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Abstract

Many applications require querying graph-structured .d&a graphs grow in
size, indexing becomes essential to ensure sufficient quesfgrmance. We present
the GRIPP index structure (GRaph Indexing based on Pre-@stdféler numbering)
for answering reachability and distance queries in gra@idPP requires only linear
space and can be computed very efficiently. Using GRIPP, waswer reachabil-
ity queries on graphs with 5,000,000 nodes on average inhess5 milliseconds,
which is unrivaled by previous methods. We can also answstamiie queries on
large graphs more efficiently using the GRIPP index strecuiye evaluate the per-
formance and scalability of our approach on real, randord,saale-free networks
using an implementation of GRIPP inside a relational datalmaanagement system.
Thus, GRIPP can be integrated very easily into existinglg@pented applications.
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1 Introduction

Managing, analyzing, and querying graph-like data is irtgdrin many areas such as
geographic information systems [13], web site analysi$, [A0d XML documents with
XPointers [23]. In addition, the semantic web builds on R®Eraph-based data model,
and graph-based query languages such as RQL [18] or SpalQus, querying graphs
is likely to become even more important in the near future.

In our area of research we mainly deal with data from the tifersces. In every living
cell there exist complex mechanisms involving DNA, proseiand chemical compounds
that are constitutive for the functioning of the cell. It mmcommonly acknowledged that
further progress in understanding the complex mechanissidd a living cell can only be
achieved if the interplay of many components, organizeceimarks, is understood [4].

The size of the networks under consideration can be verglaigpical biological
networks, such as gene regulation or protein interactidwarés, are currently in the
range of tens of thousands of nodes. This number increasesatically as activity in
measuring interactions moves from bacteria to higher osgas) such as humans [3].
Already today, networks of biomedical entities (geneseakées, drugs, etc.) extracted
from large publication databases contain up to 6 millionestigEvery network can also
be considered as graph.

Querying large graphs is a challenge. Important types ofigsién labeled, directed
graphs areeachability, distance andpath queries We assume that the graph is stored
in a relational database management system. Thus, alleguegied to be translated into
SQL queries. Using a naive approach, the queries can be egtstsetraversing the graph
at query time, starting from nodeand performing a depth-first or breadth-first search [8].
This method does not need any precomputed index, but must$ethe entire graph.

As a second option, we can pre-compute the transitive @ofLC) of the graph.
Stored in a table, we can use the TC as an index with which adéldly queries can be
answered by a single table lookup. But on the downside, tteedfithe TC is in worst-
case quadratic in the number of nodes of the graph [2]. Thidees its computation and
storage infeasible for large graphs.

There is a need for new index structures to efficiently ansearhability and distance
gueries on large graphs. In this paper we present such ax stdeture, called GRIPP.
Its main idea is an adaptation of the pre- and postorder ntngscheme — so far only
applied to trees [9] and DAGs [24] — to (cyclic, possibly unied) graphs. The GRIPP
index can be computed very efficiently and requires onlydirspace in the size of the
graph. Querying GRIPP requires multiple queries, but Bibijcorders of magnitude less
gueries than graph traversal. Thus, in general the quefgrpeaince of GRIPP compares
favorably with graph traversal and can be used on graphsefgorial the scope of TC.
The properties of TC, recursive query strategies, and GRIBRompared qualitatively
in Table 1.

Clearly, indexing trees is simpler than indexing generabgs. In general, the per-
formance of different approaches to indexing and querynaglgs largely depends on the
structure of the graphs under study, for instance, whettesr &re random or scale-free,

http://iwww.w3.org/TR/rdf-spargl-query
2See http://www.pubgene.org.
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Query time Index creation
infeasible for
Transitive closure very fast graphs>10,000
nodes
Recursive strategy very slow no index needed
GRIPP fast fast

Table 1: Different strategies for answering reachability queries on graphs, separating
efforts for indexing and querying.

and whether they are dense or sparse. These differencefaranot sufficiently recog-
nized when new methods are developed. We are especialtgstee in an index structure
that exploits the structure of biological networks, whigk,dike many other real-world
networks, scale-free. This means that the distributioheftode degree follows a power-
law [15], resulting in very few well connected nodes and maagles having only one
incoming or outgoing edges (see Figure 1).

NP

Figure 1: A scale-free graph. The darker the nodes, the higher their degree.

Our paper is organized as follows. In the next section werdssour graph data
model and common ways to query graph structured data. InoBeBtwe present the
GRIPP index structure itself. In Section 4 we show how to iffity evaluate reachabil-
ity and distance queries using GRIPP. In Section 5, we dss¢reuristics for indexing
scale-free graphs. Section 6 gives implementation ddtailhe presented methods. In
Section 7, we give experimental results for synthetic ramdsynthetic scale-free, and
real biological networks, with graph sizes ranging from0D @o five million nodes and
different graph densities. Section 8 discusses relate#t aod Section 9 concludes the
paper.

2 Background

We adopt notation from Cormen et al. [8]. A graph= (V, E) is a collection of nodes

V' and edgesy. We only consider connected graphs with labeled nodes aedtdd,
unlabeled edges. Ttszeof a graph /|G|, is the number of noded’| plus the number of
edgeg F|. Thedegreeof a node is the number of incoming and outgoing edges of a.node
Given a graplz, apathp is a sequence of nodes that are connected by directed edges.
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We want to answer reachability and distance queries on graph

Definition 2.1 (Reachability) LetG = (V, E) andv, w € V. w isreachabldromv iff at
least one path from to w exists.

Definition 2.2 (Distance) Let v,w € V. The length of the shortest path is called the
distancebetweens andw. If no path between andw exists, the path length is infinite.

Of course, for a given pair of nodesw there can exist several paths that are shortest.

2.1 Querying Graphs in Databases

We analyze the problem of answering reachability and digt@ueries on graphs stored
in a relational database system.

We assume that graphs are stored as a collection of nodegdged.eThe informa-
tion on nodes includes a unique identifier and possibly aatdit information. Edges
are stored as binary relationship between two nodes, seagdgmcency list. Additional
attributes on edges can be stored as well.

Reachability is concerned with the question if a path betwe® nodes exists. Given
two nodesv andw, the functionreach(v, w) returnstrue if a path fromv to w exists,
otherwisefalse. For distance queries we are interested in the length ofitbetest path.
The functiondist(v, w) returns the distance, i.e., the length of the shortest pativeen
nodesv andw. If no path exists, the function returng11.

The simplest way to answer questions on graphs is to tratteesgraph at query time
using depth- or breadth-first search [8]. This requires fmogortional to the number of
traversed edges, i.e., in worst-case the size of the grapa.rélational database system
depth- and breadth-first search can not be expressed byasthB@L in all database
systems, but must be implemented using user-defined funsctio

The commercial database management systems Oracle and EBVhBve imple-
mented recursive query strategies. IBM DB2 supports the Q03 standard, while
Oracle uses its own syntax. The implementations aim at iitieyadata, i.e., mainly tree
structured data. Starting with version 10g Oracle also ipes/methods to handle cy-
cles. Oracle’s implementation traverses graph structdega in depth-first order. When
answering reachability or distance questions, Oracle enat®s all cycle free paths be-
tween the start and end node. This behavior makes the cumpl@mentation inefficient
for reachability and distance queries as is discussed itiddet. We did not evaluate the
implementation of the SQL 2003 standard in IBM DB2.

Another option to answer some queries in graphs is to prepaberthe transitive clo-
sureT'C. TheTC of a graph is the set of node pairs, v) for which a path fromu to
v exists. Efficient algorithms for computing téC' in relational databases have been
developed [2, 21]. But the size of th&” is O(|V|?), which makes it inapplicable to large
graphs. In addition to that, the transitive closure is orlgable of answering reachability
guestions. Distance questions can be answered if, in addiinode pairs, the distance
between the nodes is stored as well. Answering questiongt gdaoh lengths or actual
paths is not possible using the transitive closure alone.
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A different indexing strategy is to label nodes using the jred postorder labeling
scheme. But this indexing scheme was only described forstreetured data [9]. As it
allows to maintain the order of child nodes in the tree it if waited to index XML docu-
ments [11]. In previous work we extended this indexing sahé&mindex large ontologies
that are structured as directed acyclic graphs (DAGs). Wd as 'unfolding’ technique,
where each added 'non-tree’ edge introduces new entriéetimtlex structure [24]. The
target node of the additional edge as well as all successtgsnget additional pre- and
postorder ranks. Thus, each node has as many pre- and postahdes as there are paths
from the root node to this node. Using this technique thexrsize grows tremendously
with increasing number of edges, making it only feasibletfee-like DAGs. For highly
connected DAGs as well as for graphs we have to apply diftenelexing methods.

2.2 Pre- and postorder labeling

Our indexing scheme for graphs is based on the pre- and plestmidexing scheme for
trees. We will therefore first explain this indexing schemietfees in more detalil.

Given atree, in the pre- and postorder indexing scheme eadiin the tree receives
three values, a preorder value, a postorder value, and itk dithe node in the tree. Pre-
and postorder values are assigned to a node according tod#eio which the nodes are
visited during a depth-first traversal of the tree. The pteowvaluev,,. is assigned the
first time nodev is encountered during the traversal. The postorder vglygeis assigned
after all successor nodesohave been traversed. Originally, two counters are used, one
for the preorder value and one for the postorder value. Bathreeremented after each
assignment. In our implementation we use only one countebdth values as this is
advantageous for querying. We will explain this in the faliog.

The depth ofv, v, iS also assigned during the depth-first traversal. Thehdefpt
the root node of the tree is The depth of any nodein the tree is the distance to the root
node.

Example 2.1 A pre- and postorder labeled tree with depth information t&nseen in
Figure 2(a).

The the list of nodes together with assigned pre- and postaaues and depth in-
formation form an index through which reachability and aiste queries on trees can
be answered with a single SQL query.ufis reachable fromv, w must have a higher
preorder and lower postorder value than.e., wy,.e > Upre A Wpost < Vpost- HOWEVET,
the evaluation of this condition in a RDBMS is prohibitivediow due to the two non-
equijoins [12]. Fortunately, the test condition can berre®d to a single value using
the following observation. During the creation of the ingerodev always receives its
preorder value before its successors get their pre- andnplestvalues. The postorder
value of nodev is assigned after all successor nodes have pre- and pastaildes. As
the counter is incremented after every assignment, theagrerell as postorder values of
any successor node of v must lie within the borders given by the pre- and postorder
values ofv, i.e., [Vpre, Upost]. ThUS,reach(v, w) < Vpre < Wpre < Upost-
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If reach(v, w) evaluates to true we know there exists a path fiota w. As in trees
only one path between two nodes may exist this is also theedtgrath. The length of
that path i&Udepth — Udepth i.e., diSt(U, U)) = Wdepth — Udepth-

Example 2.2 In Figure 2(b), the gray area shows the preorder range in \Wlat reach-
able nodes from nodB are located.

post
[0,15,0] 161
'FA“ p— “R\D H
\ 1ZI N . ¥(5'
1,6,1] ©[7,8,1] [9,14,1] 3 \\
gp wC
B F
(E) ©G) 4f\E
2,3,2] 4,5,2] 10,11,2] —112,13,2] r

4 8 12 16pre

(a) Pre- and postorder labeling of a tree. (b) Pre-/ postorder plane. In gray: Preorder
range betweem,,. andB,,s:.

