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Abstract

We propose a load balancing heuristic for parallel
adaptive finite element method (FEM) simulations. In
contrast to most existing approaches, the heuristic fo-
cuses on good partition shapes rather than on mini-
mizing the classical edge-cut metric. By applying Alge-
braic Multigrid (AMG), we are able to speed up the two
most time consuming calculations of the approach while
maintaining its large amount of natural parallelism.
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graph partitioning, load balancing, algebraic multigrid.

1. Introduction

Finite Element Methods (FEM) are used extensively
by engineers to analyze a variety of physical processes
that can be expressed by Partial Differential Equa-
tions (PDE). The domain on which the PDEs have to
be solved is discretized into a mesh, and the PDEs
are transformed into a set of equations defined on the
mesh’s elements (e. g. [6]). Since the derived discretiza-
tion matrices are sparse, the equations are typically
solved by iterative methods such as Conjugate Gradi-
ent or Algebraic Multigrid.

Due to the very large amount of elements needed to
obtain an accurate approximation of the original prob-
lem, FEM simulations have become a classical appli-
cation for parallel computers. Parallelizations of nu-
merical simulation algorithms usually follow the Single-
Program Multiple-Data (SPMD) paradigm: Each pro-
cessor executes the same code on a different part of the
data. This means that the mesh has to be split into
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sub-domains, each being assigned to one of the pro-
cessors. To minimize the overall computation time, all
processors should roughly contain the same amount of
elements.

Moreover, since iterative solution algorithms per-
form mainly local operations, i.e. data dependencies
exist between neighboring elements of the mesh, the
parallel algorithm mainly requires communication at
the partition boundaries. Hence, these boundaries
should be as small as possible due to the involved com-
munication costs. The described problem can be ex-
pressed as a graph partitioning problem and existing
state-of-the-art approaches to solve it are presented in
the next section.

Depending on the application, some areas of the sim-
ulation space require a higher resolution and therefore
more elements. Since the location of these areas is not
known beforehand or can even vary over time, the mesh
is refined and coarsened during the computation. How-
ever, this can cause an imbalance between the proces-
sor loads and therefore delay the simulation. To avoid
this, the distribution of elements needs to be rebal-
anced. The application is interrupted and the reparti-
tioning problem is solved. To keep the interruption as
short as possible, it is necessary to find a new balanced
partitioning with small boundaries quickly, with the
additional objective not to cause too many elements to
change their processor. Migrating elements can be an
extremely costly operation since a lot of data has to
be sent over communication links and reinserted into
complex data structures. Implementations solving a
repartitioning problem are referred to in section 2.

In this work we present a heuristic addressing the
graph partitioning as well as the repartitioning prob-
lem. While existing approaches explicitly minimize the
edge-cut, our heuristic does not contain such an ob-
jective. Instead, we apply a diffusive process inside
a learning framework to determine well shaped par-



tition boundaries. This yields fewer boundary vertices
and therefore reduces the resulting communication vol-
ume. We prove the convergence of the applied diffusion
scheme FOS/C and show that its solution can also be
obtained by solving a system of linear equations. The
heuristic requires to repeatedly solve systems that only
differ in their right hand side. We therefore apply an
Algebraic Multigrid solver with the advantage that its
hierarchy depends only on the matrix and needs only
to be constructed once. In addition, we demonstrate
that we can use this hierarchy to obtain better solutions
with the same number of learning steps.

The remaining part of this paper is organized as fol-
lows. The next section contains a brief introduction to
general purpose graph partitioning and repartitioning
algorithms. Section 3 describes our shape optimizing
approach and also gives some background on the ap-
plied diffusion schemes. In section 4 we introduce the
Algebraic Multigrid (AMG) method, explain its inte-
gration into the learning framework, and provide some
implementation details. We present some of our exper-
iments with the resulting heuristic in section 5 before
we give a short conclusion.

2. Related Work

In this section we provide some background knowl-
edge and give a short introduction to state-of-the-art,
general purpose load balancing schemes. General pur-
pose means that these libraries work on graphs only,
for example on a dual graph of an unstructured mesh
describing the data dependencies, and are not provided
with additional problem related information. Our focus
lies on the implementations included in the evaluation
presented in section 5. For a broader overview we refer
the reader to e.g. [22]. Since the load balancing al-
gorithms are derived from heuristics solving the graph
partitioning problem which must be solved to obtain
an initial partitioning, we start with a description of
the latter.

