
Ulf Leser

Datenbanksysteme II:
Dynamic Hashing

Ulf Leser: Implementation of Database Systems 2

5 Layer Architecture

We are here

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems 3

Content of this Lecture

• Hashing
• Extensible Hashing
• Linear Hashing

Ulf Leser: Implementation of Database Systems 4

Sorting or Hashing

• Sorted or indexed files
– Typically log(n) IO for searching / deletions
– Overhead for keeping order in file or in index

• Danger of degradation
• Multiple orders require multiple indexes – multiple overhead

– Good support for range queries
• Can we do better … under certain circumstances?
• Hash files

– Can provide key-based access in 1 IO
• Searching for multiple keys – multiple hash indexes

– Incurs notable overhead if table size changes considerably
• Dynamic hashing

– Are bad for range queries

Ulf Leser: Implementation of Database Systems 5

Hash Files

• Set of buckets (≥ 1 blocks) B0, ...,Bm-1 , m>1
– We hash keys to blocks, not to single tuples
– We need to search key inside block / bucket

• Hash function h(k) = {0 ,..., m-1} on a set K of values
• Hash table H (bucket directory) of size m with ptrs to Bi’s

Hash Table

First block (bucket) Overflow blocks

Tuples

Ulf Leser: Implementation of Database Systems 6

• Hash function on Name
h (Name) = 0 if last character ≤ M

1 if last character ≥ N

Bond
George
Victoria

Bucket 0

Adams
Carter

Truman

Bucket 1

Wilson
Washington

Search “Adams”
1. h(Adams)=1
2. Bucket 1, Block 0?

Success

Search “Wilson”
1. h(Wilson)=1
2. Bucket 1, Block 0?
3. Bucket 1, Block 1?

Success

Search “Elisabeth”
1. h(Elisabeth)=0
2. Bucket 0, Block 0?

Failure

Example

Why last char?

Ulf Leser: Implementation of Database Systems 7

Alternative: Direct Block Hashing

• We can also directly hash keys into (first) block number
– Requires consecutive range of blocks
– h(key) = BLOCK_OFFSET + h’(key)

• Removes need for main memory hash table
• Heavily restricts block placement on disk

– Inappropriate for fast changing data

Ulf Leser: Implementation of Database Systems 8

Efficiency of Hashing

• Given n records, R records per block, m buckets
• Assume H is in main memory (or there is none)
• Average number of blocks per bucket: n / (m*R)

– Assuming a uniform hash function and no empty space
– Difficult to achieve in practice

• Search IO complexity
– n / (m*R) / 2 for successful search
– n / (m*R) for unsuccessful search (entire bucket)

• Insert IO complexity
– n / (m*R) if end of bucket cannot be accessed directly
– n / (m*R) / 2 if free space in one of the bucket

• If m large enough and good hash function: 1 IO

Ulf Leser: Implementation of Database Systems 9

Hash Functions

• Examples: Modulo, Bit-Shifting, aggregates, …
• Desirable: Uniform mapping of keys into [0…m-1]

– Keys should be equally distributed over all blocks – all the time
• Uniform mapping only possible if data distribution and

number of records (for estimating m) known in advance
– Which is unusual

• If known: Application-dependent hash functions
– Incorporating knowledge on expected distribution of keys

Ulf Leser: Implementation of Database Systems 10

Properties

• Hashing may degenerate to sequential scan
– If number of buckets static and too small
– If hash function produces large bias

• Extending m requires complete rehashing
– We need a new hash function
– Blocks all operations on this table

• Inefficient range queries – scan
– Or enumerate all distinct values in range (only integer)

• Very fast iff everything works fine
– “Practically constant” IO complexity

Ulf Leser: Implementation of Database Systems 11

Content of this Lecture

• Hashing
• Extensible Hashing
• Linear Hashing

Ulf Leser: Implementation of Database Systems 12

Extensible Hashing

• Traditionally, hashing is a static index structure
– Structure (buckets, hash function) is fixed once
– Cannot be changed gracefully (with small & local overhead)

• For DBMS, hashing must adapt to changing data volumes
and value distributions
– Dynamic hashing

• First idea: Extensible Hashing
– Hash function generates (long) bitstring

• Should distribute values evenly on every position of bitstring
– Only a prefix of this bitstring is used as index in hash table
– Size of prefix adapts to number of records

• As does size of hash table

Ulf Leser: Implementation of Database Systems 13

Hash functions

• h: K → {0,1}*
• Size of bitstring should be long enough for mapping into

as many buckets as maximally desired
– Though we do not use them all most of the time

