
Modellbasierte Softwareentwicklung (MODSOFT)

Part II

Domain Specific Languages

Graphical Notations
Prof. Joachim Fischer /

Dr. Markus Scheidgen / Dipl.-Inf. Andreas Blunk

{fischer,scheidge,blunk}@informatik.hu-berlin.de
LFE Systemanalyse, III.310

1

prolog
(1 VL)

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

0.
(2 VL)

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

1.
(2 VL)

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI

2.
(3 VL)

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

3.
(4 VL)

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

epilog
(2 VL)

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)

Agenda

2

➡

Previously on MODSOFT

3

Eclipse Modeling Framework

4

structure

EMFnotation semantics

Repository

Revision Diff

Compilation
Unit

* *

prevnext

«relation,
fragmentation»

* *

Graphical Notations
Introduction

5

Model-View-Controller

6

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

change

update

User

«instance-of» «instance-of»

«mapping»

Notation Meta-Model

▶ the reasonable example of bijective mappings, if secondary
notation is part of the model

Representation, Secondary Notation Model + Model

7

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

 public class Hello
 {
 int main(args[])
 {
 std.p("Hello");
 std.newline();
 return 0x0;
 }
 }

Representation SNM Model

Frameworks

▶ Draw2D

▶ GEF

▶ Graphiti

▶ GMF

▶ Sirius

8

Draw2D

GEF

GMF Graphiti

Sirius

EuGENia

Graphical Editing Framework (GEF)

9

Graphical Editing Framework

▶ Allows you to build MVC-based editors with arbitrary POJOs as
models and lightweight graphical objects(Draw2D) as views.

▶ Embedded into the eclipse editor framework, workspace
integration (copy paste, undo/redo, buttons, menus, outlines,
properties, etc.)

▶ Abstractions for

■ Rulers & Guides, Grid

■ Snap-to-Geometry, Centered Resize, Match Size

■ Constraint Move and Resize, Cloning, Panning

■ Palette View, Flyout Palette, Palette Stacks

■ Shortest Path Connection Routing

10

Graphical Editing Framework

▶ Allows you to build MVC-based editors with arbitrary POJOs as
models and lightweight graphical objects(Draw2D) as views.

▶ Embedded into the eclipse editor framework, workspace
integration (copy paste, undo/redo, buttons, menus, outlines,
properties, etc.)

▶ Abstractions for

■ Rulers & Guides, Grid

■ Snap-to-Geometry, Centered Resize, Match Size

■ Constraint Move and Resize, Cloning, Panning

■ Palette View, Flyout Palette, Palette Stacks

■ Shortest Path Connection Routing

10

Model View Controller (MVC) Pattern

11

Draw2D

▶ LightweightSystem

■ associates a figure composition
with an SWT Canvas

■ hooks listeners for most SWT
events, and forwards most of
them to an EventDispatcher

■ wich translates them into
events on the appropriate figure

▶ Paint events are forwarded to
the UpdateManager, which
coordinates painting and
layout.

12

Draw2D – Painting

13

▶ Z-Order

▶ Clipping

▶ Hit detection

Draw2D – Other Abstractions

▶ Layout

■ invalidation, update manager

▶ Connections and routing

▶ Coordinate systems

14

GEF – Core Concepts

▶ GraphicalEditor: for building an Editor.

▶ Viewer: foundation for displaying and editing your model.

▶ EditPart: elements inside a viewer.

▶ EditPolicy: restricts possible combination of elements

▶ Tool: interprets user input; represents mode.

▶ Palette: displays available tools.

▶ CommandStack: stores Commands for undo/redo.

▶ EditDomain: ties everything together.

