5. The results of these different test runs are presented in section 6.6.

5. Finally, we reflected on the experience of implementing a translation layer from a developer’s perspective.
A discussion of the perceived effectiveness of our framework, as well as the general complexity the
concept of round-trip migrations holds, is part of the conclusion of this case study in section 6.7.

6.3 The Data Model
The data model which forms the subject of this study, is used by a real-world e-commerce web application.
Some of the modelled domain entities include products, orders, search queries, table reservations and various
different types of quantities (e.g of monetary or metric nature). The subset of type declarations extracted for this
case study includes 86 classes and 22 enum types. The extracted set of types forms a self-contained subset
in the overall model. Furthermore, some minor editing was required to make the original sources suitable for
this case study. The original implementation of the data model was given in the general purpose programming
language Eclipse N4JS [1]. However, since N4IDL is derived from N4JS, the translation of the data model could
be highly automated (e.g. insertion of version declarations).

The two extracted versions of the data model exhibited 12 distinguishable changes on the data model level.
All of the observed model changes could be related to at least one of the discussed scenarios of our scenario
catalogue. A full classification of the observed changes is given in table 6.1.

59

Model Change Description Number of
Occurrences

Related Scenarios

Rename Field The name of a field is changed. 4 1

Generalize Field Multi-
plicity from 0..1 to 1

The multiplicity of a field changes
from 0..1 (optional) to 1 (manda-
tory).

2 8

Generalize Multiplicity
0..n to 1

The multiplicity of a field changes
from 0..n (array) to 1 (mandatory).

1 10

Add field (functionally
independent)

A new field is introduced. The new
field does not have any functional
dependencies on existing fields.

3 2, 4

Change super type The super type of a class is
changed.

1 6

Change type of a field The type of a field is altered. 1 7

Table 6.1: A classification of all observed data model changes during a development time of 3 months.

6.4 Implementing Migrations
Given the observed changes as well as the insights gained from the scenario catalogue, an N4IDL translation
layer was implemented. As apparent from the previous section, the number of total changes is much smaller than
the number of classes in the data model. As a consequence, there are many types which remain unchanged
from model version 1 to model version 2. For objects of these types, it suffices to migrate by copying all available
field values. In other cases however, it is required to implement custom N4IDL migrations to accommodate
for model changes. In the following we will discuss how both of these cases are handled by the implemented
translation layer.

For objects of types which remain unchanged between the two model versions, a common migration strategy
may be applied, which handles such cases using a generic approach. Since an object of version 1 of such a
type is structurally equivalent to its counterpart of version 2, a simple copying of its field values suffices to fulfil
the basic requirements of a successful round-trip migration. However, for all fields of that object that reference
other objects of different type, we must ensure that the referenced objects are not just copied over but migrated
using an appropriate migration. Therefore, the basic strategy is to copy over all primitively typed field values and
to dispatch migration calls for all other referenced object. An example of such a migration-by-copying strategy is
illustrated in Figure 6.1.

In the implemented translation layer, a generic migration that applies a migration-by-copying strategy forms the
foundation of the translation. Per default, an object is migrated using this generic migration strategy, except for
the cases where a type-specific migration is declared. In the context of N4IDL’s type-dependent dispatching of
migration calls, this is implemented in terms of a migration that is declared for the implicit common super type of
all model types: N4Object. Instances of the implicit-common-super-type concept can also be found in other
languages such as the Object type in Java [16].

For the case study, a total of 15 custom N4IDL migrations was implemented. The custom migration code
totalled to 191 lines of code (without empty lines and comments). The set of custom migrations was declared
for 7 different types, which implies at least two migrations per type to round-trip migrate instances in both
directions. The observed model changes often occurred as isolated atomic change. However, we also observed
the overlapping of multiple changes for a single field. For instance, in one case both the type as well as the
name of a field changed from one model version to the other. For isolated atomic changes, the implementation
of migrations was mostly lead by re-using exemplary snippets from the scenario catalogue. In the case of
overlapping changes, the implementation of migrations tended to be more complex and required additional
attention.

In some cases, the inclusion of traceability information was required to guarantee a successful round-trip
migration of data model instances. The implemented translation layer makes use of both N4IDL traceability

60

:Person#1

- firstName : string = “Max”
- lastName : string = “Mustermann”

data model v1

:Address#1

- street : string = “Main St.”
- postalCode : int = 12345

:Person#1

- firstName : string = “Max”
- lastName : string = “Mustermann”

:Address#1

- street : string = “Main St.”
- postalCode : int = 12345
- country : string = “Default Country”

Migration-by-copying

copy value of firstName

copy value of lastName

Migrate using custom migration
for type Address

data model v2

address

Figure 6.1: The object of type Person can be migrated using a generic migration-by-copying strategy. The referenced object of type
Address however, must be migrated using a custom implementation, due to changes on the model level between version 1 and 2 (addition
of field country).

features, trace links and modification detection. In general, according to subjective developer experiences,
the use of modification detection often entailed a much higher complexity as it was harder to reason about all
side-effects. Compared to that, the use of trace links was often perceived as rather intuitive.

6.5 Testing the Implemented Translation Layer
To verify the correctness of the implemented translation layer in terms of our defined requirements of successful
RTMs, we performed a large number of migrations using it (∼ 400 000 migrations). In order to achieve a high
diversity in the set of migrated instance, we used a random instance generator which allowed us to generate
a very large amount of instance data of high variety and arbitrary complexity (e.g. number of objects per
instance, number of cycles in the object graph). For the case of RTMs with modification, we chose a similar
strategy by additionally applying randomly generated instance modifications to the migrated instance. In both
testing scenarios, we perform a round-trip migration and then check for the criteria of a successful RTM (with
modification).

The random instance generators in use were specifically implemented for N4IDL and are designed to produce
a random stream of N4IDL instances that fully exhaust the set of specification concepts N4IDL supports (e.g.
various different field multiplicities, null-values, cyclic structures, etc.). In our initial terminology of data model
semantics (cf. Definition 2.1), we may think of those instance generators as an approximation of drawing a
random instance from the set of all perceivable instances (semantics) with uniform probability. However, due
to the infinite nature of most data model semantics, we must keep in mind that the instance generators only
represent an approximation of such a uniformly random selection. In the bigger picture however, the assumption
remains that a large number of migrations of randomly generated instance data covers most relevant corner
cases. Therefore, we see this testing setup as a limited validation of the translation layer’s correctness.

For the case of round-trip migrations without modification, the assertion for each migration of random instance
data is that we do not observe any loss of information. More specifically, we check that the round-trip migrated
instances equal the original instances and thus all information has been preserved.

