Meteor/Sopremo: An Extensible Query Language and
Operator Model

Arvid Heise*! Astrid Rheinlander2

*Hasso Plattner Institute Potsdam, Germany

Marcus Leichi3

Ulf Leser™ Felix Naumann*>
THumboldt-Universitat zu Berlin, Germany

1 Technische Universitat Berlin, Germany

L5{arvid.heise, felix.naumann}@hpi.uni-potsdam.de

24rheinlae,leser@informatik.hu-berlin.de

3marcus.leich@tu-berlin.de

ABSTRACT

Recently, quite a few query and scripting languages for Map-
Reduce-based systems have been developed to ease formu-
lating complex data analysis tasks. However, existing tools
mainly provide basic operators for rather simple analyses,
such as aggregating or filtering. Analytic functionality for
advanced applications, such as data cleansing or information
extraction can only be embedded in user-defined functions
where the semantics is hidden from the query compiler and
optimizer. In this paper, we present a language that treats
application-specific functions as first-class operators, so that
operator semantics can be evaluated and exploited for opti-
mization at compile time.

We present Sopremo, a semantically rich operator model,
and Meteor, an extensible query language that is grounded
in Sopremo. Sopremo also provides a programming frame-
work that allows users to easily develop and integrate ex-
tensions with their respective operators and instantiations.
Meteor’s syntax is operator-oriented and uses a Json-like
data model to support applications that analyze semi- and
unstructured data. Meteor queries are translated into data
flow programs of operator instantiations, i.e., concrete im-
plementations of the involved Sopremo operators. Using a
real-world example, we show how operators from different
applications can be combined for writing complex analytical
queries.

1. INTRODUCTION

Today, we are flooded with data that is generated in var-
ious scientific areas, on the web, or in business applications.
For example, Twitter produces 340M messages per day as
of March 2012', which can be analyzed in order to gain in-
sights on emerging trends [21]. Often, the available data sets
contain (near-exact) duplicates, unstructured text, or both
in combination. Therefore, extracting relevant information

"http://blog.twitter.com/2012/03/twitter-turns-six.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Int. Workshop on End-to-end Management of Big Data 2012 Istanbul,
Turkey

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

and removing duplicates are fundamental steps in various
data analysis pipelines [1].

Data flow systems [3, 4, 19] as a generalization of the
MapReduce programming model [11] have gained much at-
tention in this context, as they promise to ease writing scal-
able code for analytical tasks on huge amounts of data. How-
ever, developing data flow programs for non-relational work-
loads like information extraction (IE), data cleansing (DC),
or data mining (DM) can become quite complex. For ex-
ample, IE often involves complex preprocessing steps such
as text segmentation, linguistic annotation, or stop word re-
moval before the actual entities or relationships can be de-
termined. IE algorithms themselves are often complex, and
a re-use of existing algorithms and tools is often necessary
for ad-hoc data and text analysis.

Quite a few languages for expressing complex analysis
data flows in form of queries or scripts [6, 9, 14, 23, 27] have
been developed recently. These tools often provide only ba-
sic operators for simple, SQL-like analyses, such as aggregat-
ing, joining, or filtering data. Analytic functionality, which
is required for more complex tasks, must be embedded in
user-defined functions (UDF) where the UDF’s semantics is
hidden from the query compiler and optimizer. Moreover,
a combination of operators that were initially developed for
different use cases and application domains is often difficult,
since operators may differ in terms of expected input, pro-
duced output, or background information that is needed by
an operator to work properly.

In this paper, we propose to treat use case specific func-
tions as first-class operators of a data flow scripting lan-
guage instead of writing UDFs. A main advantage of this
approach is that the operator’s semantics can be accessed
at compile time and potentially be used for data flow opti-
mization, or for detecting syntactically correct, but semanti-
cally erroneous queries. We present Meteor and Sopremo, an
extensible query language and a semantically rich operator
model for the Stratosphere data flow system. Both tools are
integrated in the system’s software stack and can be tested
by downloading Stratosphere?.

Sopremo provides a programming framework that allows
users to define custom packages, the respective operators
and their instantiations. Sopremo already contains a set of
base operators from the relational algebra, plus two sets of
additional operators for IE and DC. Further operators, e.g.,
for performing statistical tests and for boilerplate detection
on web data, are in development.

Zhttp://www.stratosphere.eu

(CStudent spreadshees

P

Remove duplicate entries Analyze contents and extract
across spreadsheets full person names

v v

Keep records on students Assign articles to

younger than 20 years recognized person names
— J—

1

Fuzzy join on person names

enltsD

Figure 1: Abstract workflow for retrieving mentions
of teen-aged students in news articles.

Data analysis programs for Sopremo are specified in Me-
teor, a declarative language inspired by Jaql [5]. Meteor
builds upon the Json data model, which allows the system
to process a variety of different types of data. Meteor con-
tains several simplifications of Jaql that are necessary to
seamlessly add new operators to the language and to sup-
port n-ary input and output operators. Meteor queries are
parsed and translated into data flow programs of Sopremo
operator instantiations, i.e., concrete implementations of the
involved operators.

We use the following scenario as our running example in
this paper. We give only an abstract description of the task
here, details on how to express this use-case with Meteor
and Sopremo are explained in Sections 4 and 5.

Example: Suppose a county school-board wants to find
out which of its teen-aged students carry out voluntary work
and thus have appeared in recent news articles. Our input
is a set of spreadsheets containing information on all stu-
dents from all schools in the county and a corpus of news
articles. The task is to return all news articles that men-
tion at least one student being under 20. As displayed in
Fig. 1, we have to perform multiple operations to accom-
plish this task. First, we have to eliminate duplicates across
the spreadsheets, since students might have changed school.
Afterwards, we need to filter the spreadsheets and keep only
records of teenagers. Concerning the news data, we need to
analyze the textual contents, extract the names of people
mentioned in the articles, and group the news articles by
person names. Finally, we need to join both data sets on
the persons’ full names and return the result.