15

▶ Controller, they associate models and views (EditPartViewer)

▶ One class (EditPart) per diagram element type

▶ One instance per diagram element

▶ Exception are links: have a figure, but are managed by source
and target editor parts

EditParts

16

▶ Controller, they associate models and views (EditPartViewer)

▶ One class (EditPart) per diagram element type

▶ One instance per diagram element

▶ Exception are links: have a figure, but are managed by source
and target editor parts

EditParts

16

▶ Controller, they associate models and views (EditPartViewer)

▶ One class (EditPart) per diagram element type

▶ One instance per diagram element

▶ Exception are links: have a figure, but are managed by source
and target editor parts

EditParts

16

▶ Controller, they associate models and views (EditPartViewer)

▶ One class (EditPart) per diagram element type

▶ One instance per diagram element

▶ Exception are links: have a figure, but are managed by source
and target editor parts

EditParts

16

▶ Controller, they associate models and views (EditPartViewer)

▶ One class (EditPart) per diagram element type

▶ One instance per diagram element

▶ Exception are links: have a figure, but are managed by source
and target editor parts

EditParts

16

Zest

▶ Zest is visualization toolkit for Eclipse. The primary goal of
Zest is to make graph based programming easy. Using Zest,
Graphs are considered SWT Components which have been
wrapped using standard JFace viewers. This allows
developers to use Zest the same way they use JFace Tables,
Trees and Lists.

17

Graphical Modeling Framework
(GMF)

18

Graphical Modeling Framework (GMF)

▶ GMF Runtime

■ combines EMF and GEF, EMF as models in GEF’s MVC implementation

■ provides consistent representations of models

◆ canvas composition

◆ associations

◆ composition in diagram elements (e.g. attributes in classes, multiplicities at
associations)

■ adds complexity and functionality, all GEF features fully retained

▶ GMF Tools

■ allows to describe editor with several models (i.e. editor descriptions)

■ generates GMF runtime code from these models

■ hides GMF runtime’s and GEF’s complexity, but introduces heavy limitations

19

Graphical Modeling Framework (GMF)

▶ GMF Runtime

■ combines EMF and GEF, EMF as models in GEF’s MVC implementation

■ provides consistent representations of models

◆ canvas composition

◆ associations

◆ composition in diagram elements (e.g. attributes in classes, multiplicities at
associations)

■ adds complexity and functionality, all GEF features fully retained

▶ GMF Tools

■ allows to describe editor with several models (i.e. editor descriptions)

■ generates GMF runtime code from these models

■ hides GMF runtime’s and GEF’s complexity, but introduces heavy limitations

19

GMF Tools

▶ several editors (tree editors)

■ graph definition

■ tool definition

■ mapping definition

■ genmodel definition

▶ wizzards for all editors

▶ dashboard

20

GMF Tools – Workflow

21

▶ demo time

22

Emphatic

▶ Generate GMF Tooling models from meta-model
annotations

23

Emphatic

▶ Generate GMF Tooling models from meta-model
annotations

23

@namespace(uri="filesystem", prefix="filesystem")
package filesystem;

@gmf.diagram
class Filesystem {
 val Drive[*] drives;
 val Sync[*] syncs;
}

class Drive extends Folder {

}

class Folder extends File {
 @gmf.compartment
 val File[*] contents;
}

class Shortcut extends File {
 @gmf.link(target.decoration="arrow", style="dash")
 ref File target;
}

@gmf.link(source="source", target="target", style="dot", width="2")
class Sync {
 ref File source;
 ref File target;
}

@gmf.node(label = "name")
class File {
 attr String name;
}

Emphatic

▶ Generate GMF Tooling models from meta-model
annotations

23

@namespace(uri="filesystem", prefix="filesystem")
package filesystem;

@gmf.diagram
class Filesystem {
 val Drive[*] drives;
 val Sync[*] syncs;
}

class Drive extends Folder {

}

class Folder extends File {
 @gmf.compartment
 val File[*] contents;
}

class Shortcut extends File {
 @gmf.link(target.decoration="arrow", style="dash")
 ref File target;
}

@gmf.link(source="source", target="target", style="dot", width="2")
class Sync {
 ref File source;
 ref File target;
}