For the case of round-trip migrations with modifications our test setup is more complicated. In order to reach
a high coverage of potential corner cases, we must additionally generate random instance modifications of
the migrated instances. However, to check for the success of such a RTM with modification, we must also be
able to translate the random modification of the migrated instance back into the original model version. For an
illustration of this concept, see Figure 6.2. To enable a translation of modifications, we applied a model-based
approach. We first designed a modification model which allowed us to represent any potential modification of a
data model instance (e.g. change field value, set field to null, insert array element, delete array element). We
then implemented model transformations that translate a modification of one model version to a modification

61

:Person#1 [original]

- firstName : string = “Max”
- lastName : string = “Mustermann”

:Person#2 [migrated]

- forename : string = “Max”
- lastName : string = “Mustermann”

:Person#2 [migrated modified]

- forename : string = “Susanne”
- lastName : string = “Mustermann”

:Person#1 [round-trip modified]

- firstName : string = “Susanne”
- lastName : string = “Mustermann”

set forename to
value “Susanne”

set firstName to
value “Susanne”

:Person#1 [original modified]

- firstName : string = “Susanne”
- lastName : string = “Mustermann”

assert
equality

translate
modification
from v2 to v1

data model v1 data model v2

migrate

migrate back

Figure 6.2: To check for a successful RTM with modification, the modification (set forename to value ”Susanne”) of the migrated instance
must be translated to model version 1 (set firstName to value ”Susanne”). Given such a translation of modifications, we may assert
equality of the original modified instance and the round-trip migrated modified instance.

of the other model version. In Figure 6.2 this would be a transformation that transforms a change-field-value
modification of field forename to a change-field-value modification of field firstName in model version 1.

We can also relate the concept of translating modifications from one model version to the other, to our initial
definition of successful round-trip migrations with modification (cf. Definition 2.10). In our definition we define c1
and c2 to be equivalent modifications in the two versions of the data model, in that they represent the same
system change c. In case of our test setup, we randomly generate one of c1 and c2 and use our modification
transformation to map the generated modification to its counterpart of the other model version. Thus, our
modification model transformations provides a bidirectional mapping between c1 and c2.

By executing a large number of migrations with these two test setups for RTMs with and without modification, we
aim at assuring a certain robustness and limited correctness of the translation layer with regard to our definition
of successful round-trip migrations.

6.6 Results
In this section we present the overall results of the migration of a large number of random instances as described
in the previous section.

Round-Trip Migration without Modification

We executed 100 000 round-trip migrations (without modification) both from model version 1 via model version 2
and vice-versa. The number of objects per instance reached a maximum of about 1600 objects in one instance
and averaged out at about 32 object per migrated instance. During that, we used each type of the data model
as the migration root for about 980 different executions. All executed migrations fulfilled the requirements of a
successful round-trip migration without modification.

62

Round-Trip Migration with Modification

Similarly, we executed a set of 100 000 round-trip migrations with modification of both model version 1 via
model version 2 and vice-versa. Since the same instance generators were used, the random instance data
exposed similar characteristics as in our tests of RTMs without modification. Concerning the randomly generated
modifications of the migrated instances, we observed a maximum of 1230 atomic modifications in one instance
(e.g. change field value, set field to null, insert array element) and an average value of about 9 modifications
per execution. In all migrations, the translation of modifications from one model version to the other and the
consecutive application of the translated modification as illustrated in Figure 6.2, always yielded equal original
modified and round-trip modified instances. Therefore, we may assume that in all executions, the RTM with
modification was successful.

To summarize, we ran an overall of 400 000 unique migrations with random instance data using the translation
layer we implemented for the data model of this case study. For all of the migrations we could confirm that
they were successful RTMs according to our definition. There was not one instance of a migration were the
translation layer did not fulfil the requirements of a successful round-trip migration. Based on that, we assume a
de facto correctness of the implemented translation layer.

6.7 Conclusion
In this case study, we examined a real-world data model with regard to our concept of round-trip migrations
and the N4IDL migrations framework. After identifying the model changes that were observable during a
development time of 3 months, we were able to relate all changes to at least one scenario in our catalogue. We
interpret the fact that all observed changes were discussed in our catalogue as a good sign for its thoroughness.
While some observed real-world model changes were clearly assignable to one of our scenarios, others could
be classified as a combination of multiple discussed scenarios. In all cases, the catalogue formed an important
knowledge base for the implementation of correct and effective real-world migrations.

Based on our tests with random instance data, we could further our confidence in the migration strategies
proposed by the scenario catalogue. More specifically, we were able to confirm that the proposed strategies did
not violate our central requirement of preventing loss of information during round-trips.

From a developer’s standpoint, our proposed framework for the specification of data models and the imple-
mentation of migrations (N4IDL) proved to be an effective tool. We did not face any conceptual issues during
the realization of a real-world round-trip-migrating translation layer. Specifically the type-dependent dynamic
dispatch of migrate-calls fit the requirements of a generic fall-back migration very well (cf. migration-by-copying
as discussed in section 6.4).

In some cases, the implementation of correct migrations did expose unexpected complexities. This was mostly
the case for migrations which had to handle multiple overlapping model changes (cf. Section 6.4). While our
catalogue does provide a knowledge base on how to handle isolated model changes, for overlapping changes,
one must expect additional development time due to the increased complexity. Furthermore, the implementation
of a migration significantly gains complexity, with an increasing use of traceability information. According to
subjective developer experiences, the use of trace links may be regarded as more comprehensible compared to
the integration of modification-related traceability.

Finally, to conclude this case study, we may use our results to address our third research question: How
feasible are the requirements of successful round-trip migrations for a real-world data model? In general, the
successful implementation of a translation layer for this case study exhibits a real-world example of a working
translation layer that fulfils our RTM criteria. However, this case study must be seen in relation to the number of
model changes (12) that were handled by the translation layer. One may argue, that the number of changes
is comparatively low when considering larger data models and longer time periods of change. Therefore, we
expect that the concept of successful round-trip migrations has its limits when it comes to the magnitude of
change. More specifically, we assume that for very large data models, the implementation of round-trip-migrating
translation layers implies a considerable implementation effort with regard to the migrations and may not be
feasible.