The remainder of this paper is structured as follows. In
Sect. 2, we present background information on the Strato-
sphere system and illustrate how Sopremo and Meteor fit
into the system’s architecture. We give insights into techni-
cal details and base operators of Sopremo as well as language
features of Meteor in Sect. 3. In Sect. 4, we show how both
Sopremo and Meteor can be extended. Section 5 discusses
related work. Finally, we conclude and present ideas for
future work in Sect. 6.

Meteor Parser

8uery C Meteor Script
anguage) >
T

g;gr;ts(igla odel C Sopremo Plan)—} Sopremo Compiler

ﬁgg‘;i&mming C Pact Program)—»
T

Exe(_:ution CExeoution Graph)—> Nephele Scheduler
Engine

Pact Optimizer

Figure 2: Architecture of the Stratosphere system.

2. THE STRATOSPHERE SYSTEM

We implemented Meteor and Sopremo within Stratosphere,
a system for parallel data analysis. Stratosphere consists
of four major components; next to Meteor and Sopremo,
it comprises the Pact programming model [2, 3], and the
Nephele execution engine [25].

Figure 2 displays the complete stack of the Stratosphere
system. End-users specify data analysis tasks by writing
Meteor queries. Such a query is parsed and translated into
a Sopremo plan, a directed acyclic graph (DAG) of inter-
connected high level data processing operators. Each oper-
ator consumes and processes one or multiple input data sets
and produces one or multiple output data sets. Operators
are semantically rich, i.e., the concrete instantiation (data
processing algorithm) of an operator defines in which way
data sets are partitioned and processed in parallel. Often,
there are different instantiations available for each operator,
which are expressed with Pacts. These instantiations have
different properties with respect to runtime, memory con-
sumption, quality, etc. Choosing the ’right’ algorithm will
be part of a cost-based optimizer (see Sect. 6).

Pact is a generalization of the MapReduce programming
paradigm [11]. A Pact operator consists of a second-order
function (InputContract), a first-order function (the UDF),
and a so-called OutputContract. Next to Map and Reduce,
Pact defines three additional second-order functions that
each process two input streams, namely Match, CoGroup,
and Cross. Each Pact is responsible for partitioning the in-
put data and calling a user-defined first-order function. Pact
uses schema-free tuples as data model, i.e., the schema of
any tuple is up to the interpretation of the user code. Pact
programs are compiled into data flow graphs, which are then
deployed and executed by Nephele. During translation, the
Pact compiler performs physical optimization and reorder-
ings [18] to improve the parallel execution.

Finally, Nephele [25] interprets data flow graphs and dis-
tributes tasks to the computation nodes. Nephele is designed
to run in heterogeneous environments, and is also capable of
exploiting the elasticity of clouds by booking and releasing
machine instances at runtime.

Both Pact and Nephele may also act as a starting point
for experienced users to perform data analyses, i.e., by writ-
ing Java programs against the Pact API or by providing

data flow graphs as a configuration for Nephele. However,
this is cumbersome and requires intimate knowledge on the
system’s execution layer. With Meteor, we focus on the end-
user’s perspective when working with Stratosphere. Specifi-
cally, we present the language layer Meteor and the algebraic
layer Sopremo, which together enable end-users to formu-
late and execute queries in Stratosphere. Plus, the modular
design of Sopremo and Meteor also allows programmers to
develop their own operator algebra and language extensions,
to plug-in different scripting languages such as Pig or Hive,
or even to create graphical user interfaces where analysis
workflows can be specified.

3. OPERATOR AND LANGUAGE LAYER

In this section, we show how users write queries in Me-
teor. We also explain how such a query is first translated
into a Sopremo plan and finally into a Pact program. First,
we informally define the basic concepts used in Meteor and
Sopremo.

The data model builds upon Json to support unstructured
and semi-structured applications. A Sopremo or Meteor
value thus represents a tree structure consisting of objects,
arrays, and atomic values. A data set is an unordered collec-
tion of such trees under bag semantics. The base model does
not support any constraints such as schema definition in the
first place, but those may be enforced implicitly through
specific operators.

An operator acts as a building block for a query. It con-
sumes one or more input data sets, processes the data, and
produces one or more output data sets. Operator sub-types
share common characteristics, but are specialized versions
of the generic operator, e.g., IE operators for entityand rela-
tionship annotation require different algorithms. Operators
are instantiated to reflect specific configuration and adjust-
ments, e.g., a join is an operator but a join over the attribute
id is an operator instantiation. A Sopremo plan is a directed
acyclic graph of interconnected operator instantiations.

3.1 The Meteor Query Language

Meteor is an operator-oriented query language that fo-
cuses on analysis of large-scale, semi- and unstructured data.
Users compose queries as a sequence of operators that reflect
the desired data flow. By importing application-specific op-
erators, users can use Meteor to process data for a wide
range of applications. The internal data format build upon
Json, but Meteor supports additional input and output for-
mats.

We start by showing and explaining the Meteor query for
our running example (see Fig. 1), but we defer the discussion
of operators that are specific to IE and DC applications to
Sect. 4.

Our running example involves operators from the domains
of data cleansing and information extraction. Thus, Line 1f
first imports the packages cleansing and ie. Consequently,
all operators and functions become accessible that are de-
fined in these packages.

Line 4ff reads the spreadsheet of students and associates
the variable $students with that data set. Then all students
are removed that are listed in multiple schools (see Sect. 4.2).
Line 9 filters all students that have an age less than 20.