2.1. Graph Partitioning Heuristics

Due to the large graph sizes, state-of-the-art graph
partitioning libraries like Metis [12], Jostle [26] and
Party [17] usually follow the multilevel scheme [8].
Rather than immediately computing a partitioning for
the large input graph, vertices are contracted and a
smaller instance with a similar structure is generated.
On this instance, the partitioning problem is solved ap-
plying a global heuristic. Due to the reduced size it is
easier to find sufficiently good solutions. Then, vertices
of the original graph are assigned to partitions accord-
ing to their representatives in the smaller instance. The
obtained partitioning is then further enhanced by a lo-
cal refinement heuristic. Instead of applying a global

heuristic on the first smaller instance, the described
process can be recursively repeated, until in the low-
est level only a very small graph remains. Hence, a
very basic global heuristic can be applied or even be
omitted if the number of remaining vertices equals the
requested number of partitions.

The described multilevel algorithm consists of three
important tasks: A matching algorithm, deciding
which vertices are combined in the next level, a global
partitioning algorithm applied in the lowest level and
a local refinement algorithm improving the quality of
a given partitioning.

To create a smaller, similar graph for the next level
of the multi-level scheme, a matching algorithm is ap-
plied and the matched vertices are combined. Several
different variations of matching algorithms serving this
purpose have been tested and compared (e. g. [16]).

The most important phase is the local refinement.
After the vertices are partitioned according to their
representatives in the smaller graph, this phase tries
to improve the current partitioning. In most libraries,
the local refinement process is based on the Fiduccia-
Mattheyses method [5] (FM), a run-time optimized ver-
sion of the Kernighan-Lin (KL) heuristic [13]. Vertices
are exchanged between partitions and the cost reduc-
tion is recorded. After every vertex has been moved
once, the solution with the best gain is chosen. This is
repeated several times until no further improvements
can be found.

In contrast to other implementations, the local re-
finement algorithm in Party is based on theoretical
analysis finding upper bounds for the bisection width
of regular graphs [10, 15]. Instead of moving single
vertices, the Helpful-Sets (HS) heuristic (e. g. [17]) ex-
changes whole vertex sets between the partitions. How-
ever, this approach has only been successfully applied
to bi-sectioning yet.

2.2. Parallel Load Balancing Heuristics

To address the load balancing problem, distributed
versions of the libraries Metis and Jostle have been de-
veloped. Both of them apply about the same multilevel
techniques as their respective single processor version,
but some phases of the computation need special at-
tention due to their sequential nature. As an example,
a coloring of the graph’s vertices is used by the parallel
library ParMetis [21] to ensure that during the KL re-
finement no two neighboring vertices change their par-
tition simultaneously and therefore destroy the consis-
tency of the data structures. In contrast to Metis where
vertices stay on their partition until a new distribution
has been computed, the parallel version of Jostle [27]
maps each sub-domain to a single processor and ver-
tices which migrate do so already during the computa-
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Figure 1. Partitioning the shock graph after 9 refinement steps into 16 partitions. Metis (left) computes a
solution with edge-cut 1226 and 2082 boundary vertices, while the shape optimizing approach (right) finds
a partitioning with edge-cut 1168 and only 1795 boundary vertices.

tion of the repartitioning. Furthermore, Jostle, apart
from the edge-cut minimization, seems to incorporate
a shape optimization presented in [28]. However, since
we do not have access to the source code of the latest
version, we can only make assumptions here. Usually,
Metis is very fast while Jostle takes longer but often
computes better shaped partitions.

3. Shape Optimized Partitioning

The objective followed by the aforementioned li-
braries is the edge-cut minimization. However, it is
known that this is not necessarily the best metric to
follow. A more appropriate metric is the number of
boundary vertices. It models the resulting communi-
cation volume more accurately, but is unfortunately
harder to optimize [7].

This section describes our shape optimizing load bal-
ancing approach in more detail. Shape optimized parti-
tions typically exhibit few boundary vertices. We first
explain the learning framework and then present our
realization of its operations via a diffusion scheme. To
get a first impression, figure 1 illustrates a partitioning
computed with the edge-cut minimizing library Metis
and a solution obtained with the new approach.

3.1. The Bubble Framework

The idea of the bubble framework is to start with
an initial, often randomly chosen vertex (seed) per par-
tition, and all sub-domains are then grown simultane-
ously in a breadth-first manner. Colliding parts form a
common border and keep on growing along this border
— “Just like soap bubbles”. After the whole mesh has

been covered and all vertices of the graph have been
assigned to a partition this way, each component com-
putes its new center that acts as the seed in the next
iteration. This is usually repeated until a stable state,
where the movement of all seeds is small enough, is
reached. This procedure is based on the observation
that within “perfect” bubbles, the center and the seed
vertex coincide. Figure 2 illustrates the three main op-
erations.