@gmf.node(label = "name")
class File {
 attr String name;
}

Graphiti

24

Graphiti

▶ Combines EMF and GEF

▶ Hides complexity and thereby introduces limitations

25

Typical Visuals

26

Architectural Overview

27

GraphitiGraphiti

Rendering
Engine

Interaction
Component

ScreenScreen

Diagram Type
Agent

Diagram Type
Agent

Pictogram
Model

Pictogram
Model

Domain
Model

Domain
Model

Link ModelLink Model

R

R

Diagram Type Agent

28

Diagram Type Agent

Feature
Provider

Diagram Type
Provider

Add
Feature

Create
Feature

Delete
Feature …

How it Works

29

Result

Domain Hierarchie
Pictogram Elements

Container Shape

Container Shape

Shape

Shape

Container Shape

Shape

Links Visualization
Graphics Algorithms

EClass

Attribute EAttribute

Attribute EOperation

Shape

Shape

Link

Link Link

Link Link

Text

Text

Text

Graphiti vs. GMF Tools

30

Graphiti GMF

Architecture runtime-oriented generative

Interface self-contained GEF-dependent

Client logic centralized (feature
concept)

distributed
functionality

Look & feel standardized, defined by
SAP usability experts

simple, adaptable
in generated code

Graphiti vs. GMF Runtime

▶ Graphiti :

■ Contained API (using GEF/
Draw2D)

■ Hides complexity at expense
of flexibility

■ Decent documentation in
form of tutorial

■ Low cost of entry

31

▶ GMF Runtime:

■ Extends GEF/Draw2D

■ Adds complexity but also
functionality

■ Examples and
documentation are available

■ But no simple tutorials

■ High cost of entry

Sirius

32

Sirius

▶ Multi-View modeling workbenches on top of eclipse modeling
stack (EMF, EMFTools, GMF)

▶ Separation of modeling aspects and task, e.g. for multiple users

▶ Views

■ multiple representations for your model

■ diagrams (GMF)

■ trees

■ tables

■ (text)

▶ Layers

■ enable/disable elements in your notations
33

EMF Diagram Editor in Sirius

▶ show time

34

Summary

35

Draw2D

GEF

GMF Graphiti

Sirius

EuGENia

Combining Text and Diagrams

36

Combining Text and Diagrams

▶ Parsing vs. Model View Controller

■ a whole new model with each action vs. atomic commands on
one persisting model

■ identification of model elements via identifier necessary to
synchronize ever new textual notated model with the model in
MVC

◆ not always ambiguous

◆ e.g. renaming vs. remove and add

37

Combining Text and Diagrams

▶ side by side, textual and graphical notation for the whole model

■ e.g. Ecore editors

◆ Tree editor

◆ Diagram editor

◆ Emfatic

◆ OclInEcore editor

◆ ...

■ based on graphical and textual editors operating on Ecore models, i.e.
serialized as XMI

■ synchronization limited by automated generation of secondary notations

◆ white spaces in pretty printing

◆ (partial) automatic diagram layout

38

39

Combining Text and Diagrams

▶ integrated

■ textual fragments in graphical notations,

■ e.g.

◆ OCL expressions in UML class diagrams

◆ operation signatures in ECore models

◆ expressions in state charts

■ requires partial textual notations (i.e. different root nodes in grammar/
AST)

■ secondary notation is problematic

◆ omit, purely pretty print -> loss of secondary notation

◆ embed in model for graphical notation

■ less but still synchronization, auto layout problems
40

41

Summary

▶ Many different kinds of notations

■ trees, tables, texts, diagrams

▶ Multiple views

▶ Multiple notations

▶ Model-based development of notations and editors via frameworks

▶ Out of the box notations are almost free to generate

▶ Custom notations are more expensive

■ Trees are free, textual notations require some work, graphical notations
require a lot of work

▶ Structural similarity between notation and meta-model is required in
all cases. Composition is a major factor in notation and meta-model
design.

42

prolog
(1 VL)

Introduction: languages and their aspects, modeling vs.
programming, meta-modeling and the 4 layer model

0.
(2 VL)

Eclipse/Plug-ins: eclipse, plug-in model and plug-in description,
features, p2-repositories, RCPs

1.
(2 VL)

Structure: Ecore, genmodel, working with generated code,
constraints with Java and OCL, XML/XMI

2.
(3 VL)

Notation: Customizing the tree-editor, textural with XText,
graphical with GEF and GMF

3.
(4 VL)

Semantics: interpreters with Java, code-generation with Java and
XTend, model-transformations with Java and ATL

epilog
(2 VL)

Tools: persisting large models, model versioning and
comparison, model evolution and co-adaption, modular
languages with XBase, Meta Programming System (MPS)

Agenda

43

➡