Further, Line 12ff reads the articles, annotates the persons
in the articles (see Sect. 4.1), and restructures the data set
such that each entry of the data set $peopleInNews consists

00~ O Uk W

W W W NNNNDINDINNNDNDNF = = =
N~ O OO Uk WNRFROOOWNNOUR WNRFROO©

Tl W N~

using cleansing;
using ie;

$students = read from ’students.csv’;
$students = remove duplicates $students
where average (levenshtein (name),
dateSim (birthDay)) > 0.95
retain maxDate(enrollmentDate);
$teens = filter $stud in $students
where (now()—$stud.birthDay).year < 20;

$articles = read from ’news.json’;

$articles = annotate sentences $articles
using morphAdorner ;

$articles = annotate entities in $articles
using type.person and regex ’names.txt’;

$peopleInNews = pivot $articles around

$person=%article.annotations [*]. entity
into {
name: $person,
articles: $articles
>
$teensInNews = join $teen in $teens,
$person in $peoplelnNews
where $teen.name —— $person.name
into
student: $teen,
articles: $person.articles [x]. url

s

write $teensInNews to ’result.json’;

Listing 1: Meteor query for running example.

of the person’s name and a list of articles mentioning him
or her. Finally, both data sets are joined on person name in
Line 24 and written to a file.

The goal of Meteor is to support a large variety of ap-
plications, each with its own specialized operators that are
dynamically imported. To facilitate the correct specification
of a query with arbitrary, dynamically imported operators,
all operators in Meteor have a uniform syntax. The general
form of operators is given by the excerpt of the EBNF in
Listing 2. Basically, the specification of an operator starts
with the multi-word operator name, followed by the list of
its inputs. It concludes with a list of property specifications
that each consist of the property name and the correspond-
ing value. Additionally, inputs may be assigned aliases that
act as iteration variables and are especially useful to identify
the left and right input in self-joins.

operator ::= name+ inputs? properties? ’;’

inputs ::= (alias ’in’)? variable (’,’ inputs)?
properties ::= property properties?
property ::= property_name expression
variable ::= ’$’ name
Listing 2: Excerpt of Meteor’s EBNF grammar.
The script in Listing 1 consists of eight operators. In

the following, we highlight some operators to explain the
grammar rules. The first operator read has no input and
one property from with a constant string expression. The
third operator filter has one input $students with alias
$stud and the property where with a boolean expression.
Finally, join has two inputs with respective aliases and a

Operator Inputs Properties Comment

filter 1 condition

transform 1 projection

join n condition,
projection

group n keys, aggre- co-group withn > 1
gation

intersect n - set intersection

union n - set union

subtract n - set difference

union all n - bag union

replace path, dictio- dictionary lookup
nary

pivot 1 path (un)nesting of tree

split 1 path denormalizes arrays

Table 1: Core operators.

where and an into property.

A complete list of the mostly relational, standard opera-
tors is given in Table 1. The third columns shows the config-
urable properties of the operators, e.g., filter has a property
condition, which is specified in Meteor after the where key-
word. All operators except intersect, union, and subtract use
bag semantics similar to relational DBMS. The three excep-
tions implicitly convert incoming bags into sets and always
return sets. In contrast, union all performs only a concate-
nation of the inputs. The three operators replace, pivot, and
split, are especially designed to work with semi-structured
data.

To import application-specific operators, Meteor users im-
port packages with using <package>. Users can also access
operators with a package prefix without prior import, e.g.,
ie:annotate. Thus, users may specify which operator to
use in cases where two packages use the same name for dif-
ferent operators. We explain the underlying mechanism for
supporting name spaces in Sect. 3.2.

Additionally to operators, Meteor allows users to define
and import functions. Function definitions inside a Me-
teor script have the same expressive power as a new Meteor
script. These functions serve to shorten a script that re-
peatedly uses a given sequence of operators or expressions.
Additionally, users can register Java functions with the Me-
teor function javaudf if they need functionality that cannot
be expressed in Meteor or is more efficient in Java. Java
functions are also automatically registered during package
import if the package contains built-in, application-specific
functions, such as a function levenshtein in our running ex-
ample that computes the Levenshtein distance.

The syntax of Meteor is inspired by Jaql [6], a scripting
language for Hadoop developed by IBM. Jaql follows a func-
tional approach to let users specify the operators in a query
(except for six base operators, such as join or filter). In
contrast, Meteor users configure operators in a more object-
oriented way. Also, the syntax of Meteor is tailored towards
the package concept and thus simplifier than Jaql in two
ways. First, Meteor enforces the convention that all vari-
ables must start with $ to help humans and machines to
better distinguish between operators and variables. For ex-
ample, the assignment filter = group filter by filter is valid

v

Sentence Annotation

Instantiation: MorphAdorner

\ 4

Entity Annotation

Duplicate Removal

Sim Measure: Average Instantiation: Regex

ifference Path: "/ txt”
Field Access birthDa; * HAmESE

Threshold: 095

Selection Pivotization
Condition: omparison < Path: Path
FieldAccess year Input 0
zﬁrithmetic - fieldAccess person
-ArrayProjection name|
20

—

Join
Condition: Comparison =
Path
Input 0
Field Access name

v

Figure 3: Sopremo plan for query in Listing 1.

Jaql but would not compile in Meteor. Second, we dropped
the pipe notation of Jaql, e.g., $teens = $students —>
filter. Pipe notation makes sense only for operators that
have one input and one output but Sopremo also supports
operators that have multiple inputs and multiple outputs.

The meteor parser parses any given Meteor query into an
abstract syntax tree and then translated it into a logical exe-
cution plan of Sopremo operators. The plan is then handled
by the Sopremo layer.

3.2 The Sopremo Operator Model

Sopremo is a framework to manage an extensible collec-
tion of semantically rich operators organized into packages.
It acts as a target for the Meteor parser and ultimately pro-
duces an executable Pact program. Nevertheless, we de-
signed Sopremo to be a common base for additional query
languages such as XQuery or even GUI builders.