Figure 2: Indexing trees by pre- and postorder labeling.

The method as described only works for trees. As soon as madesnultiple incom-
ing edges they are visited multiple times during a traveasdlthus no unique pair of pre-
and postorder values can be assigned.

3 GRIPP — A Graph Index Structure

The main idea of the GRIPP index structure is intriguingipslie. In GRIPP every node
in the graph receives at least one pair of pre- and postoedees and depth information.
However, as nodes can have multiple parents, one pair isiffmient to encode the entire
graph structure. Some nodes in the graph have to be encodedigythan one pair of
pre- and postorder values and depth information.

For now, we assume that the graph has exactly one root nedepme node without
incoming edges. We also assume that an arbitrary, yet fixelér @mong nodes exists,
e.g., an order based on node labels. In Section 5 we explaiiabke order for graphs
and we also show how to deal with graphs with multiple or withmot nodes.

For the creation of the GRIPP index we start at the root nod&.dburing a depth-
first traversal of7 we assign pre- and postorder values and depth informatieral\éays
traverse child nodes of a node according to their order. Aenodith » > 1 incoming
edges is reached times during the traversal on edges1 < ¢ < n. The edge:; on
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which we reach for the first time is called &ee edge We assign a preorder value and
depth tov and proceed the depth-first traversal. After all successtdes ofv have a value
pair,v receives its postorder value. Later, we will reach nodeer edges;, e; # ¢,. We
call those edges; non-tree edgesEach time we reachwe assign a new triple (preorder
value, postorder value, and depth) to ned&ut we do not traverse child nodes«of

We store the pre- and postorder values and the depth togeithethe node identifier
asinstancesn the index table /ND(G). Every node will have as many instances in
IND(G) as it has incoming edges @. Analogously to the distinction of tree and non-
tree edges we distinguish between tree and non-tree irrgtameND (G).

Definition 3.1 (Tree and non-tree instances)Let IND(G) be the index table of graph
G. Letv € V be a node of7 andv’ be an instance of in IND(G). v’ is atree instance
of v, iff it was the first instance created ferin IND(G). Otherwisev’ is a non-tree

instanceof v.

In the following, we refer to any instance iVD( G) of a nodev asv’, to a tree instance
asv”, and to a non-tree instance @8. The set of tree instances IVD((G) is I” and
the set of non-tree instances/i§. In analogy, the set of tree edgesfi$ and the set of
non-tree edge&”. We shall need the distinction of instances for queryingxasagned
in Section 4.

Example 3.1 Figure 3(a) shows a graph and Figure 3(b) shows its indexdat@sulting
from a traversal in lexicographic order of node labels. Nedeand B have two instances
in IND(G) because they have two incoming edges.

node| pre post depth type
R 0 21 0 tree
A 1 20 1 tree
B 2 7 2 tree
E 3 4 3 tree
F 5 6 3 tree
C 8 9 2 tree
D 10 19 2 tree
G 11 14 3 tree
B 12 13 4 non-tree
H 15 18 3 tree
A 16 17 4 non-tree

(a) A graphG. (b) Index tableIND(G).

Figure 3: Graph G and its GRIPP index table IND(G). Solid lines in the graph
represent tree edges, dashed lines are non-tree edges.

The GRIPP index structure resembles a rooted tree, whichaVehe order tree,
oO(G).

Definition 3.2 (Order tree) Let G = (V, E) and let IND(G) be its index table. The
order treeD(G), is a tree that contains all instances 8¥D(G) as nodes connected by
all edges of.
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Intuitively, O(G) consists of a spanning tré&(G) and a 'non-tree’ partV(G). The
spanning tree contains the tree instance of every node igrdph and is connected by
only tree edges. The non-tree part®fG) contains one node for every non-tree instance
in IND(G) connected by a non-tree edge to a node in the spannin@'t@g Therefore,
every non-tree instance is a leaf nodeli), while tree instances can be inner or leaf
nodes. Note that the structure@f ) depends on the order in which is traversed. In
Section 5 we shall explain how we can select an order thaesitpally well suited.

Definition 3.3 (Partitioning) LetG = (V, E) be a graph with the index tablBVD(G)
and resulting order tree)(G). O(G) can bepartitionedinto two disjoint graphs: a
spanning treel'(G) = (I7, ET) and a disconnected non-tree pawt(G) = (IV, EV),
with |17 = |V|, IT UIN = IND(G), ET UEN = E.

Example 3.2 In Figure 4 the instances ofND((G) shown in Figure 3(b) are plotted.
NodesA and B have two nodes i (&) as they have two instancesiVD(G), one tree
and one non-tree instance.

post
20?5“— - _.D
N +0_ _H
15:l \ \G A
:\ \\ h‘B
X N
10: | ‘C
tB,F
5 WE

10 15 20pre
Figure 4: Pre-/ postorder plane for GRIPP index table from Figure 3(b). Dotted lines

indicate O(G). Non-tree instances are displayed in gray.

3.1 Properties of the GRIPP index
3.1.1 Time and Space Requirements

The space requirements to store the GRIPP index table &rlinghe size of the graph.
The GRIPP index table has as many entrieg-dsas edges plus one entry for the root
node, because (a) every edge traversal generates onecengtdiVD () and (b) every
edge is traversed exactly once.

To create the GRIPP index structure we perform a depth-fiestch over a grapty.
The depth-first search has a time complexity)dfG|) (see [8]). We will analyze the time
complexity to create GRIPP in more detail now. During theekxdreation we basically
perform four steps for every edge.

These steps are
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e return the next child node of a node,

e check ifv has already been seen during the traversal,
¢ if not addv to the list of traversed nodes, and

e insertv as instance ifND(G).

We assume we can search a specific tuple in a table contairiiges inlog(n) time
and that insertion is constant. To get the next child nodefoode we requirévg(|E|)
time. To get all child nodes for one node we regirelog(E), with n being the outdegree
of that node. To get the child nodes for all nodes we therefees| E| x log(|E|) time
as we have in totdlF'| edges. To check if we have already traversed that child redasst
log(|V]) time, i.e., for all child node$E| * log(|V]) time. During the traversal we will
add all nodes once to the list of traversed nodes (storedatsorel table), which takes
in total |V| time. In addition we add an instance for every child nodéN® (G), which
takes|E| time. Therefore, the total required time|B| x log(|E| « [V|) + |V| + |E| to
create the GRIPP index structure in a relational databastersy

3.1.2 Properties ofO(G)

Preorder of tree instance In the GRIPP index structure the tree instance of a node
has a lower preorder rank than all non-tree instances ofittde. Intuitively, we traverse

G in depth-first order. When we reactfor the first time, the traversed edge becomes a
tree edge and is added with a tree instance to the GRIPP index table. Thetines we
reachw it is added with a non-tree instance to the index table. Axtumter for the pre-
and postorder values is never decreased the preorder Vale mon-tree instance must
be higher than that of the tree instance.

Distance of nodes inD(G) Letv,w € V andv’,w’ € O(G) be an instance af andw,
respectively. Ifv" is ancestor ta’ in O(G) we can determine the distancewdfandw’ in
O(G) by calculatingwy,,.;, — v, Note that this is not the distance betweeandw in
G. To aquire the distance between two nodes we have to do maoke(see Section 4.3).

Example 3.3 Figure 5 shows an order tre@(G) for a scale-free graplix with 100 nodes
and 200 edges. The child nodes in the order tree are orderedrding to their preorder
values from left to right. During the index creation we treseethe graph in depth-first
order. We stop extending a path if (a) the node has no chileeaad (b) the node has
already been traversed. This means we traverse the graptheep’ as possible. This is
reflected in Figure 5. The tree instanck of the first traversed child nodeduring the
index creation is the left-most child node of the root in Fegh. Asc has many reachable
nodes in, ¢’ has many successor nodes ). The remaining child nodes of the root
node have only few successor nodes. These nodes (a) eithephastance iIWND(G)
when they were traversed or (b) are non-tree instances ehdly traversed nodes.
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] GRIPP-¥Viewer

Figure 5: Order tree created by GRIPP for a graph of 100 nodes and 200 edges.

4 Querying GRIPP

In the following chapter we show how to use GRIPP to efficieatiswer reachability and
distance queries for a fixed pair of nodes. As answeringristgueries for a fixed pair
of nodes first requires to know if a path between the two noglisssawe first concentrate
on reachability queries and then proceed to answeringraistqueries.

Recall, in trees both query types can be answered with aeslogkup because all
reachable nodes of a nodehave a preorder value that is contained within the borders
given byw,,.. anduv,,g anddist(v, w) = Waepth — Vdepth-

When querying the GRIPP index structure in this way, we faaegroblems. First,

v has multiple instances ilWD((G), each with its individual pre- and postorder value.
Second, in the preorder range of an instavioe will only find instances of nodes that
are reachable fron¥ in O(G). Nodes reachable fromin G but not frome’ in O(G) will

be missed. Thus, to find all reachable node&'jiwe have to extend the search by using
thehop technique
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4.1 Hop technique

To evaluatereach(v, w) and dist(v, w) we use the GRIPP index tabl&/D(G). Every
non-tree instance af in IND(G) is a leaf node irO(G) and therefore has no successors
in O(G). But every node also has one tree instancé in IND(G). If vT is an inner
node inO(G), v* has reachable nodes in O(G) such thav?,, < w! . < vl . Those

pre pre post*
can be retrieved with a single query. We call thisreeichable instance sef v.

Definition 4.1 (Reachable instance setletv € V be a node of grapit; and v’ <
IND(Q) its tree instance. Theeachable instance seftv, written R1S(v), is the set of alll

instances that are reachable fromh in O(G), i.e., have a preorder value in),.. v),].

Thus, the first step to answetach(v, w) is as follows. We first find the tree instance
vT of v and retrieve its reachable instance setv'lE RIS(v), with v’ instance ofw, we
finish and returrirue, otherwise we have to extend the search.

