
Continuous Integration

Stefan Sprenger (sprengsz@informatik.hu-berlin.de)
Semesterprojekt “Verteilte Echtzeitrecherche in Genomdaten”
15. Dezember 2015

mailto:sprengsz@informatik.hu-berlin.de

2

Motivation

Stefan Sprenger - Continuous Integration

How was software developed before CI?

3

• Software development is done in teams

• Divide software in subparts, assign subparts to teams

• Work of multiple teams/persons has to be integrated

• Typically, integration is done at release time

• Typically, integration is done manually

Stefan Sprenger - Continuous Integration

How was software developed before CI?

4

Integration

Middleware

Frontend

Release v1Start of development

Bug fixes?

New releases?

Stefan Sprenger - Continuous Integration

What’s the issue?

5

• Bad software quality

• Integration tests can only be executed before a release

• Frustration rises towards the end of a project

• Manual (re-)execution of tasks

• No feedback possible before integration (release)

Obviously, we need to integrate more often and earlier.

6

Continuous Integration
is a philosophy,

but not a tool.

Stefan Sprenger - Continuous Integration

Continuous Integration (CI)

7

• Automatic integration of a software project

• Every change in the software triggers a new build

• In a perfect world, the software’s tests are executed to
determine the success of a build

• Gives early feedback in form of reports

• A build can be successful or fail

Stefan Sprenger - Continuous Integration

CI in practice

8

Developer

Version
Control
System

Commit

Continuous
Integration

Server

Fetch HEAD
Report

Create build

Stefan Sprenger - Continuous Integration

How is a build created?

9

• Download dependencies

• Compile code

• Run tests

• Create build artifacts

• Create reports

A build can be successful or fail.

Stefan Sprenger - Continuous Integration

How does CI help us?

10

• We always know the latest stable version of our software

• We know if and which bugs currently exist

• We detect bugs earlier

• We can automatically test different setups

• different databases

• multiple versions of 3rd party libraries

• different configurations

Stefan Sprenger - Continuous Integration

Good practices

11

• Always write tests for your software (unit, integration, ..)

• Commit frequently

• Small iterations

• Keep the build fast (keep your tests fast)

• Don’t commit when the build is broken

• Build system should be identical to production system

• Use build system for deployment

12

Software tests

Stefan Sprenger - Continuous Integration

Software tests

13

• No manual testing by {developer, manager, customer}

• Automatic testing using a test framework

• Test framework provides tools to define tests

• Usually, tests are defined in the same programming
language as the tested software

• Tests check if the software meets a certain requirement

• Tests can be executed

Tests can be successful or fail.

Stefan Sprenger - Continuous Integration

Unit tests

14

• Test a certain unit of a software

• A unit may be a class in OOP

• The unit is tested isolated

• Interaction between different units is not tested

• Test cases are independent from each other

• Unit tests are written by software developers

Stefan Sprenger - Continuous Integration

How may a unit test look like?

15

class MailValidator {
 public boolean check(String mailAddress) {
 Pattern pattern = Pattern.compile(“[A-Z0-9._%+-]+@[A-Z0-9.-]+\\.[A-Z]{2,4}”);
 Matcher matcher = pattern.matcher(mailAddress);

 return matcher.matches();
 }
}

Stefan Sprenger - Continuous Integration

How may a unit test look like?

16

import static org.junit.Assert.assertEquals;
import org.junit.Test;

class TestMailValidator {
 public void testValidMail() {
 MailValidator validator = new MailValidator();
 assert(validator.check(“sprengsz@informatik.hu-berlin.de”) == true);
 }
}

mailto:sprengsz@informatik.hu-berlin.de

Stefan Sprenger - Continuous Integration

How may a unit test look like?

17

class TestMailValidator {
 public void testValidMail() {
 MailValidator validator = new MailValidator();
 assert(validator.check(“sprengsz@informatik.hu-berlin.de”) == true);
 }
}

mailto:sprengsz@informatik.hu-berlin.de

Stefan Sprenger - Continuous Integration

How may a unit test look like?

18

class TestMailValidator {
 public void testValidMail() {
 MailValidator validator = new MailValidator();
 assert(validator.check(“sprengsz@informatik.hu-berlin.de”) == true);
 }

 public void testInvalidMail() {
 MailValidator validator = new MailValidator();
 assert(validator.check(“sprengsz@informatik”) == false);
 }
}

mailto:sprengsz@informatik.hu-berlin.de

Stefan Sprenger - Continuous Integration

Integration tests

19

• Test multiple units combined

• Test interaction between units

• Ensures that integration of multiple subparts works

• Often done using same framework as for unit tests

20

Tools

Stefan Sprenger - Continuous Integration

Travis CI https://travis-ci.org

21

• Open-source distributed build service

• Coupled to GitHub

• Setup:

• 1) Sign in using your GitHub account

• 2) Select repositories that Travis should build

• Build is configurable using a .travis.yml file

• Heavily used in the OSS community

https://travis-ci.org

Stefan Sprenger - Continuous Integration

Example .travis.yml

22

rvm:
 - 1.8
 - 1.9
env:
 -DB=mongodb
 -DB=redis
 -DB=mysql
before_script:
 - “mysql -e ‘create database vanity_test;’ > /dev/null”

Stefan Sprenger - Continuous Integration

Travis CI

23

Stefan Sprenger - Continuous Integration

Jenkins CI https://jenkins-ci.org/

24

• Open-source build system

• Is provided as Java application

• Can be hosted in your infrastructure

• More flexible than Travis CI

• Lots of plugins available

https://jenkins-ci.org/

25

Questions?