The three steps can be implemented in several ways.
One idea is to choose the initial vertices randomly. To
grow the partitions, a breadth-first like algorithm is
started from every seed. During this process the parti-
tions alternately acquire one of their free neighbor ver-
tices until all vertices are assigned. Then, the vertex
with the minimal maximal distance to all other vertices
of the same partition becomes the new seed. However,
this approach shows several deficiencies. The initial
placement of the partitions may be very bad so that
many iterations are required. Also, the partition sizes
vary extremely. The time spent on finding new seeds is
quite long since a breadth-first-search has to be solved
for every vertex. Moreover, the partition quality is of-
ten unsatisfactory. Another important disadvantage is
that the growth phase cannot be parallelized because
vertices are assigned serially and earlier assignments
have a great impact on later decisions.

A second approach is described in [3] and has been
implemented in a former version of the FEM simu-
lation tool PadFEM. Here, the seeds are distributed
more evenly over the graph. To grow the partitions,
the smallest partition with at least one adjacent unas-
signed vertex grabs the vertex with the smallest Eu-
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Figure 2. The three operations of the learning
bubble framework: Init: Determination of initial
seeds for each partition (left). Grow: Growing
around the seeds (middle). Move: Movement of
the seeds to the partition centers (right).

clidean distance to its seed. The new seed of a par-
tition is determined as the vertex for which the sum
of Euclidean distances to all other vertices of the same
partition is minimal. To find this vertex quickly, some
estimation is used.

This approach solves some of the problems we have
seen before. As mentioned, the initial seed distribu-
tion is improved. Since the smallest possible partition
receives the next vertex, more attention is paid to the
balance and the determination of the center has been
improved to work faster, too. By including coordinates
in the choice of the next vertex, the partitions are usu-
ally also geometrically well shaped (and connected),
which is the main goal of this approach. Other quality
metrics are not considered.

However, by relying on vertex coordinates, this ap-
proach is only applicable if these are provided, and
sometimes the Euclidean distance does not coincide at
all with the path length between vertices, in particular
if an FEM mesh contains “holes”. It is a general prob-
lem when working with coordinates and occurs more
heavily for example in space-filling-curve based parti-
tionings [20]. The experiments made in [3] also reveal
that the selection mechanism, though improved by pre-
ferring under-weighted partitions, does still not lead to
sufficiently balanced domains. Hence, to fix this, some
additional computations are added after the last bubble
iteration. Concerning a possible parallelization, the sit-
uation stays the same as described before because the
selection process of the vertices is still strictly serial.

3.2. Diffusive Mechanisms

To overcome the problems mentioned in the previ-
ous subsection, the growth process in [18] is realized via
some iterations of a diffusive process. Note that diffu-
sion in graphs has been studied very well because it can
be applied to solve load balancing problems in various
scenarios (e.g. [1, 4]). The main idea behind apply-
ing it in a graph partitioning heuristic is the fact that
load primarily diffuses into densely connected regions
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Figure 3. Schematic view: Placing load on single
vertices (left) or a partition (right), the diffusion
process and the mapping of the vertices to the
partitions according to the load.

of the graph rather than into sparsely connected ones.
Following this observation, one can expect to identify
vertex sets that possess a high number of internal and
a small number of external edges. Furthermore, dif-
fusion possesses a large amount of parallelism since it
performs local operations only.

The growth and seed determination process is illus-
trated in figure 3. Given a seed vertex for each partition
(left), we place load on the seeds and use a diffusive pro-
cess to have it spread into the graph. This is performed
independently for every partition. After the load is dis-
tributed, we assign each vertex to that partition it has
obtained the highest load amount from.

The next step (right) does not place load on a sin-
gle vertex but distributes it evenly among all vertices
of the given partitions. After performing the diffusion
process, the resulting load distribution can either be
used for an optional consolidation step or for contract-
ing the partitions to the seed vertices of the next it-
eration. A consolidation again assigns the vertices to
partitions according to the highest load as in the pre-
vious step. This further improves the partition shapes.
During a contraction, for each partition the vertex con-
taining the highest load becomes its new seed.