Figure 3 depicts the Sopremo plan that Meteor returns
for our running example. Relational operators co-exist with
application-specific operators, e.g., data cleansing and infor-
mation extraction operations such as remove duplicates
and annotate persons. All variables in a Meteor script are
replaced by edges, which represent the flow of data.

Operators may have several properties, e.g., the remove
duplicates operator has a similarity measure and a thresh-
old as properties. The values of properties belong to a set
of expressions that process individual Sopremo values or
groups thereof. These expressions can be nested to form

Sopremo Pact

v

Map (Pivotization)

article —
Vannotation in article

emit [annotation.entity, article]|

Pivotization
Path: Path
Input 0 =3
szieldAcceS§ person V
fievRiedioniuane Reduce (Pivotization)

key = entity
[entity, article[* =
emit { name: entity, articles: article*

v

Figure 4: Transformation of pivotization. Left: So-
premo operator, right: partial Pact plan.

trees to perform more complex calculations and transforma-
tions. For example, the selection condition of the example
plan (see Fig. 3) compares the year of the calculated age with
the constant 20 for each value in the data set $students.

Sopremo operators and packages can be developed inde-
pendently. To be able to use and combine operators from
different packages, operators must be self-descriptive in two
ways. First, each operator provides meta information about
itself including their own configurable properties and certain
characteristics that can be used during optimization. Sec-
ond, all operator instantiations must define in which way
they are executed and parallelized. In particular, each oper-
ator must provide at least one Pact workflow that executes
the desired operation.

Figure 4 shows how the instantiated operator pivot side
is implemented as a partial Pact plan that consists of a Map
and a Reduce. The Pact plan for operators are only partial
because they cannot be executed due to the missing sources
and sinks. Further, these partial Pact plans have the same
amounts of incoming and outgoing data flows as the corre-
sponding Sopremo operator. For complex Sopremo opera-
tors such as remove duplicates, partial plans may easily
consist of 20 Pacts.

Operator instantiations may also reuse other operators
in their implementation. These composite operators recur-
sively translate the reused operators into partial Pact plans
and rewire the input and outputs to form even larger partial
Pact plans. Composition of operators reduces implementa-
tion complexity. Future improvements of a reused operator
also improve the composite operator.

Additionally, operators may also have different implemen-
tation strategies. The strategy can either be selected by
properties or by an optimizer. For example, a Sopremo join
with an arbitrary join condition may require a theta join
with a cross Pact, while a join with a equality condition can
be efficiently executed with a match Pact.

3.3 Query Compilation

In Sopremo, all operator instantiations have a direct Pact
implementation. Thus, the compilation of a complete So-
premo plan consists of two steps. First, all operator instan-
tiations in the Sopremo plan are translated into partial Pact
plans. Second, the inputs and outputs of the partial Pact
plans are rewired to form a single, consistent Pact plan. The
result of the translation process for our running example can

v

Map (Sentence Annotation)

article
article.annotations <
findSentences(article)
emit article

Y
Map (Entity Annotation)

Self-Cross (Duplicate Removal)

studenti, student2 article
if sim(student1, student2)>threshold article.annotations <
emit [student{, student2 findEntities(article)

emit article

CoGroup (Duplicate Removal) Map (Pivotization)
dups key = student1 article —
dups, student — ‘Vannotation in article

if dups| = 0 emit [annotation.entity, article]

emit student

Y
Map (Selection)

student — key = entity
if condition(student) [entity, article]* -
emit student emit { name: entity, articles: article*}

—

Match (Join)

student key = name

person key = name

student, person —
student.articles<person.articles[*|.url
emit merge(in0, in)

Y

Reduce (Pivotization)

Figure 5: Pact plan.

be seen in Fig. 5. Please note that we here used naive du-
plicate detection for visualization purposes only. Section 4.2
discusses further alternatives.

To improve the runtime efficiency of a compiled plan, the
translation process is augmented with two more steps: First,
a Sopremo plan is logically optimized (work in progress, see
Sect. 6). A separate, physical optimization is performed
later in the Pact layer [18]. Second, Pact uses a flat, schema-
less data model that is necessary to reorder Pacts. For pure
Pact programs, the schema interpretation is performed by
Pact users in their UDFs. However, the additional semantics
of Sopremo operator allows Sopremo to infer an efficient data
layout and bridge the gap between the flat data model of the
Pact model and the nested data model of Sopremo. Meteor
or Sopremo users thus do not have to specify the data layout
explicitly.

Figure 6 summarizes the complete process of translating
a Meteor query into a Pact plan. Meteor users formulate
a query that is parsed into a Sopremo plan. To import
packages, Meteor requests the package loader of Sopremo to
inspect the packages and register the discovered operators
and predefined functions. Meteor uses this information to

reads formulates
results | i query [Meteor
Query

installs
creatg‘; Meteor Parser Sopremo Plan
packages

* Sopremo l l
) v Y
I
1 Inferencer : Optimization 1
I
I

Operator

Registry ‘

Function) | £ (" Global Pact Plan

Regist Confi- c il
egis ry/ s Schemsz ompiler

Packages

'
Schema ' Logical

Information’
Extraction

| | Package
Loader

Mining

Reflective Sopremo 1 Transformation to Pact
A

. ¢ Pact
@ 4_@

Figure 6: Architecture of Sopremo.

Pact & Nephele

validate the script and translate it into a Sopremo plan. The
plan is analyzed by the schema inferencer to obtain a global
schema that is used in conjunction with the Sopremo plan
to create a consistent Pact plan.

3.4 Query execution

The previous sections describe how a Meteor query is suc-
cessively translated into a Pact program. This happens once
at query time on the master node of the cluster. During
this process, Sopremo injects code into all Pacts to bridge
the conceptional gap between Pacts and Sopremo operators
during execution time. In this section, we briefly outline
how Sopremo influences the actual execution of a translated
query on a cluster.