Recall that inRIS(v) we only find instances that are reachable fromin O(G),
because during the creation BYD( G) with reaching an already visited node we insert
a non-tree instance iVD(G) and do not traverse the child nodes of that node. There-
fore, if R1S(v) contains non-tree instances of nodes their child nodestmigtthave an
instance ink1S(v), i.e., these nodes are reachable froin G, but not fromv’ in O(G).

To account for those we have to examine all non-tree inssaotrodes inR1S(v). We
call those nodebop nodedor v.

Definition 4.2 (Hop node) Letv, w € V andw®™ be a non-tree instance af. If w" ¢
RIS(v) thenw is called ahop nodé€for .

Example 4.1 Figure 6 shows the GRIPP index structure for the graph in Feg8(a)
plotted in a two-dimensional co-ordinate plane. When werydier reach(D, C') we
initially consider the reachable instance set/of R1S(D) contains non-tree instances of
AandB, i.e., both are hop nodes fdp.

IOO%. R
R RN
15[ 1 \ \ A

10

5

TT T T T T T T T T T T T T T T T T T 1™

5 10 15 20pre
Figure 6: The figure shows O(G) from Figure 3(a). The preorder ranges of RIS(D)

and RIS(B) are in darkgray, the range of RIS(A) is in lightgray. Nodes A and B are
hop nodes for D. .

Every hop node i?1S(v) has a reachable instance seti(z). The nodes in that set
are reachable from in G, but not fromv” in O(G). Thus, we have to identify all hop



4 QUERYING GRIPP 11

nodes and recursively check their reachable instance®atsein, we basically perform a
depth-first search ové?((G) using hop nodes in ascending order of their preorder values.
We stop traversing)(G) if we find an instance of node or if there exists no further
non-traversed hop node.

In IND(G) there existE| — |V| non-tree instances, each of which can be a hop node.
Thus, querying GRIPP foreach(v, w) requires in worst casg| — |V| queries. This
is better than a depth-first traversal Gf as this requires in worst casg| traversals.
Furthermore, we can save most of those queries by intetljgreming.

4.2 Reachability queries

Example 4.2 Consider Figure 6 andeach(D, R). We find non-tree instances of nodés
and B in RIS(D). If we first used as hop node, we find non-tree instancesiaind B

in RIS(A). Clearly, we do not need to useas hop node again. Therefore, we next use
B as hop node. The tree instance®fis a successor of the tree instancebfn O(G).
This implies that? S (B) is contained inRIS(A), i.e., we will not find new instances in
RIS(B) that are not already contained iR/S(A). Therefore, retrieving?/S(B) is not
necessary and can be pruned.

In general we want to avoid posing queries for preorder ramgech we have already
checked. During our search we keep a lisof all nodes that were used to retrieve a
reachable instance set, i.e., the start node and the hog.nddes assume we have found
a new hop nodé. The decision whether we need to consider the reachabbniresset of
h entirely, partly, or not at all, depends on the location eftitee instance’ of & relative
to the tree instances of nodeslin

4.2.1 Pruning strategies for reachability queries

There are four possible locations bf in relation to the tree instanag’ of any node
u € U. These are shown in Figure f* either is

e (a) equal to,

e (b) a successor of,

e (c) an ancestor of, or
e (d) a sibling tou”.

Since we may consider all nodeslinfor pruning, these results in four possible cases:
(a)h! is equal to the tree instance of any nod@in(b) 7 is successor of the tree instance
of at least one node iti; (c) h” is ancestor of the tree instance of at least one nodé in
and neither (a) nor (b) is true; and (4 is sibling to the tree instances of all nodes in
U. Note that the pre- and postorder ranges of two instancea®aer overlap. They are
either disjoint or one is entirely contained in the other.

In case (d), no pruning is possible and we have to consideerktiee reachable in-
stance set ok, as there exists no previous reachable instance set thettscimgtances in
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BT — T uT
(@) hT equalsu™ (b) ™ successor ofi”
hT
A AV
(c) T ancestor of,” (d) T sibling tou”

Figure 7: Possible locations of 17 of hop node 1 relative to u”, u € U.

RIS(h). For the remaining three cases we can apply pruning to etisatrao instance is
considered twice during the evaluationefich(v, w).

In the first case (see Figure 7(a)), we can skgntirely. A non-tree instance afhas
already been used as hop node and therefore the reachdhtecmset of the tree instance
of h has been checked.

In the second case (see Figure 7(b)) we also can/sHipthis case there existse U
such that” is successor aof?, i.e.,h” € RIS(u). Thus, the entire reachable instance set
of hop nodéh is contained inkS () and has already been considered.

In the third case we have to be more careful.

Example 4.3 Consider Figure 6 and the queryach(D, R). Assume, we have retrieved
RIS(D) and RIS(B) and have expanded the search usih@s hop nodeRIS(A) con-
tains the tree instance a8 and D and therefore also contain8/S(B) and RIS (D).
Thus, when we considét/S(A) we can 'skip’ the range oR1S(B) and RIS (D).

Skip Strategy We first assume that only oné exists that is a successorof. Thus,
RIS (u) is contained inRIS(h). This situation is displayed in Figure 7(c). Considering
the entire reachable instance seb¢éads to duplication of work. To avoid this we use the
skip strategyworking as follows. For every node € U we store the pre- and postorder
value ofu”, i.e., the borders aR1S(u). In that range all instances are covereditiy (u)
and we can skip the preorder range without missing instaiwesonly have to consider
instances fronR 1S (h) whose preorder values lie outside the pre- and postordgerah
ul,
If there is more than one successor nodeah U, the situation is slightly more
complicated. Essentially, we can skip all their ranges wsearching?/S (k). This could
be optimized by merging ranges iteratively during the deatttus reducing the number
of necessary interval operations. However, we currentlgatanerge ranges.

We could merge ranges iin only for cases (c) and (d). In case (c) the tree instance of
the hop nodé is ancestor to tree instances of node& inNe could shorte®/ by deleting
all nodesu that have a tree instance RV.S(h). But as deletion operations are expensive
in RDBMS we currently do not merge ranges in that context. dsec(d) ranges can be
adjoining, i.e., thei{ ., + 1 = uj .. In that case we could merge those two entries. But

1post
as this is computationally more expensive than to skip batiges separately we also do
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not merge ranges in that case. In addition, we searcli/lishly a few times during a
reachability query (shown in Section 7), i.e., the cost tagaeanges might not account
for the gain of merging.

Stop Strategy When querying graphs for reachability between nodesdw we can
stop extending the search as soon as we have found an ingtacen the reachable
instance set of the current hop nddeBut if w ¢ RIS(h) we must find every hop node in
RIS(h) and start a recursive search. It would be advantageous ifiew kn advance that
in RIS (h) does not exist a hop node that will extend the search, bedaulsat case we
do not have to query for the tree instance of every hop nodendeshow cases where
this property can be pre-computed.

Recall that a hop node for nodes a nodeh that has a non-tree instance RS (s).
h is not used as hop node if the tree instancé &f in R1S(s) (Figures 7(a), 7(b)). We
can precompute a list of nodégor which all hop nodes have this property. We call those
nodesstop nodess their reachable instance sets will not extend the search.

Definition 4.3 (Stop node) Lets € V' be a node of grapli’ and letR1S(s) be its reach-
able instance setif)(G). s is called astop nodeff all non-tree instances ik /S (s) also
have their corresponding tree instancesiiS (s) or are a non-tree instance of

Intuitively, a stop node is a node inGG for which in R1S(s) for every non-tree instance
there exists a corresponding tree instance. This mearsaltheodes reachable from
in G are reachable from” in O(G), i.e., have an instance iRIS(s). Clearly, nodes
reachable fromy in G can also have non-tree instances in other reachable iestats
than RIS (s).

When we reach the tree instancesafuring the search we immediately know that we
need not extend the search further using hop nodé&6ts). We only have to check if
w € RIS(s). The GRIPP index structure in Figure 3 contains severalstales, namely
nodesk, A, B, E, F, andC. As heuristic, during the search we prefer stop nodes as hop
nodes over non-stop nodes.

Example 4.4 As an illustration for a complex search process Figure 8 shive evalu-
ation of the reachability queryeach(21, 52) on a graph with 100 nodes and 200 edges.
The query starts by considering the reachable instancefssdde 21. InRIS(21) there

are two hop nodes, namely 13 and 2. As 13 has the lower prevalae we use this
node as next hop nod&/S5(13) contains the tree instance of 21, i.e., we skip that range
during the search. IR1S(13) there are several non-tree instances, including a non-tree
instance of stop node 3. Therefore, we use that node as ngxtdae. RIS (%) contains

an instance of node 52, i.e., we can retunrue.

If we had not found node 52 iRIS(3) we could also stop our search in this case, as
node 13 as well as 21 are successor nodes of 3 in the orderTres. means no non-tree
instance in a reachable instance set would point to a treeaim=e outside?15(3), i.e.,
we could not find an instance of node 52.
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Figure 8: reach(21,52) on a generated scale-free graph with 100 nodes and 200 edges.
In (a) RIS(21) is dark. The non-tree instance of the next hop node 13 is light-colored.
In (b) RIS(13) is dark. The one non-tree instance of stop node 3 is light-colored, which
is used as next hop node. In (c) RIS(3) is dark. Two instances of the end node 52

are in RIS(3).
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4.3 Distance queries

To answerdist(v, w) using GRIPP we begin at nodeand traverse the index structure
using hop nodes. During the traversal we search for an iostafw in the reachable
instance set of the start node or of hop nodes. If we find aamestofuw we can determine
the path length from to w using GRIPP. As this path may not be the shortest, we have to
traverse the index structure further. Applying a naive apph we have to systematically
use every non-tree instance as hop node. We stop when no megsedinon-tree instance
is available. The length of the shortest path found is theadce betwemn andw.

In the following we first explain how to determine path lergtietween two nodes
using GRIPP. Later we will show how to apply different prupistrategies to make the
evaluation of distance queries more efficient.

4.3.1 Determine path lengths

To determine the length of a path we need the depth of noddwi®GRIPP order tree
O(G). Assume two nodes andw. If an instancew’ of w is element ofRIS(v) we
know that (a)w is reachable fromy and (b) one path betweenandw has the length
Whepin — Vaepu, With 0™ tree instance of andw’ any instance ofy € RIS(v). This is not
necessarily the distance between the two nodes, as a spattemay exist through hop
nodes.

