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Motivation

Tables are commonly used to display multidimensional data in an easy to grasp format. They are used in many
different contexts, either by themselves or embedded within full text documents. Tabular data is useful in
almost every domain and holds vast amounts of information that remains mostly separated and unconnected
from other data sources.

While some tables are structured and annotated similar to tables used in relational databases - and are
thereby relatively easy to query for specific results - there are many that are not. Quite often, tabular data
lacks labels or identifiers, or they cannot be used to uniquely identify a referenced entity. Many tables are
therefore not searchable and finding similar data relies on querying the enclosed text for indicators, even
though its connection to the table's data may not be obvious.

Additionally, many authors create different tables on the same base data, either unaware of or deliberately
differing from existing alternative visualizations. Finding these different versions, similar tables or the same
data in other tables is the goal that this work aims for.

There are multiple interpretations of what a similar table actually is. This work will focus on similarity based on
both content and structure of a given table's columns. Similarity based on sharing the same subject or topic,

based on content alone, has already been examined using text cIustering2 or inclusion dependencies?’. These
works have both influenced this work greatly (see Related Work).

Related Work

So far there have been successful implementations of document based similarity search that yield

performances similar to that of a human evaluator’, but the special structure of tabular data and the mostly
unannotated cell contents that oftentimes consist of only a single number or a few words make it especially
difficult to apply these traditional text analysis practices to tables.

Clustering of tables in text documents

A recent bachelor's thesis by Irina Glushanok? explored the possibility of clustering tables in scientific full text
documents. In this approach, the table cells were serialized and interpreted as plain text, tokenized and then
lemmatized. Numeric values, arithmetic expressions and empty values were discarded as was the structural
data implied by the column and row relationships. Her research suggests that one may use well known



clustering algorithms such as k-means, but would most likely get better results when considering not only the
textual contents and contextual information - such as document paragraphs referencing said table - but also
deducing from other types of cell contents, e.g. numeric values, as well as the structural information of the
table itself.

Web of Tables based on Inclusion Dependencies

Identifying inclusion dependencies between a large amount of tables has been implemented using the Many-

Algorithm by Fabian Tschirschnitz3. The objective was to find possible joins between tables gathered from
various online resources and therefore allow the user to visually explore connections between different data
sets. The approach is based on first creating a storage efficient representation of table columns that may then
be used to quickly determine the existence of inclusion dependencies between different tables' columns.

While this algorithm finds connections between multiple tables based on containment of values in columns,
we are interested in finding similar columns, including those whose values differ slightly and are not actual
inclusion dependencies. Two columns that contain mutually exclusive values from the same topic or
vocabulary are still similar, even though they do not qualify as an inclusion dependency. Many approaches
used in this work regarding sanitization and the concept of creating column signatures may prove to also be
useful for our problem.

TableSeer

TableSeer is an "automatic table extraction and search engine system"4 proposed by Ying Liu et. al. They
describe the detection and extraction of tables from scientific documents and offer search tools to the end
user. The results of such a table search are ranked by a custom TableRank using a vector space model which
considers the Table Term Frequency - Inverse Table Term Frequency (TTF-ITTF) based on the table's metadata
instead of the Term Frequency - Inverse Document Frequency (TF-IDF) approach based on the whole
document. Using this yields search results that are based on the table itself instead of the whole document.

Schema matching

Schema matching is the "task of identifying semantically same or similar elements in two different schemas".

Even though we do not have an explicit schema, when we consider a table as a data set, each table column as
a schema entry, and each row as a piece of instance data, the concept of schema matching also applies to our
problem. Finding matching schema entries (i.e. columns) in other tables therefore indicates structural similarity
between those tables. This is especially important on columns that do not offer many other aspects for
similarity, such as numeric columns without headers.

Specifically instance-level approaches like the ones used by Match® are valuable to this work, such as
constraint-based characterization of column values using value ranges or patterns. We will use this technique
to create column signatures and simplify finding other structurally similar columns.

Another approach is horizontal matching® using duplicate or very similar data within multiple tables' instance
data. One of the requirements is that some data rows exist in both of the compared instances and therefore
allows to match their column schemas. This works well even without a given schema, such as is our case,
however we will primarily focus on a column-based solution.

Goals



The goal of this work is to create an algorithm to retrieve a ranked list of tables from our corpus that are
similar to a given table or column. The ranking itself should be based on contents, context as well as the
table's structure and therefore utilize as much information as possible.

Methodology

We will use the same data corpus as Glushanok? which contains tables extracted from scientific documents.
The tables are available as parts of structured XML documents and will first be preprocessed and sanitized
regarding both structure and data. Afterwards the columns of every table will be analysed and given a
structural signature. These signatures will be compared to the given tables' column signatures in order to find
similarities. Other tables with similar columns will then be ranked according to the number of similar columns
and the similar columns' contents. The tables' contexts, especially the referencing paragraph(s), will also be
added to the inspected data. The result is a list of tables ranked by similarity which will be returned to the
user.

Preprocessing

All tables must be preprocessed and sanitized to increase their comparability. This has to be applied to both
structure as well as the contents, since both components are relevant for the algorithm.

Structural Preprocessing

Any column (or row) group, i.e. one cell spanning multiple columns (or rows) must be expanded by
duplicating the spanned content across all affected columns. The resulting cells may then also be collapsed
again. Combining cells like this leads to a unified representation of data.