The standard execution of a Pact plan involves four steps:
First, compute nodes are allocated by Nephele and the UDFs
are distributed to each allocated node. Second, the UDF is
instantiated on each worker thread and a callback is called to
allow the UDF to configure itself with information specified
at query time. Third, the UDF is called for each input tuple
or partition and finally, the UDF is disposed. Sopremo adds
glue code to the second and third step of that process.

Most importantly, Sopremo uses the configuration call-
back to deserialize the context of the current Pact. The
context includes the globally inferred schema, the function
registry with all user-defined and imported functions, and
also the values of the properties. The context additionally
contains debug information that allow users to exactly iden-
tify which (composite) operator and which step a Pact be-
longs to in case of errors.

Afterwards, the context is used to properly deserialize in-
coming Pact values into Sopremo values for each call of the
UDFs of the Pacts. The values are then used by the imple-
mentation of the corresponding operator to calculate out-
going Sopremo values. Finally, these values are serialized
again into schema free tuples.

When the query successfully finishes, it produces one or
more output files that are encoded in Json unless otherwise
specified. In case of an error, Meteor users receive two kinds
of feedback depending on the type of error. Firstly, a Meteor
script may be invalid. Operators check their configuration

Operator # Inputs Subtypes Properties
annotate 1 entities, instantiation,
relations, path
sentences,
tokens,
pos,
stems,
lemmas
replace 1 token, instantiation,
entity, projection
fields, condition
path
unnest 1 fields
join n condition
aggregate n key
split into 1 sentences, condition,
tokens, instantiation
ngrams
extract 1 entity, instantiation
relation

Table 2: Information extraction operators. Top: ba-
sic operators, bottom: complex operators.

before their translation and may issue warnings or errors if
properties are conflicting or if prerequisites are missing. Sec-
ondly, Sopremo operators may contain errors. In this case,
Meteor shows a detailed stack trace of the erroneous oper-
ator on the master node. This essentially means that the
Sopremo plan is reconstructed at execution time and stack
traces from the cluster nodes are transferred to the master
node. Furthermore, Sopremo optionally adds debug infor-
mation to allow values to be traced along a script execution
to ease debugging of Sopremo operators as well as Meteor
scripts.

4. CONCRETE PACKAGES

Meteor and Sopremo are both extensible with application-
specific packages and operators. In order to avoid conflicts
when combining operators from different packages, Meteor
supports namespaces. In this section, we introduce two
packages for IE and DC and explain available operators in
each package.

4.1 Information Extraction

Generally, an IE operator transforms some input text data
into some output by applying a function to the input. Dif-
ferent operators are dedicated to different purposes. As dis-
played in Table 2, we distinguish between basic and complex
operators. The set of basic operators comprises annotate,
replace, unnest, join, and aggregate. The set of complex op-
erators contains by now a split into and an extract operator.
Operators can be specified further by sub-types. This also
allows for an easy extension of operators by creating new
sub-types if desired. In the following, we briefly describe
the available operators and sub-types.

The annotate operator is used to add information to a
given input text. By now, we support annotating entities, bi-
nary relations between entities, and the annotation of struc-
tural information, such as sentences or tokens, and linguistic
information on pos tags, stems, or lemmas. For each sub-

class there are different IE algorithms available that differ
heavily in terms of runtime, startup costs, memory consump-
tion, and quality. Both baseline variants and specialized
third-party libraries are available as operator instantiations.
A user can specify a variant in his/her query by adding the
keyword “using” and the name of the algorithm. For exam-
ple, extract relations using sum performs relation extraction
using a support vector machine based approach, whereas
extract relations using co-occ performs relation extraction
based on co-occurrences of entities in the same scope.

Replace is responsible for either replacing existing anno-
tations (tokens or entities) or entire fields in the Json record
with some user-defined value. Example applications of re-
place are stop word removal (e.g., by specifying a list of
stop words that is searched for and an empty string as re-
placement for each matched stop word), entity blinding as
a preprocessing step for relation extraction, or entity nor-
malization. Compared to the replace operator in the core
package, this replace operator is more extensive, since it not
only performs string replacements, but is also capable of
replacing entire fields or complex annotations.

We use unnest to flatten nested annotations, e.g., to split
up a bag of entity annotations of the same type. Join is
used to merge records or annotations. The semantics of
the join operator is that if record a and record b shall be
joined into record ¢, and a and b contain annotations of
the same type, these annotations are unioned in the output
record c¢. The decision, whether a and b shall be joined is
taken by evaluating a join condition, which might be fuzzy.
Finally, the aggregate operator merges records and existing
annotations based on a user-defined key that is specified by
the keyword by. The merge semantics of aggregate is similar
to join, i.e., if records a, ..., k share the same key, all records
are merged into a single record [, such that all annotation
objects contained in a, ...,[are unioned by field type.

The complex operators split into and extract can be com-
posed from basic operators. For example, split into sen-
tences can be performed by first annotating sentence bound-
aries in a given input text (i.e., a whole document). Inter-
nally, sentence annotations are stored in a list that contains
start and end position of the individual sentences. This list
needs to be unnested, such that a single Json record is pro-
duced for each sentence annotation. Finally, the original in-
put text needs to be replaced by a substring of itself, which
is defined by start and end position of a sentence. Similarly,
the extract operator for entities or relations can be expressed
using a series of annotate, filter, replace and unnest opera-
tions. However, for both complex operators and their sub-
types, there are also more efficient instantiations available
that perform unnesting, filtering, and replacements of fields
or annotations in a single step. In particular, operators and
their sub-types can be improved by means of quality and
runtime incrementally, i.e., simply by adding a new opera-
tor instantiation.