• Example: inverse person IDs
– h(004) = 001000000... (4=0..0100)
– h(006) = 011000000... (6=0..0110)
– h(007) = 111000000... (7 =0..0111)
– h(013) = 101100000... (13 =0..01101)
– h(018) = 010010000... (18 =0..010010)
– h(032) = 000001000... (32 =0..0100000)
– H(048) = 000011000... (48 =0..0110000)

Ulf Leser: Implementation of Database Systems 14

Extensible Hashing

• Parameters
– d: global „depth“ of hash table, size of longest prefix currently used
– t: local „depth“ of a bucket, size of prefix used in this bucket

• Example
– Let a bucket store two records
– Start with two buckets and 1 bit for identification (d=t1=t2=1)

Keys as bitstring inverse hd=1(k)
2125 100001001101 101100100001 1

2126 100001001110 011100100001 0

2127 100001001111 111100100001 1

Ulf Leser: Implementation of Database Systems 15

Example cont‘d

• New record with x=2129
• Bucket for „1“ is full
• Need to split

– Duplicate hash table, d++
• We conceptually have four

buckets
– Un-splitted blocks remain

unchanged
– Overflowing bucket is split

and records are distributed
according to next bit

k as bitstring inverse hd=1

2125 100001001101 101100100001 1

2126 100001001110 011100100001 0

2127 100001001111 111100100001 1

2129 100001010001 100010100001 1

Ulf Leser: Implementation of Database Systems 16

Special Cases

• If block b overflows
and t(b)<d
– Create two new buckets,

leave d unchanged
– Distribute data from d

according to bit t(d) and
t(d)++

• If distribution creates
one overflown and one
empty bucket
– Recurse – split

overflown bucket again
(and again and again …)

00
01
10
11

00111
01100

10100
10101

11001

00
01
10
11

01100

10100
10101

11001

00111
00110

00000
00001

…
10100
10101

…
11110
11111

00111
01100

10100
10100

10101

11001

Ulf Leser: Implementation of Database Systems 17

7 13
6 18

32 48

4 Bucket: 001
Bucket: 01X

Bucket: 000

Bucket: 1XX

More Complex Example

• Assume reversed
bit hash function
on integers

• Currently four
buckets in use

• Global depth d=3
• Local depth t

between 1 and 3
• Size of global

directory: 2d=8

Ulf Leser: Implementation of Database Systems 18

7 13
6 18

32 48

4 Bucket: 001
Bucket: 01X

Bucket: 000

Bucket: 1XX

Example: Hash Table

001

010

011

100

101

110

111

000

Ulf Leser: Implementation of Database Systems 19

001: 4, 12; t=3

01X: 6, 18; t=2

000: 32, 40; t=3
1XX:7, 13; t=1

001

010

011

100

101

110

111

000

INSERT(28)
• 28 = 011100
• h(28)=001110

d=t;
Overflow

Inserting Values

Current
content
40 = 101000
32 = 100000
18 = 010010
13 = 001101
12 = 001100
7 = 000111
6 = 000110
4 = 000100

Ulf Leser: Implementation of Database Systems 20

01XX: 6, 18; t=20010: 4; t=4
1XXX: 7, 13; t=1

Splitting Deep Buckets

0011: 12, 28; t=4
000X: 32, 40; t=3

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000

h(12) = 001100
h(4) = 001000

h(28) = 001110

Content
40 = 101000
32 = 100000
18 = 010010
13 = 001101
12 = 001100
7 = 000111
6 = 000110
4 = 000100

Ulf Leser: Implementation of Database Systems 21

6, 18; t=212, 28; t=4

Next Insert

4; t=432, 40; t=3

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000

INSERT(5)
• 5 = 000101
• h(5)=101000

d≠t: Overflow but
no dir duplication

7, 13; t=1

Ulf Leser: Implementation of Database Systems 22

Splitting Shallow Buckets

• Assume we have to split overflowing bucket B
• B is shallow: t<d
• For all records r∈B, h(r) has the same length-t prefix
• If we split at next position (t++)

– Generate new bucket and rehash records
– This might generate an empty bucket
– The other bucket might still be overflowing – repeat split

• In the example, we rehash 5=101000, 7=111000, 13=101100
• Hence, one split suffices (with block prefixes 10 and 11)
• But, if we had 5=10100, 13=101100, 21=101010?