63

7 Related Work

In this section we will discuss the concept of round-trip migrations and our proposed framework in the context of
related work. Generally, our problem domain touches on a wide range of different fields of research. For instance,
schema, grammar, format or meta-model (co-)evolution are all examples of areas in which the evolution of a
specification formalism is studied. However, in the following we mainly focus on the related fields of schema
evolution and view update translation in database systems as well as metamodel co-evolution in the more
general modelling domain. Starting from the early years of the 1980s, a large body of related work has been
published in database systems. By discussing it here, this thesis is compared to well-established research
that is widely applied in practice. Furthermore, we focus on the field of metamodel co-evolution, as in past
years it has seen a high interest from the research community. Therefore, the field seems promising to us in
order to position our work in the midst of more recent approaches. Finally, we will relate the implementation of
traceability in our framework, to approaches in requirements and model-driven engineering.

7.1 Database Systems

7.1.1 Schema Evolution

In database systems, the research topic of schema evolution concerns the modification of the schema of a
populated database. According to Roddick [31], ”schema evolution is accommodated when a database system
facilitates the modification of the database schema without loss of existing data”. Based on the nature of schema
change, existing data must potentially be migrated to restore consistency with the modified schema.

The concept of schema versioning represents an even stricter view on schema changes. In comparison to
schema evolution, schema versioning further implies the ability to access the stored data via arbitrary versions
of a schema [31]. This is also described by the terms of backwards and forward compatibility as outlined in
[29]. A database system is said to be backward compatible, if applications that were linked against the current
version of a schema, can access data that was created under the previous version of the schema. Forward
compatibility on the other hand, is accommodated when the database systems allows applications that were
linked against an older version of a schema to work with data that has been created under a newer version of
the schema. According to our initial definition of successful round-trip migrations, we require both forward and
backwards compatibility. Therefore, we may say that only database systems that implement schema versioning
provide similar functionality to our presented framework for round-trip migration.

In the past, various different implementations of schema evolution and limited schema versioning have been pro-
posed. Some publications even specifically apply to the field of object-oriented database systems (OODBMS).
In OODBMSs, a scheme can intuitively be understood as the declaration of an object-oriented type/class.
Therefore, in the following, the object-oriented schema evolution parallels the evolution of our data models as
defined in the beginning of this thesis (cf. section 2).

One prominent example of an OODBMS with support for schema evolution is the ORION database system as
introduced in [5]. For ORION, Banerjee et al. propose an algebra of primitive operators for schema evolution.
The authors proof the completeness of their change algebra in that it can be used to model all possible schema
changes. Additionally, they define rules and invariants that further restrict the set of possible changes. In the
original version of ORION [5], the authors intentionally define a set of invariants, that allow them to entirely avoid
the actual migration of instance data. The schema evolution is limited in such, that all required changes on an
instance level can be performed on-demand when instances are returned as result of a query (e.g. hiding of
deleted fields, setting of default values, etc.). However, at no point are those adaptations persisted or applied to
the physically stored instance data.

In later publications, this operator-based approach is extended by the support for automatic and user-defined
migration functions for instance data. With the SERF framework [7] for example, Claypool et al. demonstrate
a framework in which the change of the schema and a corresponding update of the instance data is always
coupled. Based on this concept, they define an extensible set of complex operators that can be re-used by
developers to implement non-trivial domain-specific schema and instance modifications.

In our framework, the overall setup of evolution is inherently different from this. Since we assume the two
versions of a data model as given, we cannot track the concrete changes that lead to the differences between
the versions. Therefore, an operator-based approach is not directly applicable to our use case. Instead, we

64

outsource the actual implementation of migrations to the developer. Furthermore, neither of these systems
implement actual schema versioning since they mutate the schema directly and do not keep a copy of the older
schema version. Nonetheless, with our function-based implementation of migrations, we aim at a similar idea of
modularity and re-use of migration strategies. In our framework, common strategies can be externalized into
generic helper functions, which can in turn serve as building-blocks for more complex migrations.

Apart from such operator-driven approaches, others propose systems in which the schema change is handled
independently from the instance data migrations. For instance, the database systems O2 [11] and OTGen
[27] both provide their own languages for the definition of migrations. This generally allows arbitrary schema
evolution while it is the responsibility of the user to migrate instance data correctly, if even possible. However,
both of these systems implement mere schema evolution without any support for actual versioning in terms of
forward compatibility.

Finally, one approach that is of special interest to us, is CLOSQL as proposed by Monk and Sommerville in [29].
They provide support for schema versioning by the implementation of so-called update and backdate functions.
These functions are used to migrate instance data between the different versions of a database schema. In
comparison to other approaches, they focus on the implementation of schema versioning instead of schema
evolution. A change of the schema actually constitutes the creation of a new schema version instead of the mod-
ification of the current schema. By that, they implement schema versioning, as defined above, since the system
may be used to query data instances using arbitrary versions of the schema. As in our proposed framework,
they note that the ”end-user has to define his/her own update and backdate methods” [29]. Therefore, similar
to our approach, they outsource the complexity of the actual instance migration to the developer. CLOSQL
even implements limited support for mechanisms that we would consider traceability features. As Monk and
Sommerville outline in [29], CLOSQL has the ability to store values during the execution of up- and backdate
functions that would otherwise get lost. In later migrations, the system provides a storage that can first be
queried for existing values to restore. However, it is not addressed how exactly the implementation of update
and backdate is supported and to what extend a re-use of complex migration code is possible.

To conclude, the field of schema evolution discusses many problems that are similar to those we face with
round-trip migrations. Especially, the idea of schema versioning seems promising. For future work it will be
of interest to investigate a further knowledge transfer with regard to automating instance migration. Many of
the discussed systems however, do not provide the forward and backwards compatibility that is implemented
with our framework. Specifically the use of traceability information is not a matter of interest, since a popular
use case of schema evolution, is to upgrade instance data from some ”old” version to a ”newer” version. This
unidirectional character inherently differs from our idea of continuously round-tripping between two versions.

7.1.2 View Update Translation

Many database systems provide the feature of database views. In general this encompasses the idea of inferring
new virtual sub-schemata using queries that operate on the base schemata of a database. By that, users gain
the ability to define aggregating, summarizing or limiting views on the stored instance data. This feature can
also be used, to ensure backwards compatibility by re-defining a previous schema version as view in the current
database. The field of view update translation addresses the problem of performing updates on database
views. More specifically, various publications propose methods for determining the required changes to the
actual underlying instance data based on user-issued updates on a database view. This closely corresponds
to our concept of round-trip migrations with modification, where we seek a reasonable mapping between the
modifications c1 and c2 in the corresponding data model versions (cf. Def. 2.9). Our scenario catalogue
discusses many concrete instances of this problem.