Example 4.5 Figure 9 showsD(G) for the graph in Figure 3(a) with the depth of the
nodes. When querying falist(D, E') we first retrieveRIS (D), which contains two hop
node, namely and B. The path length from the tree instanB of D to the non-tree
instancesA™ and BY of A and B, respectively, is in both cases 2), ,, — Dj. ,, = 2
and By ,, — Dj.,., = 2). RIS(D) does not contain the end nod# but we can extend
the search usingl or B as hop nodes.

ost |
P 20

15
10

5

TT T T T T T T T T T T T T T T T T 1T 1™

10 15 20pre
Figure 9: The example shows O(G) from Figure 3(a) together with the depth of the

nodes. The preorder range of RIS(D) is in darkgray. Nodes A and B are hop nodes.

If wis notin RIS (v) we have to extend the search using hop nodes. We can determine
the path length from the tree instanceof v to the non-tree instandg’ of the first hop
nodeh,. If there exists no instance af in RIS(h;) we proceed with traversin@(G)
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using further hop nodés until we find an instance’ of w. To determine the path length
of the pathp starting atv, containing hop nodefs, ...h,, and ending atv we have to sum
up the path lengths for every part of the path as shown in Emuéat

n—1
plen(v,w) = len(v”, V) + Z len(h, b)) + len(hY, w') (1)
i=1
with h; € p,1 <i < n,len(a, b) = baeptn — Qaeprn, With b successor of in O(G).

Example 4.6 To evaluatelist(D, ') on the GRIPP index structure shown in Figure 9 we
first use nodel as hop node. We find” € RIS(A) withlen(DT, AN) +len(AT ET) =
2 + 2 = 4. As next step we use as hop node. We also fifd” € RIS(B), in this case
with len(DT, BY) + len(BT, ET) =2+ 1 = 3.

There are no further unused hop nodedidfS (D). There are two non-tree instances
in RIS(A), i.e., A and B, which we have already used with a lower distance. We will
prune hop nodesl and B and thereforeiist(D, E) = 3.

4.3.2 General query strategy for distance queries

To determine the distance between nodesdw we use the following query strategy.
We first answereach(v, w) as described in Section 4.2. iach(v, w) = false we stop
and returndist(v, w) = null. Otherwise, we determine the length of the path found when
computingreach(v, w) as first upper bound for the distance.

In the second step we perform a breadth-first search OVéf) starting atv. We
traverse)(G) by using hop nodes; in ascending order of the path length betweemd
h;. Be aware, this does not mean that we use hop nodes in thetbeyeaare found during
the search (see also Example 4.7). We stop traveiSiig) as soon as no further hop
node can be used. The length of the shortest path is the céshkertween andw.

Example 4.7 Figure 10 shows a distance query from node¢o w. We first answer
reach(v, w). We uséh,; as first hop node and find two instanceswih RIS (h;).

We now start the breadth-first search by using hop nodes iaraBing order of the
path length between and hop nodes. We first uge as hop node aglen(v, h;) <
plen(v, hg). RIS(h;) contains a non-tree instance bf. We use the node as hop node
that has the shortest path length#d. Asplen(v, hy) = 5 and plen(v, hy) = 7 we use
hs as next hop node. Finally, we usg as hop node. As there are no further hop nodes
the distance betweanandw is the shortest path length found.

4.3.3 Pruning strategies for distance queries

For reachability queries only the location of the tree instis important to decide if
we can prune a hop node In Section 4.2 we identified four possible locations of the
tree instance of a hop nodéin relation to reachable instance sets of used hop nbdes
(Figure 7).

For distance queries in addition to the location of the trestaince of hop node we
also have to consider the path length between the start nmatle. Ve have to compare
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Figure 10: Evaluating distance queries. We use hop nodes in order of their subscripts.
len(vT b)) =2, len(vT,hY) =7, and len(h], b)) =3

plen(v, h) to all path lengths betweanand’ over nodes irU. For that reason we store
for everyu € U the depth inD(G) (uaeper) @nd the path lengthug,.,,) betweerv andu.

Example 4.8 Consider Figure 9 andist(D, E'). RIS(D) contains non-tree instances of
nodesA and B, both with the same path lengthfa We use nodd as first hop node and
find £ with a path length oft. When querying for reachability we will not ugeas hop
node, as the tree instance is successor to a used hop nodevidp\ior distance queries
we have to usé& as hop node. The path length betwderand B is two, the currently
shortest path betweeh and E is 4. Thus, usingB as hop node can result in a shorter
path. In this case the path betwefnand £ over B is 3.

We now show for all four cases individually when we can pruop hodes.

h™ equalsu € U In case that the tree instangé of the hop nodé: is equal to the
tree instance.” of a nodeu € U we have already seen all instancesdS (7). But if
plen(v, h) # plen(v, u) the path lengths betweenand nodes inR1S(u) are incorrect.
If plen(v,h) > plen(v,u) we do not have to usé as hop node for distance queries
as the path lengths betweerand nodes inR1S(«) would only increase. Otherwise, if
plen(v, h) < plen(v, u) we must usé: as hop node, as we have to adjust the previously
computed path lengths betweemand nodes iS5 (h).

During a breadth-first search we will never get the situatiatplen (v, h) < plen(v, u)
as we use non-tree instances in ascending order of theitgragth tov, i.e., plen(v, h) >
plen(v, u) always holds and we can therefore always prune.

Example 4.9 That case is displayed in Figure 11RIS(v) contains two non-tree in-
stances, i.ex™ andhY, with len(v ™, u™) < len(v™, ™). If we useu” first we addu to
the list of used nodel§ and retrieveR1S(u). As next non-tree instance we considér
and find thath = u. Aslen(v?,u") < len(v”, h™') we do not have to useto retrieve
RIS(u) again. Otherwise, if we used" first we also had to use” as we had to adjust
the path lengths to nodes /S (h).
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o7
ul = nT
A A
h

Figure 11: Case h = u for distance queries.

h” successor ofi € U In the second casg’ is successor of the tree instance of at
least one node iV. For reachability queries we can prune that case entireli®/8(h)

is contained in at least onBIS(u). For distance queries we also have to compare the
path length fromv directly toh to the path length from overw to h, i.e., plen(v, h) and
plen(v, u) + len(u®, 7).

If plen(v,h) # plen(v,u) + len(u”,h") we have to adjust the path lengths in
RIS (u). If plen(v, h) > plen(v, u) + len(u”, h™) the path lengths betweenand nodes
in RIS(u) will remain constant or even increase. To answer distaneei@giwe are not
interested in longer path and therefore we will not ésas hop node. Otherwise, if
plen(v, h) < plen(v,u) + len(u”, hT) we must usé:r as hop node and adjust the path
lengths between and nodes im?/S (u).

Example 4.10 Consider Figure 12. R1S(v) contains two hop nodes, namelyand h
with len(vT, u™) < len(v™, h™V). We useu as first hop node. In the next step we consider
hY. We find that,” is successor af”. We reachh” over two different paths, one directly
fromwv to h, and one fromv overwu to h. Therefore there exist two different path lengths
fromw to h.

e plen(v,h) = plen(v™, h')
e plen(v,h) = plen(v™, u™) + len(u™, hT)

We have to usé as hop node only if the path betweemand h overw is longer than
the path directly tdh. In every other case we can prune.

o7
uT
/&\ "
h
Figure 12: Case h! successor of u” for distance queries.

h™ ancestor ofu € U In the third case i%” is ancestor of the tree instaneé of a
node inU and neither of the previous two cases are true. For readyatpileries we
exclude the range between pre- and postorder value of ewelgwn € RIS(h). For
distance queries we must consider the path length betweer /. to decide if we can
skip a preorder range.
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If plen(v,h) + len(h™,u™) > plen(v,u) the path lengths betweenand nodes in
RIS(u) will remain constant or even increase, i.e., we can skip tea.aOtherwise, if
plen(v, h) + len(h™,u™) < plen(v, u) we cannot skip the area and must adjust the path
lengths between and nodes im?/S (u).

Example 4.11 Consider Figure 13. Here agairR/S(v) contains two hop nodes,and
hwith len(v”, u™) < len(v™, hY). We useu as first hop node. In the next step we tise
as hop node. A8 is ancestor of.” we reachu’ over two different paths, one directly
fromv to u, and one fromv overh to u. Therefore there exist two different path lengths
fromv to u.

e plen(v,u) = plen(v?, u™)

o plen(v,u) = plen(v™, AY) + len(h™, u™)

If len(vT, u™) < len(vT, W) +len(hT, u") we can skip the preorder range between

T T H
Uy, andu,,,,, otherwise not.

During a breadth-first search of the index structpte:(v, u) < plen(v,h) as we
usedu before we used as hop node. As we use hop nodes in ascending order of their
path lengths te the non-tree instane€" of u must have an equal or lower distance than
the non-tree instance &f'. Therefore during a breadth-first search we can always skip
the preorder range of used hop nodeRi$ (h).

hT

%\ o
h

Figure 13: Case h' ancestor of u” for distance queries.

h' sibling to all u € U In the last case i&” sibling to all nodes: € U. In this case
we have to retrieveR1S(h) regardless of the path length betweeand/ as we know
nothing about instances RIS (h).

plen(v,h) > plen(v,w)-2 When querying fordist(v, w) we can also prune hop nodes if
plen(v, h) > plen(v, w) regardless of the location of the tree instance of the hoe niéd
we usedh as hop node the path length betweeandw would only increase. Actually,
we can prune hop nodesgten(v, h) > plen(v, w) — 2. If plen(v, h) = plen(v, w) we
can only find a path from to w overh of plen(v, w) = plen(v, w) + 1, as we require
at least one step to reaehin RIS(h). Similarly, if plen(v, h) = plen(v,w) — 1 we
can only find a path length oveérof plen(v, w) = plen(v, w), which is not shorter than
the currently shortest path. Therefore we can prungedf(v, w) > plen(v, w) — 2.

In contrast, ifplen(v, h) = plen(v, w) — 2 we could find a path betweenandw of
plen(v, w) = plen(v, w) — 1, i.e., we can not prune in that case.
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In addition for a breadth-first search over GRIPP we have tonpdes on a stack.
As we know that only hop nodes withlen (v, h) > plen(v, w) — 2 might contribute to
shorter paths we do not have to put any hop node on the stackengath length te
exceeds the current upper bound. Therefore, performingafireachability query and
returning an initial upper bound for the distance reducesitimber of nodes that are put
on the stack.