• Might eventually force a deep split with increase in d

Ulf Leser: Implementation of Database Systems 23

Summary

• Advantages
– Adapts to growing or shrinking number of records

• Deletion not shown
– No rehashing of the entire table – only overflown bucket
– Very fast if directory can be cached and h is well chosen

• Disadvantages
– Directory needs to be maintained (locks during splits, storage …)
– Does not properly handle skew wrt hash function

• No guaranteed bucket fill degree
– Many buckets might be almost empty, few almost full

• Directory can grow exponentially for linearly more records
– If all records share a very long prefix

– Values are not sorted, no range queries

Ulf Leser: Implementation of Database Systems 24

Content of this Lecture

• Hashing
• Extensible Hashing
• Linear Hashing

Ulf Leser: Implementation of Database Systems 25

Linear Hashing

• Similar to Extensible Hashing, but
– Don’t double directory on overflow, but increase one-by-one
– Guaranteed lower bound on bucket fill-degree
– Leads to some overflow blocks in buckets

• No more guarantee on 1 IO
• But only little more if hash function spreads evenly

Ulf Leser: Implementation of Database Systems 26

Overview

• h generates bitstring of length x, read right to left
• Parameters

– i: Current number of bits from x used
• As i grows, more bits are considered
• If h generates x bits, we use a1a2…ai for the last i bits of h(k)

– n: Total number of buckets currently used
• Only the first n values of bitstrings of length i have their own buckets

– r: Total number of records
• Fix threshold t – linear hashing guarantees that r/n<t

– The fill-degree constraint (FDC)
– As r increases, we sometimes must increase n
– Linear hashing only guarantees the average fill-degree

• But does not prevent scans in case of “bad” hash function
• Restricts the average #buckets that must be searched (not WC)

011101010110
grows

x

i

Ulf Leser: Implementation of Database Systems 27

Illustration

• We can address 2i buckets
– If we need more, i must be increased

• We actually have only n buckets
– If we need more because of FDC, we

need to increase n
– As long as n<2i – no problem
– Otherwise we first need to increase i

• A key k is hashed to a bistring h(k)
whose last i bit are called m(k)
– That is the address of k in the current

hash table
– m(k) maybe smaller than n (no

problem or larger (problem)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

16=2i

n=10

i=4

Ulf Leser: Implementation of Database Systems 28

Inserting Overview

• Insert a new key k
• Has two phases

• 1st: We store k
– Compute m(k)
– Bucket m(k) may exist or not; we insert anyway

• 2nd: If FDC is hurt – repair
– By inserting, r has grown by 1, so r/n might now be larger than t
– We increase n (and possibly i)
– This means creating a new bucket – where do we split?

Ulf Leser: Implementation of Database Systems 29

Insert(k): First Action

• Note: By construction, n ≥ 2i

– Proof comes later
• If m(k)<n

– The target bucket exists
– Store k in bucket m(k), potentially using

overflow blocks
• If m(k)≥n

– Bucket m(k) does not exist
– We redirect k into a bucket that does exist
– Flip i-th bit (from the right) of h(k) to 0

and store k in this bucket
• By construction, this bit is 1 (proof later)

– Note: This flipping also needs to be done
when searching keys

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

2i

2i-1

n=10

m
(k)<n

m
(k)

≥
n

Ulf Leser: Implementation of Database Systems 30

Insert(k): Second Action

• Check threshold; if r/n≥t, then
– If n=2i

• No more room to add another bucket
• Set i++
• This is only conceptual – no physical action
• Proceed (now we have n<2i)

– If n<2i

• There is still room in our address space
• We add (n+1)th bucket and set n++
• Which bucket to split?

– We do not split the bucket where we just
inserted (why should we?)

– We do not split the fullest bucket
– Instead, we use a cyclic scheme (no extra

admin cost)

0000
0001
0010
0011
0100
0101

0000
0001
0010
0011
0100
0101
0110
0111

Ulf Leser: Implementation of Database Systems 31

Which Bucket to Split

• We split buckets in fixed, cyclic order
• Split bucket with number n-2i-1

– As n increases, this pointer cycles through all buckets
– Let n=1a2a3…ai; then we split block with ID a2a3…ai into two blocks

with ID 0a2a3…ai and ID 1a2a3…ai
• Requires redistribution of bucket with hash key a2a3…ai
• This is one of the buckets where we had put redirected records
• This is not necessarily an overflown bucket
• Recall: Only the average fill degree is guaranteed