Lines 11 to 15 in Listing 1 display a fully specified Me-
teor query for annotating person names in news articles as
part of our running example. In Line 12f., we annotate sen-
tence boundaries in the input text by applying the Mor-
phAdorner® sentence splitting algorithm to the input (spec-
ified by using). Sentence splitting is in our example a pre-
processing step for person name annotation, because we re-

3http://morphadorner.northwestern.edu

Operator Inputs Properties

scrub 1 rules

split records 1 projections

detect duplicates 1 sim, threshold, sorting or
partition key

fuse 1 strategies, weights

remove duplicates 1 sim, threshold, sorting or
partition key, strategy

link/cluster records n sim, threshold, sorting or

partition key, projection

Table 3: Data cleansing operators. Top: basic oper-
ators, bottom: complex operators.

quire that a person name does not go beyond the scope of a
sentence. In Line 14f., we annotate person names using an
algorithm based on matching regular expressions. The ex-
pression "type.person” specifies the concrete entity type that
is annotated and it is part of the Json object that will be cre-
ated and added to the input by the annotation operator. In-
formation on concrete entity types are useful for subsequent
IE operators, such as an annotate relation operator that an-
notates relations between persons and companies. We also
define the set of relevant expressions for person names by
specifying the filename “names.txt”. Internally, the regular
expression based entity annotation algorithm loads this file
first and then matches the input text.

All underlying operator implementations are built using
the Sopremo programming framework. The implementation
of the basic operators annotate, replace, and unnest and
their sub-types build upon Map contracts, which process
each input item independently. For merge, we use a Match
contract, and aggregate is built using CoGroup and Reduce.

The different sub-type instantiations might have depen-
dencies on other annotation operator variants that need to
be executed in advance. For example, a text tokenization
algorithm might need information on sentence boundaries
and thus, annotate sentences needs to be performed first.
By now, users need to resolve these dependencies by hand,
but we plan to integrate a dependency resolving algorithm
in the Sopremo compiler (see Section 6).

4.2 Data Cleansing

The DC package comprises operators that are commonly
used to improve the data quality. Important tasks are du-
plicate detection, integration of several independent data
sources, data fusion, and schema alignment. Similar to IE
operators, the package consists of basic operators and com-
plex operators as listed in Table 3. The table also shows
all properties that can be configured by users in the last
column.

The basic operators improve the quality of one data source.
The scrub operator applies a set of rules to a data source to
correct data errors and normalize values for later steps. Fur-
ther, split records help to align schemata by projection the
data set into smaller data sets. In contrast to a simple pro-
jection, this operator maintains relationships between the
fragments of one records. Next, detect duplicates aims to
identify all pairs of records that represent to the same real-
world entity. Finally, fuse resolves data conflicts between
duplicates using data fusion strategies.

The complex operators are composed of the previously
mentioned operators. We already briefly introduced the re-
move duplicates operator in Section 3 in our running exam-
ple. The operator combines the basic operators detect dupli-
cates and fuse. Further, the two operators link records and
cluster records find duplicates across multiple data sources
and are used to integrate data sources or to generate con-
nections between data sources, e.g., owl:sameAs links in the
LOD cloud. The latter operator additionally calculates the
transitive closure of the found duplicates, for instance by
using an adaption of the three phase algorithm of Katz and
Kider [20].

We already described the data integration operators in

Reference [15], namely scrub, split records, link/cluster records,

and fuse. In the following, we will explain the detect dupli-
cates and the remove duplicates operators and their proper-
ties in more detail.

In the running example (see Listing 1), we receive a list
of enrolled students of all schools in the county. Naturally
the database is dirty: students change schools for various
reasons even within a school year and may be listed in two
schools. Hence, we use the remove duplicates operator to
detect duplicate entries and choose the best representation
of the student.

Duplicate detection would naively require comparing all

entries with each other resulting in huge computational costs.

In practice, various candidate selection techniques have been
proposed that specifically select potential duplicates to avoid
the Cartesian product and speed up duplicate detection at
the cost of recall. However, they introduce new properties
that the user must set or that need to be inferred auto-
matically. For example, the popular sorted neighborhood
method [16] needs sorting keys and a window size as addi-
tional parameters, while standard blocking [12] requires a
blocking key.

To decide whether a candidate pair is a duplicate, the
similarity of the entries is calculated and compared against a
threshold. The properties similarity measure and threshold
are specified in one comparison expression in Meteor but
can be individually used for optimization. For instance, a
similarity measure involving the Jaccard distance and a high
threshold can be efficiently executed with a set similarity
join [24].

Finally, in our running example, we use data fusion to
choose the record with the most current enrollment date and
drop all other records in the cluster. However, in general,
we can specify in detail which datum we prefer for which at-
tribute. We may choose to complete missing data, to use the
minimum or maximum value, to aggregate all values, or we
can even use other attributes or meta-information to decide
which value to use. We implemented most of the strategies
that were presented by Bleiholder and Naumann [7].

The presented data cleansing package covers a wide range
of data cleansing applications but will be continuously im-
proved to incorporate new operators and new implementa-
tions.

S. RELATED WORK

Building a high level language layer that abstracts from
underlying massively parallel data processing systems is a
quite common concept. For Hadoop [26] there exist several
such layers like Apache Pig [14, 22], Jagl [5, 6], and Hive [23].

Pig is a parallel processing environment for data flow

programs [14, 22]. Programs are formulated in Pig Latin,
a declarative language that can describe directed acyclic
graphs (DAG) of operators. In these DAGs data originates
from sources, is passed on to operators that may filter, join,
group, or project data until the data reaches a sink, which
is used to store the results. Data passed between operators
has a flexible structure that allows atomic values, tuples,
bags, and maps. Each field of complex types may be of any
data type with the only exception being map, which requires
atomic keys. Operators can be parameterized with expres-
sions that allow for UDFs and thus enable the extension of
the language with user code. During compilation Pig Latin
programs are first transformed into a DAG of operators,
which resembles logical query plans of relational database
systems and facilitates similar optimization strategies. Op-
timized logical plans are compiled into a sequence of MapRe-
duce jobs that can be submitted to the Hadoop job manager
for execution. In addition to functions, Meteor and Sopremo
allow for the definition of completely new operators. As a
result, Meteor programs can be highly expressive since the
desired functionality does not need to be expressed with a
fixed set of operators.