In [8], Dayal and Bernstein propose an initial formalization of the update translation problem. In their work, they
describe the concept of clean sources and regular sources. A result tuple of a database view is said to be
of clean source if and only if a one-to-one relationship exists between it and a tuple in the original instance
data. Based on that, they propose a definition of correct update translation that is focused on the idea of
preventing unintended side-effects. By their understanding, a view update can only be performed exactly, if
there exists an update of the underlying instance data that has no other side-effect than the specified modifi-
cation. In more recent work, such as [12], this idea of a precise update translation is also adopted. This core
requirement is comparable to our definition of successful round-trip migrations with modification, since we also
assert equality of the original and round-trip migrated instances after applying c1 and c2 respectively (cf. Def. 2.9).

Based on the foundational work by Dayal and Bernstein [8], further approaches emerged. In [4], Bancilhon et al.

65

present a method for update translation ”under constant complement”. Views are always defined together with a
complement, which extends them by the required data to reconstruct instance data that conforms to the original
base schema. As a consequence, updates to the view in combination with the fixed complement translate
to updates of the original instance data. In our domain of object-oriented data models, this corresponds to a
migration strategy in which we choose static default values for all missing features without acknowledging any
context information. As we have seen (cf. 2.3Conceptual Limits), such a strategy is not feasible for our case.

With this thesis, we reside closer to the concept of dynamic views as presented in [18]. According to Gottlob
et al., a dynamic view is a view definition together with a (conditional) update policy. The policy specifies how
view updates are carried out on the original instance data [18]. This is comparable with our concept of instance
migrations. Gottlob et al. further provide a classification of consistent views which guarantee an unambiguously
determinable update strategy. It remains to be addressed by future work, how such a classification translates to
our problem domain and how it affects the class of model differences that can successfully be round-trip migrated.

In recent work, the idea of dynamic views is further complemented by the use of bidirectional transformation
languages [12] [28]. With those, the authors intend to facilitate the complex development process of a view
definition and a correct update policy. By using bidirectional view definition languages, the update policy can
automatically be inferred from the view definition. In comparison to that, our framework offers more flexibility
by letting users implement unidirectional migrations imperatively. However, in future work the integration of a
bidirectional migration language could be worth investigating.

While the discussed approaches so far were initially conceived with a relational database scheme in mind, their
results conceptually translate to our problem domain of object-oriented data models. Nonetheless, other authors
specifically address the problem of view update translation for object-oriented database systems. In both, the
O2 database system [2] and the description of updatable views by Scholl et al. in [32], the problem is addressed
by defining custom view definition languages. By that, the set of possible projections is limited in such, that
the ability to automatically infer an update policy is maintained. As a consequence, view definitions represent
bidirectional transformations. However, since in our framework we allow arbitrary differences between data
model versions, the applicability of such an approach is limited.

7.2 Metamodel Co-Evolution
In recent years, model-driven software engineering has become increasingly common practice for real-world
scenarios. At the center of it, the concept of metamodels allows for the formal specification of models which a
tailor-made for a specific domain. Metamodels constitute an artifact of the overall software development process
and therefore undergo evolution. The field of metamodel co-evolution asks the question: Based on metamodel
evolution, how can we co-evolve models to maintain their conformance with the metamodel? The relationship
between metamodels and models is defined as a specification formalism which is comparable to the relationship
between our concept of data models and data model instances. Therefore, many of the results in the field of
metamodel co-evolution are also applicable to our problem domain of round-trip migrations.

A large body of work in the field of metamodel co-evolution discusses the automatic generation of migration
(co-evolution) strategies for models, based on metamodel changes. While in our approach, we do, as of now,
not support the automatic generation of instance migration strategies, we do provide a framework that allows to
re-use pre-defined migration strategies in terms of helper functions. As we will see later on, this could already
be considered a semi-automatic approach to co-evolution. Nonetheless, we think that the automatic generation
of instance migrations based on data model changes represents a great research opportunity for future work.
Finally, it remains to note, that one important difference between the problem of round-trip migrations and
metamodel co-evolution is the direction of change. Generally, metamodel co-evolution considers a one-way
evolution of the metamodel (towards the ”newer”, evolved version). Therefore, traceability throughout multiple
steps of (co-)evolution is usually not a matter of interest. Neither is the idea of switching between two metamodel
versions as we do in the scenario of round-trip migrations.

A recent survey in the field [19], identifies three main steps that are common to most co-evolution approaches.
In a first step, (1) the metamodel changes are collected. On the one hand, this is done using a difference
analysis between two given versions of the metamodel (e.g. Cicchetti et al. in [6]). Other approaches, propose
an operator-driven method (cf. Schema Evolution), that allow for a change detection based on the explicit
changes a user performs (cf. COPE in [20]). In a second step, (2) the metamodel changes are identified. That
is, based on the collected list of changes, atomic and complex changes are classified. Generally, the better the

66

identification of changes, the likelier is the generation of a correct co-evolution strategy [19]. In the last step, (3)
the models are resolved. Compared to our framework, this corresponds to the execution of instance migrations.
However, in metamodel co-evolution, this step also implies the (possibly automatic) generation of a co-evolution
strategy.

In [19], Hebig et al. observe three benefit classes with common approaches:

• 1:1 User intervention is required for every model resolution. That is, a developer must assist the migration
of every single model. For our use case, this is not feasible since, as we outlined in our initial motivation,
we want to be able to migrate instance data on-the-fly in highly connected systems.

• 1:n User intervention is required once for every metamodel change that is detected. More specifically, a
developer specifies essential parameters or details of a migration strategy that can be applied for all models
that are concerned by the change. In our framework we implement this by requiring the implementation of
migrations, that can automatically be executed at runtime.

• 0:n The system does not require any user intervention. This can only be implemented, by addressing
every metamodel change with a generic default co-evolution strategy. As is noted in [19], in this case,
results are ”not guaranteed to be the one desired for the concrete models at hand”. In many cases, a
generic resolution strategy does not apply to all concrete instances of a specific metamodel change.

Most publications propose a system that can be assigned to multiple benefit classes. In [6] for instance,
Cicchetti et al. propose the differentiation of resolvable and non-resolvable changes. For the former, auto-
matic resolution strategies can be provided. Non-resolvable changes usually require user input to integrate
domain knowledge with the migration strategy. An instance of a 0:n concept, is constraint based model
search (e.g. Demuth et al. in [9]). Rather than examining the actual metamodel change, the authors aim to
co-evolve models by performing a constraint-based search to restore conformance with the changed metamodel.