The applied diffusion process must possess two im-
portant properties. To guarantee connected partitions,
it is necessary that vertices that are closer to the parti-
tion center receive more load than those further away.
The final load distribution therefore must be “hill-like”.
Furthermore, load must not only be distributed accord-
ing to the distance in the graph. Instead, the connec-
tivity, meaning the number of paths between vertices,
plays a vital role. If more load diffuses into dense re-
gions of the graph, the partition centers are directed
into these areas during the learning process. Hence,



the partition boundaries tend to be in sparser regions,
which reduces the number of boundary vertices and
therefore improves the partition quality.

As mentioned, a first implementation presented
in [18] applies FOS. Since FOS converges toward a fully
balanced load situation, it must be interrupted at some
point to preserve the hill-like structure. Though it is
possible to determine a suitable number of iterations,
it is rather difficult and since the interruption point
depends both on the graph and on the number of par-
titions, we were not able to find a general rule for this,
which results in an unreliable implementation.

To avoid this, [19] presents the disturbed diffusion
scheme FOS/A. Tt is based on FOS, but in each itera-
tion load is shifted back from all non-empty vertices to
the seed. This preserves the hill-like structure in the
final state. Although all experiments indicate that this
diffusion scheme converges, no proof has been found
yet. Furthermore, due to the disturbance, FOS/A per-
forms even slower than FOS.

In [14], a hill-like load distribution is computed by
solving a system of linear equations. This approach
adds an extra vertex to the graph that is connected
to every other vertex. Varying the capacity ¢ of the
edges incident to the extra vertex thereby controls the
spreading of the load.

In the following, we propose to omit the extra ver-
tex. We show that running the algorithm with the ac-
cording parameter setting ¢ = 0 is indeed equivalent to
applying a disturbed diffusion scheme we call FOS/C.
In contrast to FOS/A, the new scheme does allow neg-
ative load on the vertices. We provide the theoretical
background and prove the convergence of FOS/C. Sec-
tion 4 then presents an efficient way to solve the sys-
tems of linear equations that was prohibited before due
to the extra vertex.

3.3. Prerequisites

To show some properties of the new diffusion
scheme, we first need to introduce some basic nota-
tions. Let G = (V, E) be an unweighted, connected
graph with n = |V| vertices. The incidence matrix
A of Gis A € {—1,0,+1}VIXIEI. A contains in
each column corresponding to edge e = (u,v) the en-
tries —1 and +1 in the rows uw and v, and 0 else-
where. The Laplacian matrix L € Z!IVI*IVlis defined as
L = AAT. L is symmetric, positive semidefinite, and
of rank |[V|—1. The matrix M = I—aL (with0 < a < 1
suitably chosen, e.g. a = 1/(maxdeg(G) + 1)) is
a diffusion matriz, since it is nonnegative, symmet-
ric and doubly stochastic, and in case G is bipartite,
at least one diagonal entry of M is positive. Then,
1=p1 > pe > -+ > pp > —1 are the eigenvalues of
M and 1 is the eigenvector corresponding to ;.

We now formally introduce the First Order Diffusion
Scheme (FOS) from [1].

Definition 1 (FOS). Given a connected graph G =
(V,E) and a suitable constant . In each iteration, the
first order scheme (FOS) performs the operations:

(4) _ i i
fecuwy = @ (wg) — ))
wit) = @ Z £
e=(v,*)

In matrix notation, FOS can be written as
wtD = Muw®

where M = I — aL is the diffusion matrix.

As already mentioned, FOS converges toward the
equally balanced load situation. Furthermore, we know
that the computed flow is minimal according to the
|- llo-norm [2].

Lemma 1. Let M =1 — aL be the FOS diffusion ma-
triz, w®) the initial and W the balanced load situation.
Then, the first order scheme w1 = Mw® converges
to w.

L does not have full rank. Hence, the existence of
a solution depends on the right hand side of the linear
equation.

Lemma 2. The equation Lw = d has a solution (and
then infinitely many), iff d L 1.

The next lemma states that the || - ||2-minimal flow
can be computed by solving a linear system.

Lemma 3. Consider the quadratic minimization prob-
lem
min! || f||2 with respect to Af =d

Provided that d 1 1, the solution to this problem is
given by
f=ATw, where Lw =d
To prove the convergence of FOS/C, we require the
following observation.