Jagl [5, 6] is a software stack similarly structured as Pig.
It consists of a functional scripting language, a MapReduce
compiler and the Hadoop execution engine. Similar to Pig
and Meteor, a Jaql program also forms a DAG of operators.
However, in Jaql, operators are expressed as functions. Pro-
grams are therefore expressed as function compositions. Just
like in other functional languages, functions are first class
citizens in Jaql and can be assigned to variables. The data
model of Jaql is Json, which supports the use of atomic val-
ues, arrays, and records. Extensibility of the Jaql language is
provided directly at the language level. Physical Jaql execu-
tion plans are expressed with plain Jaql syntax. In contrast
to Meteor and Sopremo, Jaql needs no language extensions
to express new functionality. The source to source trans-
lator, that converts a Jaql program into an execution plan,
applies greedy rewriting rules logical optimization, e.g. filter
push-downs. Currently, Jaql does not have a physical opti-
mizer. Since Sopremo plans are compiled to Pact programs,
Sopremo benefits both from logical and physical optimiza-
tion components in Stratosphere.

Hive provides data warehouse functionality and is mod-
eled like a traditional relational database system [23]. Hive
relies on Hadoop for query processing and uses HDFS as
storage layer. Queries are formulated in Hive@QL, a SQL
dialect that includes a subset of standard SQL and adds
Hive-specific extensions. Queries are compiled and rewrit-
ten by a rule-based optimizer and executed as MapReduce
jobs. Hive’s data model is not strictly relational since it
supports structured attributes that include nested lists and
maps. In terms of extensibility, Hive supports UDF's similar
to SQL. Again, in contrast to Meteor and Sopremo no ad-
ditional operators can be defined and physical optimization
is currently not supported.

The Asteriz Query Language (AQL) is the high level query
layer of the Asterix system, which executes on the Hyracks
data processing engine [4, 8]. AQL queries are centered
around nested FLWOR expressions, which originate from
XQuery. The language offers a rich data model that sup-
ports nested records, lists, and enumerations. Queries are
compiled to an intermediate representation, Algebricks, which
is in turn is compiled to a DAG of operators, which are

executed parallel in on Hyracks. In terms of the features
provided, AQL and Meteor/Sopremo/Stratosphere are very
similar, both support UDFs. In contrast to Meteor cus-
tomized operators are currently not supported. Some high
level languages for expressing IE and DC tasks declara-
tively have also been developed. SystemT’s AQL [10] and
AJAX [13] are such languages and are both heavily in-
fluenced by SQL. Both languages provide relational opera-
tors in addition to operators tailored for the extraction and
aggregation of relevant document spans or data cleansing,
respectively. XClean is tailored to perform DC in XML
files [17]. Here, DC programs are written in XClean/PL
using a library of pre-defined operators. XClean programs
are then compiled to XQuery and executed using a standard
XQuery processor.

6. CONCLUSION

In this paper, we presented a high level language layer
for parallel data processing engines. Meteor, a declarative
scripting language influenced by Jaql, enables end users to
express sophisticated data flows. Sopremo, the underlying
operator layer provides a modular and highly extensible set
of application-specific operators. Currently, pre-defined re-
lational operators as well as packages for IE and DC are
available. We have shown that operators from these pack-
ages can be easily used together in a single Meteor program
to implement advanced use cases that require functionality
from both packages.

Future work on Meteor and Sopremo will focus on the ex-
tensions of its current capabilities as well as on optimization
techniques and improved compatibility.

One of our objectives is to provide packages that facilitate
a variety of use cases like scientific data processing or busi-
ness intelligence. Instead of relying on different domain spe-
cific languages (DSL) for each use case, Meteor and Sopremo
are meant to reach the efficiency of DSLs without sacrific-
ing the flexibility of general purpose languages by provid-
ing tailor-made, yet interoperable domain specific operator
packages.

Our current focus is the development of sophisticated nat-
ural language processing solutions. Beside the raw func-
tionality, we also plan to create of a metadata system that
models precisely both the required input and the generated
output properties of the data that is passed to and from each
operator. The resulting ontology will allow for type check-
ing to recognize the use of operators on incompatible data
before runtime, e.g., the application of a syntactic parser
that requires POS tags to a collection of documents without
such tags.

Building on top of the metadata system we would also
like to optimize the execution of meteor scripts to runtime
parameters of its execution environment. Specifically, we
intend to account for concurrent and repeated execution of
Meteor programs. If one considers several Meteor programs
that perform analysis tasks on periodically updated docu-
ments, it is very likely that these tasks share certain pro-
cessing steps such as word tokenization, sentence splitting
or language detection. In this case, it could be beneficial
to merge the corresponding portions of the programs into
a single Meteor job that passes its result to the remaining
portions of the original jobs.

In a similar fashion, the execution engine could employ
the metadata system to monitor how often certain com-

putations are performed on certain data sets. If frequent
re-computations are observed, the system could decide to
materialize the corresponding data set and replace the com-
putations in the corresponding Meteor programs with data
access routines.

Finally, we would like to enable compatibility with dif-
ferent execution environments. While currently each non-
composite Sopremo operator can return its Pact implemen-
tation, we would like to extend this functionality to cover
other execution engines as well. By adding implementations
for different execution engines, such as Hyracks or Hadoop,
for all non-composite operators, entire Sopremo programs
could be executed on these engines.