With our framework for round-trip migrations, we implement benefit class 1:n. At the time of data model
evolution, the developer provides additional information in terms of the migration implementation. At migra-
tion time, those can be used to automate the instance migration without requiring any additional user intervention.

Many of the presented methods for metamodel co-evolution in [19] make use of a difference-based change
collection (see above). However, other publications propose operator-driven methods. Instances of such can be
found with the COPE project [20] or with a method for evolving domain specific languages (DSL) as presented
in [34]. They are comparable with the idea of operator-driven schema evolution in database systems, as
discussed in a previous section (cf. section 7.1.1). In fact, the COPE project was strongly inspired by the SERF
framework [7] [20]. Such operator-driven methods usually go along with editors that limit the editing process
by designated UI concepts (cf. categorized as UI-intrusive approaches in [19]). Hebig et al. argue in [19], that
operator-based systems can oftentimes be difficult to use, since they usually require a high-proficiency with
regard to the set of available operators. The authors of COPE on the other hand, intent to decrease the overall
migration effort by this large number of predefined migration strategies [20]. While not operator-driven, we po-
sition our framework close to these projects, since we also encourage modularity and re-use on a language level.

To conclude, we may say, that although metamodel co-evolution is usually performed on a different level of
abstract (metamodel/model vs. model/instance), many concepts can be transferred to our problem domain. In
particular, the discussed benefit classes provide us with common ground that allows to position our rather novel
approach in a wide field of recent research. Finally, the automatic generation of instance migration strategies
based on data model changes, remains a promising direction for future work.

67

7.3 Traceability
In the past, various publications in the fields of requirements engineering (RE) and model-driven engineering
(MDE) have formulated the need for traceability. In [33], Winkler and Pilgrim highlight different definitions of the
term traceability : Firstly, they refer to the IEEE Standard Glossary of Software Engineering Terminology [22]
which gives a broad definition of traceability as a ”degree to which a relationship can be established between
two or more products of the development process [...]” [22]. Alternatively, Gotel et al. understand by traceability
the ”ability to describe and follow the life of a requirement [...]”. While both of these definitions are rooted in the
field of requirements engineering, most research in MDE proposes definitions that evolve around the idea of
traceability in terms of trace links between the in- and outputs of model transformations (cf. Paige in [30] and
the Object Management Group (OMG) in [13]).

Although research in the fields of RE and MDE studies traceability of artifacts in a software development process,
we may transfer many of the proposed concepts to our problem domain. With the integration of traceability,
we aim at allowing the use of information on the life and history of an instance in further migrations. However,
we must address the difference in abstraction between RE and MDE, and our approach. While both, RE and
MDE usually deal with artifacts of the development process, we explicitly deal with runtime instance data. This
constitutes an important difference in different regards. For instance, in RE and MDE, user intervention for
the creation of traceability information is an option (cf. [33]). For the use case of our proposed framework,
traceability must be a fully automatized feature, as user intervention at runtime is not feasible. Overall, we
position our approach closer to the concept of traceability as it is implemented in model-driven engineering. In
particular, MDEs strong focus on model transformation relates to our idea of instance migration.

One popular form of implementing traceability, particularly in MDE, is by the means of trace links. These
links record a relationship between artifacts. Usually this can be across different levels or on the same level
of abstraction. Examples include the relationship between a requirement description and the corresponding
implementation or more generally the in- and outputs of a transformation. The semantics of a trace link is usually
dependent on the concrete case and most publications propose their own traceability scheme (see [30] and
[3] for examples). In [33], Winkler et al. compile a list of potential features a traceability scheme can provide.
This includes but is not limited to the link cardinality, directionality and the availability of type information. As
introduced in section 3.7.1, we implement trace links as unidirectional one-to-many links that document the
relationship between data model instances and their previous revisions. For now, we do not support typed trace
links, however, the statically typed foundation of the N4IDL language provides a strong incentive for future work
in that direction.

Winkler and Pilgrim note in [33], that traceability, does generally not ”imply a particular form or representation
[...]”. Therefore, although traceability in MDE often refers to the idea of trace links, traceability can also be
accommodated by other means than links. For instance, an alternative form of traceability, is the detection of
modifications of migrated instances that we provide in our framework.

Another important aspect of traceability information is its creation or recording. In general, it is desirable to auto-
mate this process. In requirements engineering however, this sometimes represents a challenge, especially in
case of so-called pre-requirements specifications [17]. Such artifacts only exist in terms of informal descriptions
and are harder to track as they may require manual efforts by the user. In MDE, this is usually less of a problem,
as the heavy use of models mostly allows to produce traceability information as a side-product of transformations.
These on-line approaches [33] have also been implemented for concrete model transformation languages, such
as the Atlas Transformation Language (ATL) [23]. In that regard, we would like to highlight one publication: In
[3], Amar et al. propose an approach to trace imperatively implemented model transformations. By the use
of aspect-oriented programming [26], they separate the concern of implementing a transformation from the
concern of recording traceability information. In our framework we propose a similar concept by automatically
generating traces based on the call-hierarchy of migrations. While we do not operate on the instruction level,
as it is the idea in aspect-oriented programming, we aim for the same separation of the implementation of
migrations and the capturing of traceability information.

Finally, in the field of model synchronization, traceability finds an application that is very similar to ours. The
general challenge of model synchronization is to keep multiple models that model different views on a system in
sync, when at first only one of them is changed (e.g. the change of an entity name in one view, must propagate
to all other views accordingly). In this context, we want to particularily highlight the work of Getir et. al in [15], in
which the authors present a framework which allows to analyze past changes to different views and perform a
correlation analysis on them. By that, they aim to gain a better understanding of the way changes in different

68

views correlate, so that later, a coupled evolution can be performed by suggessting users with parallel edit
operations in related models (so-called co-evolution steps). While for our problem domain, it is not feasible to
develop such an understanding over time, this work relates to ours in two ways: Firstly, for round-trip migrations
we also must develop an understanding of how changes to the data model affect instance data. This can be seen
as a synchronization problem between model and instances (cf. metamodel co-evolution). On a different level,
we must also synchronize changes to instance data when dealing with round-trip migrations with modifications.
Similar to Getir et. al, we exploit trace links in order to enable the succesful synchronization of instances of
one model version with instances of another model version. It further remains to note that Getir et. al extended
their work in [14] by an exemplary catalogue of such co-evolution steps for the concrete example of system
architecture and fault tree models. With that they apply a similar approach as we did with our scenario catalogue.