Lemma 4. Let M be a diffusion matriz and d be a
vector perpendicular to 1. Then,

lm(I+M+M?* 4. +M)d=(I-M)'d

11— 00

Proof. Recall that 1 is an eigenvector to the simple
eigenvalue 1 of M. Since d L 1, i.e. 2?21 dj =0, it
follows that lim;_,.o M‘*t1d = 0. Hence,

lm (I-M)IT+M+M?+-.. +M)d

= lim (I-M")d = lim d — M"d
= d



Therefore, (I + M + M? + .- + M) is the inverse to
(I— M) for i — oo and any vector d perpendicular to
1, so that the claim follows. O

3.4. Diffusion with Constant Draining

We are now introducing a new diffusion scheme.
This scheme is based on FOS, but is disturbed in every
iteration. In contrast to FOS/A, this disturbance is not
restricted to the non-empty vertices, but performed on
all vertices.

In contrast to genuine FOS, the FOS/C scheme per-
forms two operations in each iteration. While the first
one is the original diffusion step, the second step in-
troduces a disturbance by shifting a small load amount
6 > 0 from all vertices of the graph to some selected
source vertices S C V. This disturbance can be de-
scribed by the drain vector d € R™, which is defined
as

d - { -0 :vé¢S
1 §-1V|/|S] = ¢ : otherwise
The vector d is added to the load vector resulting from
the diffusion step. Note that, since (d,1) = 0, this does
not change the total amount of system load.

Definition 2 (FOS/C). Given a connected graph
G = (V,E) and a suitable constant a. Let § > 0 be the
drain constant and d the corresponding drain vector.
Let S C V be the set of source vertices. In iteration
i, wq(f) denotes the load on vertex v and fe(i) the flow
over edge e. Let w®) represent the initial load situa-
tion. In each iteration i, the FOS/C scheme performs

the computations:

fe(l:)(u v) = Q- (wl(;) - w£17))
u = - Y 0,
e=(v,x)

In matrix notation, FOS/C can be written as
w™Y = Mw® + d.

Theorem 1 (Convergence of FOS/C). The FOS/C

scheme converges for any arbitrary initial load vector
(0)

wY).

Proof. Repeatedly applying the diffusion matrix to the
initial load vector w(®), we obtain

w® = Mw©® &4

w? = Mw® +d=MMuw® +d)+d
= M*w® 4 (M +T1)d

w® = Mw® M4 4+ M+1)d

Due to lemma 4, this yields

w™ = MW@ +1-M)"'d
M>*w(® 4 (aL)~'d

O

Since M>w(® is the evenly balanced load that FOS
computes, one can see that the solution of the disturbed
scheme FOS/C could also be determined by solving a
system of linear equations. In fact, in the converged
state, all load that is moved back onto the source ver-
tices has to be sent back in one iteration step. This
means that the solution of FOS/C is equivalent to com-
puting a || - ||o-minimal flow from the source vertices
into the graph.

Corollary 1. The convergence state w™® of FOS/C
can be characterized as:

w® = Mw®™ +4d
s (I-Mw™ = 4
& oaLw® = d

Hence, the convergence state can be determined by solv-
ing the system of linear equations Lw = d, where
w = aw™®),

Since the solution of Lw = d is only determined up
to a constant, we choose the one with ) wi = 0.
This normalization also ensures that the load distri-
butions computed for each partition have a common

reference point and are therefore comparable.

3.5. The Bubble-FOS/C Heuristic

The resulting algorithm is sketched in figure 4. It
can either be invoked with or without a valid partition-
ing 7. In the latter case, we determine initial seeds ran-
domly (line 3). Otherwise, we contract the given par-
titions (lines 5-7) applying the proposed mechanism.
Note that in either case 7 only contains a single seed
vertex for each partition when entering line 8.

Next, we determine a partitioning (lines 8-10). Ad-
ditional consolidations can be performed (lines 11-14).
Furthermore, these are used for balancing by scaling
the height functions w, (line 15). This approach can
quickly find almost balanced solutions in most cases. If
necessary, we perform an additional greedy balancing
operation (line 16) to ensure a certain partition size.
For this, we compute a || - ||,-minimal flow in the par-
tition graph and move the vertices that cause the least
error according to the height functions.