7. ACKNOWLEDGMENTS

Arvid Heise and Astrid Rheinldnder are funded by the
German Research Foundation under grant “FOR 1036: Strato-
sphere — Information Management on the Cloud.” Marcus
Leich is funded by the European Institute of Technology
(EIT). We would like to thank all members of the Strato-
sphere team, especially Volker Markl and Fabian Hueske, for
valuable discussions and support.

8. REFERENCES

[1] D. Agrawal, P. Bernstein, E. Bertino, S. Davidson,
U. Dayal, M. Franklin, J. Gehrke, L. Haas, A. Halevy,
J. Han, H. Jagadish, A. Labrinidis, S. Madden,
Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan,
K. Ross, C. Shahabi, D. Suciu, S. Vaithyanathan, and
J. Widom. Challenges and Opportunities with Big
Data. A community white paper developed by leading
researchers across the United States.
http://imsc.usc.edu/research/bigdatawhitepaper.pdf,
2012.

[2] A. Alexandrov, D. Battré, S. Ewen, M. Heimel,
F. Hueske, O. Kao, V. Markl, E. Nijkamp, and
D. Warneke. Massively parallel data analysis with
PACTSs on nephele. Proceedings of the VLDB
Endowment (PVLDB), 3(2), 2010.

[3] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and
D. Warneke. Nephele/PACTs: A programming model
and execution framework for web-scale analytical
processing. In Symposium on Cloud Computing
(SoCC), 2010.

[4] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li,
N. Onose, R. Vernica, A. Deutsch,

Y. Papakonstantinou, and V. J. Tsotras. Asterix:
towards a scalable, semistructured data platform for
evolving-world models. Distributed and Parallel
Databases, 29(3), 2011.

[5] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin,
M. Y. Eltabakh, C.-C. Kanne, F. Ozcan, and E. J.
Shekita. Jaql: A scripting language for large scale
semistructured data analysis. Proceedings of the
VLDB Endowment (PVLDB), 4(12), 2011.

[6] K. S. Beyer, V. Ercegovac, R. Krishnamurthy,

S. Raghavan, J. Rao, F. Reiss, E. J. Shekita, D. E.
Simmen, S. Tata, S. Vaithyanathan, and H. Zhu.
Towards a scalable enterprise content analytics
platform. IEEE Data Engineering Bulletin, 32(1),
2009.

[7] J. Bleiholder and F. Naumann. Declarative data fusion

8]

[10]

[15]

[16]

[17]

— syntax, semantics, and implementation. In Advances
in Databases and Information Systems (ADBIS), 2005.
V. Borkar, M. J. Carey, R. Grover, N. Onose, and

R. Vernica. Hyracks: A Flexible and Extensible
Foundation for Data-Intensive Computing. In
Proceedings of the International Conference on Data
Engineering (ICDE), 2011.

R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,

D. Shakib, S. Weaver, and J. Zhou. SCOPE: easy and
efficient parallel processing of massive data sets.
Proceedings of the VLDB Endowment (PVLDB), 1(2),
2008.

L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan,
F. R. Reiss, and S. Vaithyanathan. SystemT: an
algebraic approach to declarative information
extraction. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics, 2010.
J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Symposium on
Operating Systems Design and Implementation
(OSDI), 2004.

A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE
Transactions on Knowledge and Data Engineering
(TKDE), 2007.

H. Galhardas, D. Florescu, D. Shasha, and E. Simon.
AJAX: An extensible data cleaning tool. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD), 2000.

A. F. Gates, O. Natkovich, S. Chopra, P. Kamath,

S. M. Narayanamurthy, C. Olston, B. Reed,

S. Srinivasan, and U. Srivastava. Building a high-level
dataflow system on top of Map-Reduce: the Pig
experience. Proceedings of the VLDB Endowment
(PVLDB), 2(2), 2009.

A. Heise and F. Naumann. Integrating open
government data with Stratosphere for more
transparency. Web Semantics: Science, Services and
Agents on the World Wide Web, 2012.

M. A. Herndndez and S. J. Stolfo. The merge/purge
problem for large databases. In Proceedings of the
ACM International Conference on Management of
Data (SIGMOD), 1995.

M. Herschel and I. Manolescu. Declarative XML data
cleaning with XClean. In Proceedings of the
Conference on Advanced Information Systems

(18]

(19]

(20]

(21]

(22]

23]

24]

(25]

(26]

27]

Engineering (CAiSE), 2007.

F. Hueske, M. Peters, M. J. Sax, A. Rheinlénder,

R. Bergmann, A. Krettek, and K. Tzoumas. Opening
the black boxes in dataflow optimization. In
Proceedings of the International Conference on Very
Large Databases (VLDB), 2012.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. Proceedings of the ACM
International Conference on Special Interest Group on
Operating Systems (SIGOPS), 41(3), 2007.

G. J. Katz and J. T. Kider, Jr. All-pairs shortest-paths
for large graphs on the GPU. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware, 2008.

B. O’Connor, R. Balasubramanyan, B. R. Routledge,
and N. A. Smith. From tweets to polls: Linking text
sentiment to public opinion time series. In Proceedings
of the Fourth International Conference on Weblogs
and Social Media (ICWSM), 2010.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and

A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In Proceedings of the ACM
International Conference on Management of Data
(SIGMOD), 2008.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
a warehousing solution over a map-reduce framework.
Proceedings of the VLDB Endowment (PVLDB), 2(2),
20009.

R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using MapReduce. In Proceedings
of the ACM International Conference on Management
of Data (SIGMOD), 2010.

D. Warneke and O. Kao. Nephele: Efficient parallel
data processing in the cloud. In Workshop on
Many-Task Computing on Grids and Supercomputers
(SC-MTAGS), 2009.

T. White. Hadoop: The Definitive Guide. first edition
edition, 2009.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: a system for
general-purpose distributed data-parallel computing
using a high-level language. In Symposium on
Operating Systems Design and Implementation
(OSDI), 2008.