To summarize, we have seen that clear parallels can be drawn between traceability, as it is implemented in RE
and MDE, and our approach. In future work, we suggest an extension of our framework by the feature of typed
trace links. More specifically, we would like to improve our language for migrations by statically typed trace links
that guarantee the type of an obtained previous revision at compile-time. At the time of writing, we were not
aware of any work that aims to transfer the concept of traceability to the instance level. However, the large fields
of RE and MDE provided us with a good foundation for the design of our framework.

69

8 Conclusion

This section concludes this thesis. At first, we relate our results to our initial premise and summarize our
contributions. In 8.2 we discuss some of the remaining questions while section 8.3 highlights a selection of
future lines of research.

8.1 Summary
As the initial premise of this thesis, we considered version-heterogeneous distributed software systems. More
specifically, we focused on the fact that distributed systems are often comprised of many components whose
interoperation must be guaranteed. However, due to the use of many independent software components, this
can be a challenge. One effective measure to attain consistency across such systems is the use of a common
data model. Over time, data models need to be changed to accommodate for new requirements. Since it can be
difficult to propagate such changes to all components of a distributed system, it is common practice to maintain
multiple versions of a data model for different components. Therefore, to further guarantee the functioning of
the system as a whole, it must be assured that the different versions in use, are compatible with each other.
On the one hand, this may be achieved by assuring backwards compatibility across different versions. Yet,
this can negatively affect the maintainability of the data model and generally impose constraints on any further
development. With this thesis, we proposed a different approach: By the use of bidirectional translation layers
between components of different version, the consistent functioning of the system is guaranteed, while allowing
for non-backward-compatible data model changes.

This thesis first accomplishes a formal foundation required to specify the requirements of a bidirectional transla-
tion layer (cf. section 2). In an initial description of the problem, we introduced the term of round-trip migrations
(RTMs) which captures the idea of translating the communication between two components of different version
transparently. That is, without any adaptations, the two components are able to fully interoperate. A central
requirement that we impose is the concept of successful round-trip migrations. In a second step, we furthered
our understanding of RTMs by considering the modification of a migrated model instance, and formalized a
requirement that encapsulates the idea of translating modifications transparently.

After developing a foundational understanding of the precise problem domain, we focused our efforts on the
object-oriented modelling language N4IDL. With the motivation of allowing for the effective implementation of
round-trip migrations, we developed a framework and execution environment that evolves around N4IDL as a
modelling language (section 3). As core feature to allow for round-trip migrations, we implemented support for
traceability information as known from model-driven engineering (cf. [33]). The framework is fully functional and
provided with this thesis in terms of a reference implementation.

In order to evaluate the applicability of round-trip migrations to actual data models, we compiled a catalogue of
round-trip migration scenarios. In a total of 21 scenarios, we discussed various different challenges that the
implementation of round-trip migrations imposes. While the use of traceability information during the implemen-
tation of migrations can be rather complex, we see a lot of potential in the re-use of repetitive migration code. As
a result of these efforts, we could identify many cases of non-trivial data model changes that can be successfully
round-trip migrated using our framework. However, we also identified limits to the idea of round-trip migrations.
Apart from the proposed framework, we see the scenario catalogue as the second main contribution of this thesis.

Round-trip migration scenarios allowed us to systematically approach many different cases of data model
changes. As a contrast, we additionally carried out a a case study based on a real-world data model (section 6).
In the case study, we implemented a fully functional translation layer using the proposed framework and the
knowledge gained from the scenario catalogue. We used the implemented layer to round-trip migrate instances
between two data model versions, which were based on snapshots in the change history of an e-commerce
application. The bridged time period amounted to 3 months of active development time and included a total of
12 atomic data model changes. With this case study, we were successful in further verifying our framework, the
scenario catalogue and the general concept of round-trip migrations.

70

8.2 Discussion
With this thesis, we propose a formal basis for the idea of round-trip migrations and provide a framework for
their implementation. Generally, it remains to be seen how effective such an implementation can be applied in
practice. Nonetheless, we already want to highlight three topics of discussion at this point:

The Limits of Round-Trip Migrations

As it became clear in our work on the scenario catalogue, a transparent translation between different data
models is only feasible to a certain degree. Depending on the nature of transformation, a successful round-trip
migration is not always possible. For instance the aggregation of instances into primitive values (cf. scenario 20)
is generally non-injective and thus not invertible. The identification of a concrete class of data model changes
which allow for round-trip migrations, imposes a significant challenge and is out of the scope of this thesis.
However, we believe that our scenario catalogue can be a guide for the implementation of translation layers,
that allow to exceed the extent of purely backward compatible data models. Therefore, we regard our proposed
solution as an improvement over the conventional strategy that requires backward compatibility.

The Complexity of Implementing a Translation Layer

In our work on the case study and the catalogue, we were able to make first experiences with the implementation
of round-trip migrations. Based on these experiences, we found the complexity of developing a translation layer
to be rather high. Since migrations can be executed with a large variety of inputs as well as context information,
their implementation can become a complicated undertaking. Especially, when considering that most migrations
implemented in the context of this thesis were dealing with small exemplary data models. Therefore, we estimate
the development effort required for the implementation of a correct translation layer as comparatively high.

We recommend that translation layers are made subject to a large number of extensive tests in order to ensure
their correctness. In our case study we leveraged random instance generators to explore potential corner cases.
However, random test data does not suffice for a complete testing strategy. Therefore, we additionally recom-
mend manually written tests. The complementary use of visualization tools for selected round-trip scenarios has
also proven to be of great help. In fact, all round-trip visualization of this thesis were generated with such tools.

Finally, a lot of the complexity involved in writing migrations is a question of the abstraction level. Our proposed
framework provides migrations with a migration API on a comparatively low level. In future work (see below), we
propose the implementation of a domain-specific migration language, in order to enable the implementation of
migration strategies on a higher level. Our current approach encourages modularity, which allows the definition
of such higher-level strategies. However, the provided set of generic migrations is limited to essentials for
now. Therefore, we hope that future work in this direction will help to manage the complexity of implementing
round-trip migrations.

The Usage of Translation Layers

In our initial premise, we propose a system that transparently translates instances between model versions.
However, we must also consider effects of such a mechanism that go beyond the idea of successful round-trip
migrations. For instance, translation layers may allow bad actors to gain read or write access to data that is
otherwise protected. This could happen when a security measure is implemented with only one version of the
model in mind. By migrating an instance to another version (possible via multiple other versions), access control
specifications can be weakened or misinterpreted. Therefore, all new features (security or otherwise) that are
added to an existing system, must also be tested against older model versions by considering translation layers.
This can cause a significant development overhead. On the other hand, this must also be seen in comparison
with the alternative of re-implementing the same feature for every model version separately.