Depending on the quality of the initial solution, it is
advisable to repeat the learning process several times.
Before returning the partitioning 7, we migrate vertices



Algorithm Bubble-FOS/C(G, =, 1, i)
o1 in each loop [
02 if 7w is undefined

03 m = determine-seeds(G) /* initial seeds */
0« else

05 parallel for each partition p /* contraction */
06 solve Lw, = d,, and normalize w),

" (v) = prwp(v) > wp(u)Vu € V

—1: otherwise

os  parallel for each partition p /* compute partitioning */
09 solve Lw, = d, and normalize w,

w ) =p: wp(v) >we(v)Vg € {l,..., P}

11 In each iteration @ /* optional consolidation with ...*/

12 parallel for each partition p

13 solve Lw, = d, and normalize w),

1 m(v) =p : wp(v) > we(v)Vg e {1,..., P}

15 scale—balance(w) /* ... scale balancing */

16 greedy-balance(r)
17 return smooth(w)

/* greedy balancing */
/* smoothing */

Figure 4. Sketch of the Bubble-FOS/C heuristic.

if the number of their neighbors in another partition
is larger than the number in their own partition (line
17). This compensates numerical imprecisions that oc-
cur during the flow computation and further smoothes
the partition boundaries. However, it might lead to a
slightly higher imbalance.

4. Algebraic Multigrid

In this section we describe the Algebraic Multigrid
(AMG) method and its application within the Bubble
framework. It serves as solver for sparse linear systems
and provides the hierarchy for multilevel learning. We
present implementation details, in particular the algo-
rithms and parameters for the utilized AMG scheme.

4.1. Fundamentals of AMG

Most work performed by the Bubble-FOS/C algo-
rithm consists in solving the linear system Lw = d for
each of the P partitions. These could be solved by the
very popular Conjugate Gradient algorithm (CG) al-
gorithm (which is also suitable for symmetric positive
semi-definite systems as long as the right-hand side is
consistent [11]).

However, the convergence of CG tends to slow down
considerably when the linear systems to solve become
larger. Furthermore, recall that only d differs for each
partition, since the matrix L only depends on the graph
and therefore is the same for all P systems. Hence, it
should be advantageous to exploit this fact, e.g. by
applying Algebraic Multigrid as solver.

Multigrid methods (e.g. [25]) are among the fastest
iterative solvers and preconditioners for large linear

Algorithm V-cycle(Ls, w, d)

01 if L¢ is coarse enough then

02 return w = DirectSolve(L¢, w, d);
1: Relaxation:

03 for i = 1 to pre-steps do

o1 w = Presmooth(L¢, w, d);

2: Coarse grid correction:

/* Restriction of residual: */

05 r = R(d — Lsw);

/* Recursive call with coarse matrix: */
06 e = V-Cycle(Le, e, r);

/* Interpolation of coarse error: */
07 w = w + Pe;

3: Relaxation:

08 for i = 1 to post-steps do
09 w = Postsmooth(L¢, w, d);
10 return w;

Figure 5. Recursive V-Cycle Scheme

systems derived from a wide class of PDEs. They
are based on the observation that relaxation methods
such as Jacobi or Gauss-Seidel can only eliminate high-
frequency error components in the solution vector ef-
fectively. Therefore, one uses a hierarchy of matrices
whose size decreases from one hierarchy level to the
next one. The smooth error is passed recursively to
the next level, where its low-frequency components be-
come oscillatory and can be smoothed by relaxation
methods again.

AMG is an extension of classical multigrid to cases
where no geometric information is available. The main
difference between the two methods is the construc-
tion of the hierarchy. While classical multigrid typi-
cally builds it by successive mesh refinements, AMG
uses a top-down coarsening approach. For this, only
the matrix corresponding to the finest mesh is neces-
sary. Coarsening a matrix L = L¢ to obtain the coarse
matrix Le (f = fine, ¢ = coarse) of the next hierarchy
level consists of three main steps: First one determines
the coarse vertices, which must be able to interpolate
those nodes accurately which are not retained within
the coarse matrix. Then one determines interpolation
weights and sets up the prolongation matrix P and the
restriction matrix R = P7. The coarse matrix can now
be computed as RL¢P = L.. This process is repeated
recursively until the coarsest matrix is small enough to
be solved efficiently by direct methods.

After the hierarchy construction in the setup phase,
the actual solution process is performed by an al-
gorithm which consists of the following main oper-
ations: presmoothing, restriction, solving the coarse
problem recursively, interpolating the coarse solution,
and postsmoothing (cf. the V-cycle in figure 5).



Although AMG has been initially developed for M-
matrices [24], it can be applied to our problem as well:

Lemma 5. The equation Lw = d describing the con-
vergence state can be solved by an AMG scheme.

Proof. We have already seen that there exists a solu-
tion for the equation Lw = d because d L 1. It can be
easily verified that also r = d — Lew L 1 holds.