Size
Apartment
m?2 sq ft Apartment Size m2 Size sq ft
Apt. 1 25 269 Apt. 1 25 269
Apt. 2 75 807 Apt. 2 75 807

Table with multi-row and multi-column cells The same table with unified cells.

Tables that only contain labels in the first column instead of a header row should be transposed, to create a
uniform structure where each row may be interpreted as a data set and each column represents a data
attribute. However, detecting this state is not trivial but may be deduced from small hints such as text style,
e.g. bolded text, or cell content, such as a lone text cell in an otherwise numeric row.

Apartment Apt. 1 Apt. 2
Size qm 25 75

Size sq ft 269 807

Incorrectly formatted table that needs to be transposed

In general, cells in first row or first column that differ strongly from the type of the remaining cells may
indicate a header row. These headers should also be separated from the data itself and instead be treated as



metadata on the respective columns.

Since neither the order of rows nor the order of columns are considered relevant with regards to table
similarity, no sorting is applied.

Data Preprocessing

The data found in each table cell will also be preprocessed. Values that represent an empty or null value (e.g.
0|, 10.0/, | null |, | ""|, | -/, | n/a ) will be unified into a single representative, while also trying to identify

numeric values. This is no trivial task since scientific notation (e.g. | 4x1073 |, | 4 * 1073 |, | 4e3 |), written

numbers (e.g. | one |, | eleven |), fractions (| 3/4 |, | % |), US decimal (e.g. | 1,234.56 |) and european decimal

(| 1.234,56 |) formats all need to be recognized and normalized. Similarly, string values should also be

normalized. There are many possibilities for this, some have already successfully been implemented, such as

dictionary-based lemmatization2. Additionally, the use of domain specific dictionaries to map synonyms,
stemming and filtering stop words may be considered. Since the corpus only includes sources written in
English, this approach to text preprocessing should yield comparable results.

Similarity Comparison

Determining the similarity of two tables will be a two-step process: First, based on column structure, and then
based on the actual cell contents and the table's context. For each comparable table pair, the similarity
between every column pair needs to be investigated since columns in similar tables aren't necessarily in the
same order.

The normalized tables' columns need to be inspected separately and every column will be assigned a feature

set based on its properties, possibly similar to the Bloom filter signature used in Web Tables3. However, these
will focus only on the metatadata of the column, for example its column header if available, its prominent data
type (integer, decimal, string or null), value range (for numeric values) or length range (for other types), value
distribution or spread, its size (row count) and possibly others. Each value may be weighted differently to fit
the user's search intention, e.g. a larger table containing many rows might still be considered similar to a
smaller one, as long as its data is similar. Using these feature sets allows us to determine the structural
similarity between two columns using a suitable measure depending on the selected features.

Another important aspect besides the column structure is the column's contents. For columns containing
primarily string values, comparing the columns' cell values for textual similarity is essential. Since the order of
rows is not relevant to our similarity detection, using a bag of words approach is an effective and well proven
solution. For numeric columns, a different approach is needed. However, one could assume that primarily
numeric columns that are of a similar structure will also contain similar contents, therefore allowing us to skip
this step.

Lastly, we will investigate the table's context. Since this applies equally to all columns, indifferent of the
column's primary content type, it is necessary to group the similar columns by their tables. The tables' context
similarity will then be evaluated using a bag of words approach.

The final score is then calculated by combining the resulting similarity values for column structure, column
content and table context into a single value.

Evaluation

Since similarity is a subjective measure and depends strongly on the user's search goals, the evaluation will be
based on multiple selected samples. These should span a wide range of use cases, such as queries using table



inputs and queries using column inputs. The retrieved ranked lists will be inspected regarding the similarity on
both the column level as well as the table level and marked as either (closely) similar, dissimilar or unknown.
Since the table similarity is strongly influenced by its column similarities, the main focus will lie on the column
similarity. Different feature weights and feature selections will be tested regarding structural similary.
Sanitization approaches for both textual and numeric cell values will most likely also produce different results
and should be examined closely. Comparing these samples to results from other approaches is also a
possibility. It should be possible to apply established text analysis to the table's containing document and
determine whether our approach yields more accurate or useful, or additional results not found using those

techniques.

1. Michael Lee, Brandon Pincombe, Matthew Welsh, 2005. An empirical evaluation of models of text
document similarity. Cognitive Science.«

2. Irina Glushanok, 2015. Semantische Analyse von Tabellen in Volltexten. Bachelor's Thesis, Humboldt
University of Berlin.—

3. Fabian Tschirschnitz, 2014. Spinning a Web of Tables through Inclusion Dependencies. Master's Thesis,
Hasso Plattner Institute. <

4.Ying Liu, Kun Bai, Prasenjit Mitra, C. Lee Giles, 2007. Searching for Tables in Digital Documents.
Document Analysis and Recognition, 2007. ICDAR 2007. Ninth International Conference on. IEEE.«

5. Alexander Bilke, Felix Naumann, 2005. Schema matching using duplicates. Data Engineering, 2005. ICDE
2005. Proceedings. 21st International Conference on. |IEEE.—

6. Erhard Rahm, Philip Bernstein, 2001. A survey of approaches to automatic schema matching. the VLDB
Journal, 10(4), pp.334-350.~