4.3.4 Distance queries in GRIPP — depth-first vs. breadth-fst search

We can use two different search strategies for distanceieguer GRIPP - depth-first
or breadth-first search. Using depth-first search we can emswch (v, w) very fast
using few hop nodes (experimentally verified in Section Her&fore fordist(v, w) we
can quickly determine a first upper bound for the distance @mondeed the depth-first
traversal. After we have found and instanceof w we proceed using hop nodes whose
non-tree instances are siblingdd in O(G). For such a hop node it could be the case
thatplen(v, h) > dist(v, w). This means that usingwill not contribute to the result — as
we will find shorter paths by using successive hop nodes. Iddimg), using a depth-first
search might lead to unnecessarily used hop nodes.

In contrast, during a breadth-first search we use hop nodescending order of their
distance to the query node. This means that we always usereldep with plen(v, h) <
dist(v, w), i.e.,h might be on the shortest path betweesndw. In addition, when using
breadth-first search the pruning strategies for the caSes «’ andh” ancestor of,”
are simpler, as we do not have to compare path lengths.

Example 4.12 Figures 14 and 15 on pages 21 and 22 show the evaluation ottantis
guery on a graph with 100 nodes and 200 edges.

To evaluatereach(21, 7) we first perform a reachability query. We start at natle
and use node as first hop node. We find three instances of node RIS(2). The
shortest path length is1.

In the next step we start the breadth-first search over theRBRhdex tree. During
the search we add non-tree instances to the list of not tssanon-tree instances. The
added non-tree instances up to path lengtire shown in Table 2. The table also reflects
the progression during the breadth-first traversal.
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Figure 14: First two steps on the evaluation of dist(21, 7).
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(a) The tree instance of6 is (b) In RIS(3) there is another instance @f The path length over
successor to the tree instancéop nodes is 9.

of 2 and 13. But we have to

use16 as hop node as the path

lengths betweel and nodes in

RIS(16) decreases.

Figure 15: Two further hop steps during dist(21, 7). The shortest path is 21 —2—11—
92 - 17—-3—-22—-75—-38—7



plen | Search steps starting in with nogle
1 |2 13
2 |23 16 98
3 11%4c | 24 1374
4
5 3 15| 87 65°
6 5 20 14 91° | 5
7 3,31, 47,36 | 131, 30°¢, 51° 4,1,139,19, 42

Table 2: Added non-tree instances to the list of not traversed non-tree instances. The table also shows the progression of the
search. We did not use non-tree instances with superscript 0 = without successors, ¢q = equals a previous hop node, and suc =

successor of a previous hop node and path length correct.
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5 Heuristics for GRIPP

In this section we show that GRIPP is especially well suitgddense graphs. In GRIPP,
mostly two criteria influence the performance of querie9: The order of child nodes
during the index creation, and (2) the order in which hop sate used during the search
phase.

5.1 Order of child nodes

Consider a queryeach(v, w). Clearly, the best GRIPP index structure would contain
all reachable nodes fromin G in RIS(v) and therefore the query could be answered
with a single lookup. This is only the case whemas been traversed before all of its
successors. We obviously cannot compute a special indestste for every possible
start node. However, we can learn from this observationahbgbod’ order is one where
nodes with many reachable nodegimalso should have large reachable instance sets in
O(G), i.e., that these nodes should be traversed early durirexiogkation. With such
nodes, we scan large fractions of the graph with few quefiéss helps in pruning hop
nodes.

This criteria can be satisfied easily in scale-free graphg;wcontain few highly con-
nected nodes (called hubs in the following) and many spas®minected nodes. Hubs
have many incoming and outgoing edges and a high chance wfghavarge set of suc-
cessor nodes. To ensure that hubs also get a large reachatdade set we need to
traverse them early during the GRIPP index creation. Weeaelthis goal by choosing
child nodes in the order of their degree during index creaths another positive effect,
hubs are also reached by many nodes. Thus, they tend to aggrgaas hop node in the
search phase, even if the start nadaf a query is not a hub. Thereby, the search quickly
reaches a node very close to the root of the order tree. @glaades according to their
degree is advantageous for all types of graphs, not onlycdesree graphs. In Section 7
we show the influence of the graph type on query performangereally.

5.2 Order of hop nodes

The second criteria that influences the query performartteisrder in which hop nodes
are used during the search phase. Given node/S(v) can contain several hop nodes
h. Following our explanation above the best strategy is tothedop node that has the
largest reachable instance set first. Clearly, this woulthbebest order in which to use
hop nodes. But this strategy has a major disadvantage. kr ¢oddecide which hop
node has the largest reachable instance set we need thendrpestorder values of the
tree instances for all hop nodes. As this is also time consgmie currently follow a
different strategy, i.e., we use hop nodes in order of thedopler values of the non-tree
instances. Clearly, we could precompute and store the $iteegeachable instance set
for every hop node, but experimental evidence shows thattingber of recursive calls
for this strategy increases only marginally.
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5.3 Effect of node order on distance queries

For distance queries we perform a breadth-first search oR&PE We use hop nodes in
the order of the path length to the query node. As explaineé8eiction 4 this has the
advantage, that we only use hop nodes that could be on a shaté to the target node.
The weak point during the evaluation of distance queriekadridex structure itself.
Consider the queryist(v, w). If we find an instance ofv in R1S(v) the path fromw to
w is not necessarily the shortest path. We still have to useoglinodes inR1S(v) with
plen(v, h) < plen(v, w). It would be advantageous to have an index structure where we
knew for at least for some paths that these are the short@gterlix A shows such an
index structure. For that structure we first perform a briedidst search starting at any
node and then create the index structure during a depthdiastis using the information
from the breadth-first search. This has the advantage tleay @ath inO(G) between
two tree instances is shortest, i.e., we could prune ever imop nodes. But there are
two disadvantages, namely that with growing graph sizesinierequired to execute the
breadth-first search does not grow linear but exponentia@dtlition, querying this index
structure for reachability requires more recursive calld & therefore on average about
100 % slower than querying the index struture created byhdfyst search alone (data
not shown).

6 Implementation

In this section we present details on our implementation RfR¥ as stored procedures
in a RDBMS. We explain how to deal with graphs with multiplenarroot, describe how
we compute the list of stop nodes, and sketch the searchitaigst

6.1 GRIPP index table

Before we create the GRIPP index we add a virtual root nottethe graph. We add
an edge between and the node that has the highest degree among all nodes. eWe th
traverse and label the nodes as explained in Section 3wgtdrtim using the degree of
nodes as order criteria. However, some nodes are not redchied) this traversal, e.g.,
nodes without incoming edges or nodes in not connected aphgr We find those nodes
and add another edge fromo the node with the highest degree. This is repeated uhtil al
nodes have at least one instance in the index table. Thisweayniformly handle graphs
with none, one, or multiple root nodes.

Algorithm 1 shows the algorithm to compute the GRIPP ind&etaND (G).

Example 6.1 Figure 16(b) shows the GRIPP index strucutre that is creatier apply-
ing Algorithm 1 to the graph in Figure 16(a) using child nodedered by node degree
descending and node label ascending.
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Algorithm 1: The GRIPP algorithm to compuf&/'D (&)

pre_post «— O seen « ()

PROCEDURE compute GRIPP()

while —empty (node \ seen) do

pre_node «— pre_post

pre_post «— pre_post + 1

next_node < next (node \ seen) // order by degree
traverse (next_node, 0)

GRIPP « GRIPP U (next_node, pre_node, pre_post, 0, T)
pre_post «— pre_post + 1

end
end

PROCEDURE traverse (next_node, cur_dist)
seen < seen U next_node
while child <+ next (children(next_node)) // order by degree
do
pre_node «— pre_post
pre_post «— pre_post + 1
if child ¢ seen then
node_inst < T

traverse (child, cur_dist +1)
else
| node_inst +— N

end
GRIPP «— GRIPP U (child, pre_node, pre_post, cur_dist +1, node_inst)
pre_post «— pre_post + 1

end

end

6.2 Stop node list

To create the list of stop nodes would we have to check thédedde instance set of every
node. As this is too time consuming we currently test onlgsteld nodes. We are espe-
cially interested in nodes whose reachable instance setsavany instances. Therefore,
we only consider child nodesof the virtual root node as stop node candidates. In addi-
tion for everyc we compute the size dt/S(c), |R1S(c¢)|. We only considee as stop node
candidate if RIS (¢)| > t, with ¢ being the cut-off value. For our experiments we use the
cut-off valuet = 0.0005 * max (| RIS (¢)|), which we determined empirically as tradeoff
between the number of nodes we must evaluate during the stiglist generation and
the number of stop nodes found. Furthermore, we only consige®de as stop node if

it is a potential hop node, i.e., if it has a non-tree instanceVD(G). For a stop node
candidates we check if the tree instand€’ of any hop node in?1S(s) has a preorder
value that is lower than that of the tree instartef s. In that caseh? is sibling tos” in
O(G) ands is not a stop node; otherwisejs a stop node and is added to the list of stop
nodes.

Example 6.2 Applying that heuristic to the GRIPP index structure frorguiie 3(b) the
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node| pre post depth type
A 0 19 0 tree
B 1 6 1 tree
E 2 3 2 tree
F 4 5 2 tree
D 7 16 1 tree
G 8 11 2 tree
B 9 10 3 non-tree
H 12 15 2 tree
A 13 14 3 non-tree
C 17 18 1 tree
R 20 23 0 tree
A 21 22 3 non-tree

(a) A graphG.

(b) IND(G) created by Algorithm 1

Figure 16: Graph G and its GRIPP index table IND(G). Solid lines in the graph
represent tree edges, dashed lines are non-tree edges.

only stop node for the graph is node

Algorithm 2 shows the procedure to compute the list of thep stodes. The child
nodes to the root node are retrieved according to the sizesofreachable instance sets.

Algorithm 2: The algorithm to compute the stop node list

PROCEDURE compute_stop_nodes (root_node)

t<—0

while cand < next (children(root_node)) // order by |RIS|
do

if t =0 then
| t <« post(cand) —pre(cand)
end
if post(cand) —pre(cand) >t
ANDhasNon-tree (cand)
AND stopNodeCond (cand) then
| STOP_NODES « STOP_NODES U (node(cand), pre(cand), post(cand));
end

end
end

FUNCTION stopNodeCond(cand)

forall non_tree_inst € RIS (cand) do

tree_inst «— getTree (non_tree_inst)

if tree_inst ¢ RIS (cand) then return false
end

return true
end
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6.3 Search algorithm — Reachability.