Finally, our approach is yet to be evaluated from a performance standpoint. Both our core traceability features,
trace links and modification detection can be very resource intensive. Therefore, it remains to be seen how
they scale in large systems. For our reference implementation, performance was not a target criteria, thus, we
suspect a lot of room for improvement in that regard.

71

8.3 Future Work
This thesis only represents an initial step towards a fully-functional stack for round-trip migrations. Thus, there
are many open questions which need to be addressed by future work. In the following we will discuss a selection
of three different lines of research which we regard as essential.

(Semi-)Automatic Generation of Migrations

In section 7 on related work, we discussed several publications that propose an approach to the automatic
generation of migration strategies (e.g. [5] [6] [9]). The general consensus in both metamodel co-evolution and
schema evolution seems to be, that a full automation is not feasible, due to the significance of domain knowledge
for the concrete migration of instance data and models. However, many publications propose a hybrid approach
in which parts or an initial migration strategy can be automatically inferred from model or schema changes.
For future work, we propose to investigate further, how our framework can be extended to support a similar
semi-automatized generation of migrations based on data model differences.

A Domain-Specific Language for the Implementation of Migrations

As noted above, the level of abstraction constitutes a significant source of complexity for the implementation of
migrations. Although traceability is a language feature of the proposed framework, migration code still has to
operate on a comparatively low level. In future work, it may thus be of interest to develop a domain-specific
language for the implementation of migrations, which targets the currently provided low level migration API.
For that, numerous related approaches exist in the field of model transformations (e.g. ATL [24]) or update
translation (e.g. [12]). Specifically, bidirectional transformation languages seem to fit the concept of round-trip
migrations very well.

Persistence of Traceability Information

Finally, future work must be done in order to address the topic of persisting traceability information. Specifically
for system components which persist instance data (e.g. database systems), the captured traceability information
must be persisted together with the instance. As opposed to scenarios in which traceability information can be
considered volatile (e.g. on-demand translation of real-time communication), persisting components require
traceability information to also be available when restoring an instance from storage. In order to solve this
problem, a format for the storage of traceability information must be devised. As a side-effect, this may also
yield performance optimizations with regard to the compression of traceability information.

72

References
[1] Eclipse N4JS, High-quality JavaScript development for large Node.js projects. http://www.eclipse.org/n4js/, accessed:

2018-03-18
[2] Abiteboul, S., Bonner, A.: Objects and views. In: ACM SIGMOD Record. vol. 20, pp. 238–247. ACM (1991)
[3] Amar, B., Leblanc, H., Coulette, B., Nebut, C.: Using aspect-oriented programming to trace imperative transformations. In: Enterprise

Distributed Object Computing Conference (EDOC), 2010 14th IEEE International. pp. 143–152. IEEE (2010)
[4] Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Transactions on Database Systems (TODS) 6(4), 557–575

(1981)
[5] Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and implementation of schema evolution in object-oriented databases. ACM

SIGMOD international conference on Management of data 16(3) (1987)
[6] Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in model-driven engineering. In: Enterprise Distributed

Object Computing Conference (EDOC), 2008 12th International IEEE. pp. 222–231. IEEE (2008)
[7] Claypool, K.T., Jin, J., Rundensteiner, E.A.: Serf: schema evolution through an extensible, re-usable and flexible framework. In:

Proceedings of the seventh international conference on Information and knowledge management. pp. 314–321. ACM (1998)
[8] Dayal, U., Bernstein, P.A.: On the correct translation of update operations on relational views. ACM Transactions on Database Systems

(TODS) 7(3), 381–416 (1982)
[9] Demuth, A., Lopez-Herrejon, R.E., Egyed, A.: Co-evolution of metamodels and models through consistent change propagation. In:

ME@ MoDELS. pp. 14–21. Citeseer (2013)
[10] ECMA International: Standard ECMA-262 - ECMAScript Language Specification. 5.1 edn. (June 2011), http://www.

ecma-international.org/publications/standards/Ecma-262.htm
[11] Ferrandina, F., Meyer, T., Zicari, R., Ferran, G., Madec, J.: Schema and database evolution in the O2 object database system. In:

VLDB. vol. 95, pp. 170–181. Citeseer (1995)
[12] Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for bi-directional tree transformations: a linguistic

approach to the view update problem. ACM SIGPLAN Notices 40(1), 233–246 (2005)
[13] Frank, K.: A Proposal for an MDA Foundation Model. An ORMSC White Paper V00-02 ormsc/05-04-01. Object Management Group

(OMG) (2005)
[14] Getir, S., Grunske, L., van Hoorn, A., Kehrer, T., Noller, Y., Tichy, M.: Supporting semi-automatic co-evolution of architecture and fault

tree models. Journal of Systems and Software 142, 115 – 135 (2018)
[15] Getir, S., Rindt, M., Kehrer, T.: A generic framework for analyzing model co-evolution. In: ME@ MoDELS. pp. 12–21 (2014)
[16] Gosling, J., Joy, B., Steele, G.L., Bracha, G., Buckley, A.: The Java language specification. Pearson Education (2014)
[17] Gotel, O.C., Finkelstein, C.: An analysis of the requirements traceability problem. In: Requirements Engineering, 1994., Proceedings

of the First International Conference on. pp. 94–101. IEEE (1994)
[18] Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent views. ACM Transactions on Database Systems

(TODS) 13(4), 486–524 (1988)
[19] Hebig, R., Khelladi, D.E., Bendraou, R.: Approaches to co-evolution of metamodels and models: A survey. IEEE Transactions on

Software Engineering 43(5), 396–414 (2017)
[20] Herrmannsdoerfer, M., Benz, S., Juergens, E.: Cope-automating coupled evolution of metamodels and models. In: European

Conference on Object-Oriented Programming. pp. 52–76. Springer (2009)
[21] Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An extensive catalog of operators for the coupled evolution of metamodels

and models. In: International Conference on Software Language Engineering. pp. 163–182. Springer (2010)
[22] IEEE: Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990 (Dec 1990)
[23] Jouault, F.: Loosely coupled traceability for ATL. In: Proceedings of the European Conference on Model Driven Architecture (ECMDA)

workshop on traceability, Nuremberg, Germany. vol. 91, p. 2 (2005)
[24] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science of computer programming 72(1-2), 31–39

(2008)
[25] Kehrer, T.: Calculation and propagation of model changes based on user-level edit operations: a foundation for version and variant

management in model-driven engineering. Ph.D. dissertation (2015)
[26] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.: Aspect-oriented programming. In: European

conference on object-oriented programming. pp. 220–242. Springer (1997)
[27] Lerner, B.S., Habermann, A.N.: Beyond schema evolution to database reorganization. In: ACM SIGPLAN Notices. vol. 25, pp. 67–76.