Ulf Leser: Implementation of Database Systems 32

Buckets Split Order

Assume we would split after every insert
i n Existing buckets Bucket to split: n-2i-1 Generates
1 2=10 0,1 0 00

10
2 3=11 00,10

1
1 01

11
4=100 00,10

01,11
00 000

100
3 5=101 000,100

10,01,11
01 001

101
6=110 000,100

001,101
10,11

10 010
110

7=111 000,100,001,101,
010,110,

11

11 011
111

Ulf Leser: Implementation of Database Systems 33

Example

• Assume 2 records in one block, x=4, t=1.74, i=1

0 0000
1010

1 1111

1a) Insert k=0101
m(k)=1<n=2
Insert into bucket 1
But now r/n≥t

0 0000
1010

1 1111
0101

1b) Since n=2i=2=10b
We need more address space
Increase i (virtually)
Add bucket number 2=10b
n=10b=1a1: Split bucket 0

into 10 and 00
n++

00 0000

01 1111
0101

10 1010

Start (with arbitrary keys)

01: Yet unsplit
stores 01 and 11
(by flipping)

Ulf Leser: Implementation of Database Systems 34

Example 2

2) Insert k=0001
m(k)=1, bucket exists
Insert into m(k)
Requires overflow block

00 0000

01 1111
0101

0001

10 1010

3a) Insert k=0111
m(k)=3=n=11b
Bucket doesn’t exist
Flip and redirect to 01

00 0000

01 1111
0101

0001
0111

10 1010

3b) r/n=6/3≥t – We split
n<4, so no need to increase i
Add bucket number 3=11b
Since n=11b, we split 01
Removes (here) overflown block

00 0000

01 0001
0101

10 1010

11 1111
0111

Ulf Leser: Implementation of Database Systems 35

Example 3

4a) Insert 0011
m(k)=3=11b < n=4=100b
Insert into 11b

4b) We must split again
Since n=2i, increase i
Nothing to do physically
(“Think” a leading 0)

00 0000

01 0001
0101

10 1010

11 1111
0111

0011

00 0000

01 0001
0101

10 1010

11 1111
0111

0011

Ulf Leser: Implementation of Database Systems 36

Example 4

4c) Split
Add block number 4=100b
Split 000b into 000b and 100b

000 0000

001 0001
0101

010 1010

011 1111
0111

0011

100 -

We keep the average bucket filling
But we have unevenly filled buckets –

some empty, some overflown

Ulf Leser: Implementation of Database Systems 37

Observations (Proofs)

• Due to the extension mechanism: 2i-1 ≤ n ≤ 2i

– Whenever n reaches 2i, i is increased => 2i doubles and n=2i/2 (for
the new i)

– Hence, n as binary number always has the form 1b1b2...bi-1

• By definition: m(k)<2i

– But possibly: m>n
• Such m must have a leading 1, as n must have one (see previous

observation)
• If we drop the leading 1 in m, we get mnew<2i-1

• Since n ≥ 2i-1, mnew ≤ n
• Thus, the chosen bucket mnew must already exist

• How do we implement the hash table?
– Not as array, as it must grow (and shrink)
– Linked list (linear search in memory) or AVL tree (log(n))

Ulf Leser: Implementation of Database Systems 38

Summary

• Advantages
– Adapts to varying number of records
– Slower growth and on average better space usage compared to

extensible hashing
– If buckets are sequential on disk, we don’t need a directory

• Compute m: look in m’th bucket (possible after flipping)

• Disadvantages
– Can degrade, as buckets are split in fixed order
– No adaptation to skewed value distribution
– Creates random-access IO on disk through overflow blocks

	Foliennummer 1
	5 Layer Architecture
	Content of this Lecture
	Sorting or Hashing
	Hash Files
	Example
	Alternative: Direct Block Hashing
	Efficiency of Hashing
	Hash Functions
	Properties
	Content of this Lecture
	Extensible Hashing
	Hash functions
	Extensible Hashing
	Example cont‘d
	Special Cases
	More Complex Example
	Example: Hash Table
	Inserting Values
	Splitting Deep Buckets
	Next Insert
	Splitting Shallow Buckets
	Summary
	Content of this Lecture
	Linear Hashing
	Overview
	Illustration
	Inserting Overview
	Insert(k): First Action
	Insert(k): Second Action
	Which Bucket to Split
	Buckets Split Order
	Example
	Example 2
	Example 3
	Example 4
	Observations (Proofs)
	Summary