The search phase is implemented as a stored procedure in MIBRDBie GRIPP index
as well as all temporary information (stop nodes, visite@d hodes, etc.) is stored in
relational tables. The instance type of a node, i.e., tre@oartree, is stored as special
attribute. We created b-tree indexes on relevant attrihineluding a combined index on
the attributes preorder, node, and instance type. Giveregyqench(v, w), Algorithm 3
starts by adding to the listU of used nodes. It then testsuf € RIS(v) with a query
over the index table. If that is true the algorithm immediateturnstrue. Otherwise, it
checks ifv is a stop node. If that is the case, we know thatX&y (v) does not contain
the end node and (b) no hop node will extend our search aneftiiereturntalse.

If v is no stop node the algorithm checksifS(v) contains a non-tree instance of a
stop node. If so, the algorithm performs a depth-first seasthg this node as next hop
node.

In the next step the algorithm searches for hop nadé@s RIS(v). As the algo-
rithm has already retrievell/S («) we do not want to search the non-tree instances again.
Knowing the pre- and postorder values of these instandég algorithm can determine
the preorder ranges for which non-tree instances have tetbewed. These non-tree in-
stances are used in ascending order of their preorder ramdxasiop nodes to perform a
depth-first search. For every hop nddae determine the location of its tree instaride
and test ifRIS(h) is completely covered from reachable instance sets fronesotl.

If not, we pursue, using as next hop node. We stop once we found an instaneeaf
if there are no more non-traversed hop nodes. All checksnapéeimented as relational
queries.
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Algorithm 3: Reachability queries on GRIPP index structure

FUNCTION reachability(query, target)

if target € RIS(query) then
| return true

else

used_hop « used_hop U (node(query), pre(query), post(query))

if query € STOP_NODES then

used_stop «— used_stop U (node(query), pre(query), post(query))

return false
else

while non_tree_inst «+ nextStop (RIS (query)) do
tree_inst «— getTree (non_tree_inst)
result «— reachability (tree_inst, target)

if result = true then return true
end

if query € RIS (used_stop) then return false

used_hop_in_RIS < getUsedHopInRIS (query)

i_left < pre(query)

repeat

next_used_hop «— next (used_hop_in_RIS) // order by preorder
if next_used_hop # () then i_right < pre(next_used_hop)

else i_right < post(query)

if i_left < i_right then

// get non-tree instances ordered by preorder
non_tree_instances < getNonTree (i_left, i_right)

foreach non_tree_inst € non_tree_instances do
tree_inst < getTree (non_tree_inst)

if hasChildren (tree_inst)
AND tree_inst # used_hop

AND tree_inst ¢ RIS (used_hop) then
result «+— reachability (tree.inst, target)

if result = truethen return true
end

if query € RIS (used_stop) then return false

end
end

i_left < post(next_used_hop)
until i_right = post(query)

end
return false

end
end
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6.4 Search algorithm — Distance.

The search phase fdist(v, w) is implemented as a stored procedure in a RDBMS. As for
reachability queries the GRIPP index and the list of stopesaak well as all temporary
information (visited hop nodes, not used non-tree instauate.) is stored in relational
tables. The type and the depth of an instana@(i') are stored as special attributes in the
index table. Given a quenyist(v, w), Algorithm 4 starts by first computingach(v, w)
using an extended reachability search algorithm. If a patiwéenyv andw exists the
algorithm proceeds in a second step with a breadth-firstkaardetermine the distance
betweerv andw.

The basic algorithm to determineach(v, w) shown in Algorithm 3 was extended
to return a path length betweenandw. The procedure shown in Algorithm 5 has as
additional parameter the path lengilen betweenv and the query node. For the first
call this path length i$). The path length between the query node and the next hop
node isplen(query, hop) = plen + len(query, hop), with len(query, hop) = hopgepn —
queryqepu,. AS SO0N as the algorithm finds an instancevah a reachable instance set it
returns the path length betweemndw. If the algorithm finds more than one instance of
w in a set it returns the shortest path length.

If a path betweeny and w exists Algorithm 4 proceeds with a breadth-first search
using the path length returned from the reachability seaschirst upper bound for the
distance. For the breadth-first search it adds all non-tiemces inR1S(v) together
with the length of the path to to the list of not used non-tree instances. As pruning
criteria only non-tree instance are added to the list the¢ ldapath length that is shorter
than the upper bound.

During the breadth-first search Algorithm 6 uses non-tregaimces in that list in as-
cending order of their distance ta For every non-tree instance it first retrieves the
corresponding tree instance of the node. In the next stegdgloeithm checks if that node
can be pruned. It first checks if the node has already beerasdanp node (regardless the
path length as we perform a breadth-first search). If yesnibde is pruned and the algo-
rithm proceeds with the next non-tree instance. Othenitisdecks if the tree instance
of that node is successor to a previously used hop node. |tlyeslgorithm also has to
consider the path lengths. If the path length over the usgdode is shorter than this
path the algorithm can prune that hop node. Otherwise, ifitlgenode is no successor or
the path is longer that node is used as next hop node.

When Algorithm 6 uses a node as hop node that node is added listtbf used hop
nodes and it is checked if its reachable instance set canitastances of the target node.
If that is the case, the algorithm determines the shortest leagth between the query
and an instance of the target node. If that path is shortertti@previously shortest path
it corrects the upper bound. In the next step the algorithds @l non-tree instances of
the reachable instance set of the hop node to the list of remt nsn-tree instances. But
we do not want to add all instances, i.e., we want to leave owttree instances that are
already covered by a reachable instance set of a used hopanddee do not add non-
tree instances that are further away from the query nodettieourrently shortest path
length. After the algorithm has added the remaining noe-instances it proceeds with
the next non-tree instance.
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The algorithm terminates if there are no more non-tree mt&tsiin the list or the found
path length between the query and the target node is lowertheapath length between
the next non-tree instance and the query node. In both cheeadorithm returns the
currently shortest path length as distance between the @nerthe target node.

Algorithm 4: Breadth-first search for distance between twdes.
FUNCTION distance (query, target)
plen = plenReachability (query, null, target)

if plen # null then
used_hop_plen « used_hop_plen U (node(query), pre(query), post(query),

depth(query), 0)
foreach non_tree_inst € getNonTree (pre(query), post(query)) do

if len(query, non_tree_inst) < plen then
not_used_non_tree < not_used_non_tree U (node(non_tree_inst),

len(query, non_tree_inst))
end
end
return distance breadth(not_used_non_tree, used_hop_plen, plen, target)

else
[ return null

end

end
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Algorithm 5: Extended algorithm for reachability queriegs ®RIPP index structure.

FUNCTION plenReachability(query, plen, target)
if target € RIS(query) then
| return min(plen + len(query, target)
else
used_hop « used_hop U (node(query), pre(query), post(query))
if query € STOP_NODES then
used_stop « used_stop U (node(query), pre(query), post(query))

return null
else

while non_tree_inst <+ nextStop (RIS (query)) do
tree_inst «— getTree (non_tree_inst)
plen «+— plenReachability (tree_inst, plen +1len(query, non_tree_inst),
target)
if plen = null then return plen
end
if query € RIS (used_stop) then return null
used_hop_in_RIS < getUsedHopInRIS (query)
i_left < pre(query)
repeat
next_used_hop « next (used_hop_in_RIS)
if next_used_hop # () then i_right < pre(next_used_hop)
else i_right <« post(query)
if i_left < i_right then
non_tree_instances «— getNonTree (i_left, i_right)

foreach non_tree_inst € non_tree_instances do
tree_inst < getTree (non_tree_inst)
if hasChildren (tree_inst)
AND tree_inst # used_hop
AND tree_inst ¢ RIS (used_hop) then
plen «— plenReachability (tree_inst, plen +1len(query,
non_tree_inst), target)
if plen # null then return plen
end

if query € RIS (used_stop) then return null

end

end

i_left « post(next_used_hop)
until i_right = post(query)

end
return null

end
end
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Algorithm 6: Breadth-first search.

FUNCTION distance_breadth(not_used_non_tree, used_hop_plen, plen, target)
while next_non_tree « next (not_used_non_tree) do

end

end

end
end
return plen

if plen < plen(next_non_tree)+1 then break

next_tree «+— getTree (next_non_tree)

if next_tree ¢ used_hop_plen then

if next_tree ¢ RIS (used_hop_plen) OR (next_tree € RIS (used_hop_plen)
AND plen(next_non_tree) < plen(used_hop_plen)+1len (used_hop_plen,
next_tree)) then

used_hop_plen < used_hop_plen U (node(next_tree), pre(next_tree),
post(next_tree), depth(next_tree), plen(next_non_tree))

if target € RIS (next_tree) then
new_len = plen(next_non_tree) + len (next_tree, target)

if new_len < plen then
plen = new_len

if plen < plen(next_non_tree)+1 then break
end
end
used_hops_in_RIS < getUsedHopInRIS (next_tree)
i_left < pre(next_tree)

repeat
next_used_hop « next (used_hops_in_RIS)

if next_used_hop # () then i_right < pre(next_used_hop)

else i_right <+ post(next_tree)

if i_left < i_right then

non_tree_instances < getNonTree (i left, i_right)

foreach non_tree_inst € non_tree_instances do

// do not add non-tree instances further away
from the query node than plen

if plen(next_tree) + len(next_tree, non_tree_inst) < plen

then
not_used_non_tree «— not_used_non_tree U

(node(non_tree_inst), plen(next_tree) + len (next_tree,

non_tree_inst))
end

end
end

i_left « post(next_used_hop)
until i_right = post(next_tree)
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7 Experimental Results

To evaluate our approach we use synthetic as well as reddtdata. We compare GRIPP
to two other well known methods. For the index creation we para GRIPP with the
transitive closure. Clearly, querying the transitive ci@swould be fastest, but as we
can not compute the transitive closure for large graphs, la@ @mpare GRIPP with
recursive query strategies.

We created random as well as scale-free synthetic graphseirsize of 1,000 to
5,000,000 nodes and 0 to 450% more edges than nodes usingetheddescribed in
[3]. For real-world data we took data from metabolic and @iro{rotein interaction net-
works. We used the data from the metabolic networks of KEGH, [AMAZE [19],
and Reactome [16]. Nodes represent enzymes, chemical comdpor reactions, while
edges represent the participation of an enzyme or compauadeaction. For protein-
protein interaction networks we used STRING [25]. Nodesd@mical compounds or
biomolecules, i.e., DNA, RNA, or proteins and edges repreisgeractions between com-
pounds or biomolecules. Edges in STRING are labeled withrdidence value for the
protein-protein interaction. In STRING 95 we included eslgath a confidence of 95 %
or higher. In STRING 90 and STRING 75 we included edges witd®and 75 % con-
fidence, respectively. We only included nodes with at leastedge in all three datasets.
Table 3 shows the size of the different graphs. Note that IRING 75 there are 7 times
more edges than nodes.