On the coarse grid we need to solve L.e = r, where
L. = RL¢P. Since the column sum of R is 1, r is
perpendicular to 1. Consequently, as L. is again sym-
metric positive semi-definite, the coarse problem has a
solution, too, and AMG is applicable. O

Since the AMG hierarchy built for one linear system
can be reused for all others with the same matrix as
well, we can expect superior run-times compared to
CG for non-trivial system sizes.

4.2. Learning on the AMG hierarchy

In experiments from e. g. [14] the learning process is
performed on the original graph only. If the initial par-
titioning is undefined or of low quality, many iterations
are required to find a good solution.

Therefore, we adopt the multilevel scheme presented
in section 2. Rather than computing an additional hi-
erarchy based on matchings, we use the existing AMG
hierarchy. This is possible because each matrix in this
hierarchy corresponds to a (possibly edge weighted)
graph, and two graphs of consecutive levels have a sim-
ilar structure. We perform Bubble-FOS/C as a refine-
ment heuristic on each level. This reduces the number
of required learning iterations and therefore the run-
time considerably.

4.3. Implementation

We have implemented our algorithm in C++ and
parallelized the most time consuming parts — solving
P linear systems concurrently and two matrix-matrix
multiplications for each AMG hierarchy level — with
POSIX threads.

After converting the graph to its Laplacian matrix,
we construct the corresponding AMG hierarchy. Here
we use PMIS coarsening [23] to reduce the number of
nodes in the next level substantially, so that the num-
ber of created levels remains modest. In cases where
PMIS coarsens too much, we neglect its result and ap-
ply CLJP coarsening [9] instead. While standard CLJP
coarsening reduces the weight of vertices whose influ-
ence has been taken into account by 1, we vary this
value adaptively to control the coarse grid size. Cur-
rently, we use a simple M-matrix interpolation from
[24]. Alternative schemes exist as discussed in sec. 6.

Table 1. Graphs used in this paper.

l Graph [ V] [ |E| [ origin ‘

biplane9 21701 | 42038 FEM 2D
crack 10240 | 30380 FEM 2D

crack (dual) 20141 | 30043 | FEM 2D dual
grid100x100 10000 | 19800 FEM 2D
stufelO 24010 | 46414 FEM 2D
shock9 36476 | 71290 FEM 2D
whitacker 9800 | 28989 FEM 2D

whitacker (dual) | 19190 | 28581 | FEM 2D dual

The algorithm then follows the multilevel paradigm
by starting the computation on the lowest hierarchy
level. On each level, the Bubble-FOS/C algorithm is
applied and its partitioning result is interpolated to
the next level according to the respective prolongation
matrix P. All linear systems are solved by Full Multi-
grid V-cycles, which join the concept of nested iteration
with V-cycles [25], until the desired error tolerance is
reached. A standard CG implementation serves as the
direct solver on the lowest level inside the V-Cycle.

5. Results

In this section we present some of our experiments
executed on a 4-processor Opteron (2.2 GHz, 1 MB
cache) machine running Linux (SMP-Kernel 2.4.21).
As compiler we use gce 3.4.1 with level 2 optimiza-
tion. The included test set comprises eight FEM graphs
with a modest number of vertices as listed in table 1.
We restrict our presentation to 12-partitionings of two-
dimensional FEM meshes.

5.1. Metrics

Concerning the quality of a partitioning, a number
of metrics are possible. The traditional one is the edge-
cut, i.e. the number of edges between different parti-
tions, but it is known that this usually does not model
the real costs. Therefore, we list the total number of
boundary vertices as a much more accurate measure of
communication costs [7]. Furthermore, the quality of
a partitioning depends on its balance. A less balanced
solution does not necessarily cause problems during the
computation, but the overall run-time of the underly-
ing FEM program typically degrades because proces-
sors with a smaller amount of work have to wait for
those with higher load. Moreover, imbalance allows
other metrics to decrease further and makes compar-
isons less meaningful.

5.2. Experiments

At first, we compare our new approach with a modi-
fied version of the heuristic from [14]. For the latter, we



Table 2. Comparison between the solutions applying the CG solver without a learning hierarchy and the
AMG approach with learning hierarchy.