ACM (1990)
[28] Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization transformation based on automatic derivation of view

complement functions. In: ACM SIGPLAN Notices. vol. 42, pp. 47–58. ACM (2007)
[29] Monk, S., Sommerville, I.: Schema evolution in OODBs using class versioning. ACM SIGMOD Record 22(3), 16–22 (1993)
[30] Paige, R.F., Olsen, G.K., Kolovos, D., Zschaler, S., Power, C.D.: Building model-driven engineering traceability. In: ECMDA Traceability

Workshop (ECMDA-TW). p. 49. Sintef (2010)
[31] Roddick, J.F.: A survey of schema versioning issues for database systems. Information and Software Technology 37(7), 383–393

(1995)
[32] Scholl, M.H., Laasch, C., Tresch, M.: Updatable views in object-oriented databases. In: International Conference on Deductive and

Object-Oriented Databases. pp. 189–207. Springer (1991)
[33] Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering and model-driven development. Software & Systems

Modeling 9(4), 529–565 (2010)
[34] Wittern, H.: Determining the necessity of human intervention when migrating models of an evolved DSL. In: Enterprise Distributed

Object Computing Conference Workshops (EDOCW), 2013 17th IEEE International. pp. 209–218. IEEE (2013)

73

http://www.eclipse.org/n4js/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Appendices
A Inspecting the source code included with this thesis

The source code of this thesis can be accessed in two ways. On the one hand, we provide a fully configured
virtual machine image that includes a modified version of the Eclipse N4JS [1] IDE. This allows for the inspection
and editing of all bundled source code, in a feature-rich IDE based on the Eclipse Platform. On the other hand,
the appended media also includes a raw representation of the source code in terms of the corresponding N4IDL
and N4JS files. The raw representation may be imported into a compatible version of the Eclipse N4JS IDE, but
also requires additional setup in order to configure the Node.js 3 based runtime environment. For readers who
want to execute migrations and explore the features of N4IDL, we therefore recommend the use of our virtual
machine image.

Virtual Machine Configuration

The virtual machine (VM) image is provided in terms of an Open Virtualization Format (OVF) 2.0 file. It is based
on an installation of Xubuntu 18.04 and has been tested to run successfully with the following parameters.

Property Value

Host Windows PC with 3.3 GHz Intel Core i5; 8GB system memory using VirtualBox Version 5.2.10
on Windows 10 or MacBook Pro Late 2013; 2.3 GHz Intel Core i7; 16GB system memory using
VirtualBox Version 5.1.26 on macOS 10.12

Guest System Memory 8 GB

Guest CPU count 4

Guest Video Memory 128 MB with enabled 3D acceleration

Note that the default keyboard layout of the virtual machine is set to German. You can switch to an American
layout using the flag icon in the upper right corner of the user interface.

Furthermore, the virtual machine is configured for a single user account with name and password set to ’n4idl’.

Virtual Machine Usage

In the running virtual machine, the IDE can be launched using the desktop shortcut N4IDL IDE. After startup,
the IDE will present the user with a pre-configured workspace which contains the source code that is bundled
with this thesis. The Eclipse Working Sets (top-level entries in the Project Explorer on the left) categorize the
included projects (cf. Figure A.1a). Runtime contains all source code related to our reference implementation of
an N4IDL migration runtime (section 4). Catalogue contains the project that represents our scenario catalogue
in code (section 5). Visualization contains miscellaneous projects related to the visualization of round-trip
migrations. Finally, Other Projects contains a Playground project which can be used to explore the features of
N4IDL and our migration runtime (cf. Figure A.1b).

The project Playground contains two different N4IDL files Playground.n4idl and PlaygroundWithCon-
text.n4idl. The playgrounds demonstrate the usage of the N4IDL migration runtime and allow for an easy
adaption of the data models and migrations. The second playground PlaygroundWithContext.n4idl also
demonstrate how to access context information in N4IDL migrations.

3Node.js: https://nodejs.org/en/

74

https://nodejs.org/en/

Figure A.1(a): An overview of all workspace projects in
the virtual machine.

Figure A.1(b): The playground file that allows to explore
the various features of N4IDL.

Raw Representation

As noted initially, the source code is also available in terms of a raw, textual representation. The raw sources
can be found in the folder Sources/ of the appended media. The folders in the Sources/ folder correspond
to the projects that are available in the virtual machine, excluding the miscellaneous projects with regard to the
visualization of round-trip migrations.

B Inspecting the N4IDL migration runtime reference implementation

The sources of our reference implementation can be found in the org.eclipse.n4js.n4idl.runtime
project. The file src/org/eclipse/n4js/n4idl/controller/MigrationController.n4js repre-
sents the entry point to our implementation of the MigrationController interface (cf. section 3.8). Starting
from this point, users may further inspect other implementation components. This includes tests which can be
found in the project org.eclipse.n4js.n4idl.runtime.tests.

Figure B.1(a): The MigrationController imple-
mentation in the migration runtime project.

75

Figure C.1(a): The folder structure in the sce-
nario.catalogue project.

Figure C.1(b): A visualization of a round-trip migration scenario taken from
our scenario catalogue.

C Inspecting the source code of the scenario catalogue

In the appended sources the scenario catalogue is represented by the scenario.catalogue project. The
source folder of the project (src/) contains one sub-folder for each of our scenarios (cf. Figure C.1a). Each
sub-folder contains the data model and migration declarations next to several files that represents test cases for
the different variants in consideration (e.g. modifications, directions).

Furthermore, all included test cases can also be visualized. In order to do so, open one of the test files (e.g.
MakeClassAbstractModifyValueTest.n4idl), right-click into the appearing editor and select Run As
→ Launch with N4IDL RoundTrip Runner. This will execute a round-trip migration and visualize the different
round-trip stages in the Full Round-Trip Object Graph View on the right-hand side of the user interface (cf.
Figure C.1b).

76

Selbständigkeitserklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht für andere Prüfungen ein-
gereicht habe. Sämtliche Quellen einschließlich Internetquellen, die unverändert oder abgewandelt wiedergegeben
werden, insbesondere Quellen für Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht.
Mir ist bekannt, dass bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs bzw.
Täuschung eingeleitet wird.

Berlin, den 29.05.2018
Luca Beurer-Kellner

77