Database | No. nodes| No. edges| Density
Metabolic networks
Reactome 3,677 14,447 3.9
aMAZE 11,876 35,846 3.0
KEGG 14,269 35,170 2.5
Protein-protein interaction networks
STRING 95 75,132 207,764 2.8
STRING 90| 135,145| 952,940 7.1
STRING 75| 196,493| 1,383,134 7.0

Table 3: Number of nodes and edges in biological networks.

We have implemented all algorithms as stored procedureRIRCLE 9i. Tests were
performed on a DELL dual Xeon machine with 4 GB RAM. Queriesemain without
rebooting the database. We created b-tree indexes onedtieel predicates of the GRIPP
index table, including a combined index on the attributesopter, node, instance type,
and depth.

For every number of nodes, edges, and graph type we genéregelifferent graphs.
For every graph we created a GRIPP index structure and nugdthte required to create
the index structure and size of the generated structure.
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7.1 Index Creation

We compare the time required to compute the GRIPP index \ihtitne required to
compute the transitive closure using the semi-naive dlgorfrom [21]. Note that in our
experience the logarithmic algorithm is not faster in a RDBMata not shown).

No. nodes Scale-free graphs Random graphs
TC | GRIPP| Stop nodes TC | GRIPP| Stop nodes

1,000 47.3 2.3 0.1 49.8 2.2 0.1
5,000| 2,007.8 11.3 0.1| 2,277.0 11.4 0.1
10,000 12,555.1 23.0 0.1] 14,694.3 23.3 0.1
50,000 - 119.5 0.2 - 127.6 0.3
100,000 - 235.8 0.4 - 237.4 0.4
500,000 - 1,196.6 2.6 - 1,203.9 2.6
1,000,000 - 2,539.8 5.8 - 2,588.7 6.0
5,000,000 - 16,062.5 38.2 - 16,901.0 37.2

Table 4: Average time (sec) to compute the GRIPP index table and the transitive
closure for synthetic graphs with 100 % more edges than nodes.

Table 4 shows the results for scale-free graphs with 1,0@h&million nodes and
100 % more edges than nodes. For graphs of 50,000 or more wed=sild not compute
the transitive closure. For instance, for graphs with 50,00des and 100,000 edges the
computation did not complete within 24 hours. In contrasmputing the GRIPP index
table for the same graphs took less than 120 seconds. Théairtiee stop node list for
those graph is under one second.

The data show that GRIPP scales roughly linear in the numibeodes for a fixed
density. For example, we computed the GRIPP index table &wate-free graph with
5,000,000 nodes and 10,000,000 edges in less than 5 hours.mEans that we can
compute the GRIPP index table even for much larger graphsatidy

No. edges| Scale-free graphs Random graphs
GRIPP| Stop nodes GRIPP | Stop nodes
100,000 168.3 120.0| 169.1 185.4
150,000 199.8 0.6 | 200.3 0.6
200,000 235.8 04| 2374 0.4
250,000 277.1 0.4| 276.8 0.4
300,000 313.8 0.5| 316.0 0.5
350,000 349.1 0.6 | 353.7 0.5
400,000| 388.0 0.7] 390.3 0.6
450,000| 505.1 0.7| 554.3 0.7

Table 5: Average time (sec) to compute the GRIPP index table and the stop node
list for synthetic graphs with 100,000 nodes and increasing number of edges.

Table 5 shows that GRIPP also scales roughly linear witreaming number of edges.
For example, the computation of the GRIPP index table for,d@®nodes and 400,000
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edges took less than 400 seconds, compared to about 240dsefmyna graph with
100,000 nodes and 200,000 edges.

For the creation of the GRIPP index structure we also haveke into account the
time required to compute the stop nodes as presented iro8écf. Table 4 shows that
even for large graphs with fixed density of 2 the computatakes less than 40 seconds.
For graphs with a fixed number of nodes and increasing detig@tiime to compute the
stop nodes decreases with increasing density (shown ire EgblThe reason for this is
the number of stop node candidates that have to be evaluataghs with extremely low
density have many child nodes to the root node, i.e., mangsbdve to be evaluated,
while graphs with higher density have fewer child nodes &rthot.

No. nodes Scale-free graphs Random graphs
TC GRIPP| Stop TC GRIPP| Stop
nodes nodes
1,000 619,231.6 2,181.2 1.0 637,401.6 2,151.6 1.0

5,000 15,137,809.8 10,885.0 1.0 | 15,686,250.8 10,766.6 1.0
10,000| 60,918,470.4 22,006.5 1.0 | 62,858,373.2 21,784.3 1.0

50,000 - 110,199.3 1.0 - 109,149.3 1.0
100,000 - 218,482.8 1.0 - 215,554.4 1.0
500,000 - 1,092,203.6 1.0 - 1,092,203.6 1.0

1,000,000 - 2,184,524.6 1.0 - 2,156,309.2 1.0
5,000,000 - 10,922,541.4 1.0 - 10,782,940.6 1.0

Table 6: Average size (tuples) of the transitive closure, GRIPP index table, and stop
node list for synthetic scale-free and random graphs with 100 % more edges than
nodes.

Table 6 shows that the size of the GRIPP index table growaidiwgh the size of the
graph. The GRIPP index table of a scale-free graph with I0r@@les and 20,000 edges
contains about 22,000 instances. In contrast, the traesitosure of the same graph
contains more than 60 million node pairs. For random grapRE’8 requires about the
same time and size as for scale-free graphs of the same size.

Table 7 shows the time and space required to compute the GiRteR table on
real-world graphs. The time required to compute the GRIRIxtable for metabolic
networks of Reactome, aMAZE, and KEGG and for protein-pnatgeraction networks
of STRING corresponds well with the time required for synitheetworks of the same
size.

The time to compute the stop node list for metabolic netwaike complies with the
time for synthetic networks of the same size. In contrastpfotein-protein interaction
networks the time required to compute the stop node list ishrhugher than for gen-
erated graphs. The main reason is that all three network3RINEG are comprised of
many unconnected subgraphs, i.e., the virtual root nodenaeay child nodes. But this
also means that during the stop node list generation we lwagkeick many stop node
candidates. This explains the high time consumption, asstiep is time consuming.
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Database No. nodes| No. edges GRIPP index Stop nodes
Time | Size | Time | Size
Metabolic networks
Reactome 3,677 14,447 14.1 14,910 0.3 23
aMAZE 11,876 35,846 37.2 37,636 0.1 1
KEGG 14,269 35,170 39.2 36,591 0.1 2
Protein-protein interaction networks
STRING 95 75,132 207,764 225.9| 225,868| 163.1| 3,178
STRING 90| 135,145\ 952,940 851.1| 967,838 139.7| 477
STRING 75| 196,493| 1,383,134| 1,237.0| 1,404,139| 196.4| 492

Table 7: Time in seconds and storage space in tuples required to compute and store
the GRIPP index table and the stop node list for real world graphs.

7.2 Query times for reachability queries

We compare querying GRIPP to answer reachability queriés aviecursive depth-first
search stopping as soon as the target node is found. For theaczon we randomly
selected 1,000 pairs of nodes for every graph and compuied (v, w).

We also tested Oracle’s 10g implementation of recursive §@ries. It outperforms
our own recursive function for very small and sparse grapfawever, it is extremely
slow already for medium-sized graphs. A single query on alymith 1,000 nodes and
1,500 edges took more than 7 hours to complete. The reasamsdeebe that Oracle
enumerates all paths in the graph beginning from the stakt mod this number grows
exponentially.

No. nodes TC recursive GRIPP
1,000| 1.0+ 0.00 372.0+ 297.37| 2.2+ 0.95
5,000| 1.0+ 0.00| 1,810.9+ 1,509.88| 2.2+ 1.01
10,000| 1.0£0.00| 3,676.8+ 3,010.51| 2.3+ 1.02
50,000 - 18,345.5+ 14,989.95| 2.3+ 1.03
100,000 - - 2.34+1.04
500,000 - - 2.3+1.05
1,000,000 - - 2.34+1.05

5,000,000 - - 2.34+1.03

Table 8: Average number of calls to answer reach(v,w) for the three different query
strategies on scale-free graphs.

Table 8 shows the average number of recursive calls for ffereint query strategies
on scale-free graphs with 1,000 to 5,000,000 nodes and 10®fé edges than nodes.
Clearly, we need only one lookup to answer reachabilitygitie transitive closure. The
number of recursive calls for the recursive query strategpetds on the size of the graph.
For graphs of 1,000 nodes and 2,000 edges we required orgav@ra recursive calls,
ranging from 1 call for a node without child nodes to 795 cadlsvorst case. This also
explains the high standard deviation.

When querying graphs using GRIPP the number of recursive mhains almost
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No. nodes TC recursive GRIPP
1,000| 0.44-0.08 24214+ 201.11| 2.8+£1.23
5,000 0.5+ 0.11| 1,383.4+ 1,193.34| 3.0+ 1.44
10,000| 0.5+ 0.67 | 3,283.1+ 2,777.78| 3.0+ 1.43
50,000 - 34,062.94- 28,210.27| 3.6+ 1.87
100,000 - - 3.2+ 1.44
500,000 - - 3.6+ 1.65
1,000,000 - - 3.8+ 1.77
5,000,000 - - 45+ 3.02

Table 9: Average query time (ms) to answer reach(v,w) for the three different query
strategies on scale-free graphs.

constant over different sizes of graphs. The maximum nurabegcursive calls ranges
from 6 to 9 for different sizes of scale-free graphs. Thisuigssing, as we would expect
that the number of calls depends on the number of non-tréenoss inIND(G), i.e.,
that for GRIPP the number of recursive calls increases witlving size of the graph.

We can explain that behavior by the following consideratiafthen querying for
reach(v, w) we start withR1S(v) and extend the search using hop nodes. We only use
hop nodes whose tree instance (a) is sibling to or (b) anceétibe tree instance af.
This also means, that we constantly exclude more and mosesrfoain being used as hop
node. As we preferably use a stop node as hop node we quickdy tee vast majority
of the instances idND(G). Clearly, in worst case we have to use as many hop nodes as
unigue nodes have non-tree instancesNi) (). But our results show that in synthetic
as well as real-world networks this is not the case.

The query times (shown in Table 9) for the different stragegiorrespond well with
the number of recursive calls. For GRIPP the average quergstirange from 2.8 to
4.5 ms for scale-free graphs. For example for 50,000 nod#4.@0,000 edges querying
GRIPP requires on average about 3.6 ms compared to 34,100rmsdrying the graph
recursively. The time difference between GRIPP and reeeigilery strategies grows as
the size ofG increases.