CG AMG

Graph 1 CpuTlme 4 cpu Cut Boundary 1 CpuTlme4 cpu Cut  Boundary
biplane9 61.15s 26.04s 774 1136 1827s 7.10s 672 955
crack 15.93s  5.57s 1157 1142 398s 1.59s 1017 1004
crack (dual) 53.12s 20.96s 489 949 16.42s 6.00s 447 865
grid100x100 8.62 s 2.62 s 684 1000 5.54 s 2.26 s 575 949
stufel0 73.73s 30.87s 769 1156 22.83s 8.73s 574 725
shock9 138.53s 54.73s 1137 1673 4041s 15.21s 961 1480
whitacker 1220s  4.62s 984 970 3.68s 1.60s 966 957
whitacker (dual) | 47.97s  18.68 s 488 967 13.66 s 543s 493 973

Table 3. Comparison of the solutions computed by Metis, Jostle and the shape optimizing approach using
the AMG solver and the learning hierarchy.

Graph Metis Jostle Bubble-FOS/C
Time Cut Boundary | Time Cut Boundary Time Cut  Boundary

biplane9 0.03 s 670 1142 0.15s 647 1104 7.10 s 672 955
crack 0.02s 1041 1030 0.06 s 1031 1018 1.59 s 1017 1004
crack (dual) 0.02s 466 919 0.08 s 450 893 6.00 s 447 865
grid100x100 0.03s 584 1006 0.09s 549 992 2.26 s 575 949
stufel0 0.02s 570 948 0.15s 546 919 8.73 s 574 725
shock9 0.07s 1010 1663 0.19s 909 1665 15.21's 961 1480
whitacker 0.01s 1005 992 0.11 s 966 953 1.60 s 966 957
whitacker (dual) | 0.01s 528 1048 0.11s 515 1027 543s 493 973

omit the extra vertex (¢ = 0) and reduce the number
of learning steps significantly to speed up the computa-
tion. The linear systems are solved by a standard CG
implementation and learning is only performed on the
original graph.

For the AMG approach, we perform 1+ level learn-
ing steps and consolidations, respectively, while the CG
based algorithm is limited to one operation each on the
highest level. As can be seen from table 2, the new ap-
proach is about three times faster on average than the
old one. Moreover, in almost all cases it attains fewer
cut-edges and boundary vertices. Note that the heuris-
tic presented in [14] delivers better solution qualities
than presented here for the CG approach when a larger
number of learning iterations are performed. The cur-
rent straightforward implementation without the use of
scientific libraries nor processor bound threads achieves
a speedup of about 2.5 on four CPUs.

The comparison with the state-of-the-art sequen-
tial libraries Metis and Jostle shows that these are
about two orders of magnitude faster than our thread-
parallelized algorithm (table 3). Yet, this run-time in-
vestment is supposed to pay off whenever partitionings
of significantly higher quality with respect to the num-
ber of boundary vertices are found. Table 3 shows that

the Bubble-FOS/C heuristic succeeds in most cases to
produce comparable edge-cut values and — more impor-
tantly — better numbers of boundary vertices. While
Jostle obtains fewer boundary vertices for the graph
whitacker, our approach delivers the best results in all
other displayed cases concerning this metric. The bal-
ance values of the partitionings are not shown explic-
itly because all partitioners stay within the predefined
range of 3% imbalance.

These values confirm the results from previous simi-
lar approaches (e.g. [14], where the Bubble framework
with diffusive growing mechanisms has also been used
for load balancing of dynamically changing meshes).

6. Conclusion and Future Work

In this paper we have proposed an alternative
method to compute shape optimized graph partition-
ings. Compared to existing state-of-the-art libraries,
it is often able to find solutions with a lower number
of boundary vertices. Unfortunately, its current imple-
mentation requires a long run-time.

We have introduced a new diffusion scheme and
show that it converges toward a solution that can
also be computed by solving a system of linear equa-



tions. Replacing the diffusion scheme by FOS/C and
the CG solver by the Algebraic Multigrid Method, we
can speed up the involved flow computations substan-
tially. Furthermore, the constructed AMG hierarchy
can be applied to improve the learning process in terms
of time and quality without the need to compute and
store a separate matching hierarchy.

6.1. Future Work

A number of possible enhancements remain. First of
all we think that the convergence of AMG can be im-
proved by interpolation schemes [23] more suitable to
our coarsening algorithms. Better code optimization
and existing mathematical libraries as well as bind-
ing the threads to specific CPUs to enhance cache effi-
ciency can further speed up the computations. Extend-
ing the implementation to run on distributed memory
machines would allow to utilize more processors.

An important concern is the required memory us-
age which grows quadratically in the number of parti-
tions. However, one can observe that the linear equa-
tions do not need to be solved with full precision on the
whole graph. Reducing the uninteresting parts by e. g.
adaptive coarsening, one could significantly reduce the
memory usage as well as the run-time.
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