Figure 17 shows the average number of calls and average fimexyyon scale-free and
random graphs of 100,000 nodes and 100,000 to 450,000 delgdsoth types of graphs
the average number of calls and average time decreasesnerdasing graph density.
This can be explained as follows. With increasing graph ietise number successor
nodes of the node with the highest degree also increaseserRleen, we traverse this
node first during the index creation. If this node has incgredges it is a stop node.
Therefore, when we reach a stop node during a reachabilirclseve cover more and
more nodes with increasing graph density. And as the numbedges increases it is
more and more likely to find an instance of the stop node in ehagale instance set.

For graphs up to 150,000 edges querying GRIPP has advamtageale-free graphs.
For denser graphs GRIPP performs better on random graphs.b&haviour can also
be explained with the number of successor nodes of the nottetine highest degree.
During the generation of scale-free graphs a node with maogning and outgoing
edges is likely to get more edges, while in random graphssifwdenew edges are chosen
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randomly. In sparse scale-free graphs most highly condewtees are reachable from
the first traversed node, but this also means that more noeesachable in sparse scale-
free graphs than in random graphs. In denser graphs thissesvas in scale-free graphs
it is more likely that a new edge is added between (well cormaodes that are both
already reachable from the node with the highest degreantast, in random graphs the
nodes for the new edge are chosen randomly, i.e., givingdhsilpility to enlarge the set
of successor nodes. Therefore, the number of successos nbttee first traversed node
grows faster for random graphs than for scale-free graptisimireasing graph density
and this means that queries can be answered faster.
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Figure 17: Average query time and average number of calls for synthetic scale-free
and random networks of 100,000 nodes and increasing number of edges using GRIPP.
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Figure 18: Average query time and average number of calls for real-world networks
using GRIPP.

Figure 18 shows the average number of calls and averagedimedchability queries
on real-world networks. The average number of calls andagesguery time for the
metabolic networks of Reactome, aMAZE, and KEGG is slightgher than the number
for synthetic scale-free graphs. This indicates thatpaltiin the networks are scale-free,
they still have a different structure than our syntheticptpa For the protein-protein
interaction database STRING the number of recursive caltsly slightly higher than
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the number for synthetic scale-free or random graphs of epaiype size while the aver-
age query time is much higher. This can be explained by tHewalg observation. In
STRING every interaction between two proteins is repressbas two directed edges, i.e.,
one leading from protein 1 to protein 2 and one from proteia @rotein 1. In the order
tree of GRIPP we therefore always find a non-tree instanceatéim 1 in the reachable
instance set of protein 1. Clearly, we must evaluate if wedr@etein 1 as hop node,
which is not the case. As this testing also takes time theageetime for reachability
gueries increases while the number of calls remains low.

7.3 Query times for distance queries

We measured query performance for distance queries onajedgandom and scale-free
graph of different sizes. We compared GRIPP with recursierystrategies. We have
implemented the query strategy for GRIPP as described indde@.4. We compare that
approach with two different breadth-first search strateggestored procedures in Oracle.

7.3.1 GRIPP against breadth-first search

We have implemented two different approaches for the bhefudt search. The first
approach (breadth-first single) is the standard implentientaf a breadth-first search.
Given a query node, all child nodes of that node are addecketstttk in arbitrary order.
The nodes on the stack are processed according to their @ndée stack. We add the
child nodes of every processed node to the stack if that rode lhas not been on the
stack. The algorithm terminates as soon as we find the tacgiet as child node or if no
more nodes are on the stack.

The second approach is a set based approach (named as Hiesadtt). In the first
step we add all child nodes of the query node together withdisimncel to the stack.
Instead of processing every node separately we processisiwith the same distance to
the query node at once. We use a single SQL statement to prakkesdes with distance
17 on the stack and add the child nodes of these nodes that aadr@ady on the stack to
the stack with distanceé+ 1. In the next step we process all nodes with distaneel.
The algorithm terminates if no more nodes are on the stadkaochild node is the target
node and then the algorithm returns the distance.

Table 10 shows the average number of calls for 1,000 randeelgcted node pairs
for the different methods. For GRIPP the number of recursalis consists of the number
of hop nodes required to determine reachability plus thebrmof hop nodes required
during the breadth-first search. The number of calls for taedard breadth-first search
is the number of nodes for which we retrieved and added cloittes to the stack and the
number of calls for the set based breadth-first search isuhdar of SQL queries.

The comparison between GRIPP and the standard breadtedasth shows that on
average queries on GRIPP require an order of magnitude &disstitcan using breadth-
first search. This can be explained as follows. For a starutaatth-first search we have
to use every node in the graph for querying i.e., in worsedhs total number of nodes
in the graph. In contrast, during a breadth-first search ihRERve use every hop node
at most once, i.e., in worst-case as many hop nodes as unogigs im the graph have
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No. nodes| Average GRIPP | breadth-first singlg breadth-first set
distance
Scale-free networks
1,000 6.25 22.0+ 37.9 370.1+ 297.3 6.3+ 4.0
10,000 7.38| 1924+ 354.6| 3,724.2+ 2,993.7 7.7+49
50,000* 8.42| 1,046.7+ 1,925.8| 19,229.3+ 15,290.7 9.0+5.9
Random networks
1,000 8.26 40.3+ 60.7 380.0+ 298.4 8.2+5.0
10,000 10.67| 4025+ 625.4| 3,783.6+ 3,035.0 10.4+ 6.0
50,000 12.52| 2,081.9+ 3,167.0 - -

Table 10: Average number of calls and standard deviation for synthetic graphs with
100 % more edges than nodes.

non-tree instances in GRIPP. In addition during the searéBRIPP we can prune hop
nodes. We do not use hop nodes if the hop node has no succedssrinO(G) or if the
hop node is successor of a used hop node(i¥) and the path lengths between the query
node and node in the reachable instance set of the hop ndd®iwlecrease. Therefore
qguerying GRIPP requires fewer calls than querying the goaggctly.

The set based approach requires the fewest number of chiksisiclear, as we only
perform one SQL query for every distance. But the databastersymust compute more
for every single call. Therefore not only the number of callsnportant but also the time
required to get the distance. Clearly, GRIPP could also decked that way, but it is not
yet implemented.

The table also shows that the number of calls for all thrednodtis higher for random
graphs than for scale-free graphs. The reason is that thrages/elistance is higher for
random graphs than for scale-free graphs. A higher distalscemeans that more nodes
must be queried during the search.

No. nodes Avg. GRIPP | breadth-first single breadth-first set
distance
Scale-free networks
1,000 6.25 709+ 110.9 166.3+ 149.9 93.3+ 94.2
10,000 7.38 957.14+ 1,475.8| 1,657.741,475.1 4,320.0+& 4,585.8
50,000* 8.42| 12,010.1+ 18,966.1| 8,535.54+ 7,692.7| 114,993.94+ 129,553.1
Random networks
1,000 8.26 104.54+ 140.8 173.64+ 148.8 93.5+ 77.5
10,000 10.67| 2,043.9+ 2,813.6| 1,738.5+1,517.5 3,920.7+ 4,105.8
50,000 12.52| 31,377.5+ 42,587.0 - -

Table 11: Average time in ms and standard deviation for synthetic graphs with 100 %
more edges than nodes.

Table 11 shows the average query times for distance quens@00 randomly se-
lected node pairs. The figures show that for small, scale-fr@phs , i.e., scale-free
graphs with up to 10,000 nodes and 20,000 edges queryingfsRIfastest. For larger
graphs the standard breadth-first search is fastest.
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The following observation helps to understand that belamoGRIPP the larger the
graph becomes, the more nodes are reachable from the firsttrenatrsed during the
creation of GRIPP. In GRIPP this also means that the lengtheofongest path from the
root to a leave node increases. The target node in a readhataace set of a large graph
might therefore also be further away than in a small graphriiguhe search we first
perform a reachability query on GRIPP to determine if a patbte and return the upper
bound for the distance. With increasing size of the graphupper bound also increases.
During the breadth-first search we add all non-tree ins&twéehe list of non-traversed
nodes that have a path length to the query node that is shbateithe upper bound. As
the upper bound for large graphs is high we add many non4tistances to the list of
not traversed non-tree instances that will never be corsidas hop nodes as we find a
shorter upper bound afterwards during the traversal. Ttptaes the steep increase in
time between 10,000 and 50,000 nodes.

The set based approach is only faster for graphs with 1,08@9cstill in the same
range as the other two approaches for 10,000 nodes, but rraveergor 50,000 nodes.
There are two reasons, namely (a) increasing average distand (b) entire execution of
the last query. First, with increasing average distancentimber of calls also increases.
In every call we retrieve the child nodes for all nodes witktaince from the query node
on the stack. For every child node the database system hdmwth it is already on
the stack or if it has to be added. For every call we use onlySQke statement with a
division operation, i.e., select nodes, that are in the tehitd nodes, but not already in
the stack relation. As division operations are very costlg RDBMS the distance query
takes much more time with increasing path length and grageh si

The second reason is that we have to execute the last quasler€onsider the case
where the distance between two nodess \&/e look for child nodes of nodes with distance
1—1to the query node. In the standard breadth-first search ieawisider the nodes one
at a time. If we find the target node immediately we can terteitize search, i.e., in best
case execute only one additional query. In contrast, in¢heased approach we have to
retrieve all child nodes and afterwards look for the targeten Therefore the set based
approach clearly has disadvantages against the standplehientation of a breadth-first
search.

7.3.2 Breadth-first search combined with GRIPP reachabiliy

For the GRIPP distance search we first perform a reachafiityy to determine if a path
between the query and the target node exists, i.e., we caveadsstance queries where
no path exists very fast. In contrast, using breadth-firatcdein worst case we have to
traverse the entire graph to determine if a path exists. ¥amele, for a scale-free graph
with 10,000 nodes and 20,000 edges for almost 40 % of the ralydselected node pairs
reach(v,w) = false. The standard breadth-first search (breadth-first singlglires
on average 1,700 ms to retudist(v, w) = null. We can split those node pairs in two
groups, one group where the query node has no outgoing edigés ¢f the node pairs),
i.e., no recursive queries are necessary, and one grougwiesquery node has outgoing
edges 60 %). For the group with no outgoing edges queries requiravenage 1.3 ms
to return an answer, while for the group with outgoing edggsery reqires on average
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2,846 ms. Using GRIPP we can reduce that to 20 ms on average.

No. | reach(v, w) GRIPP | breadth-first single breadth-first set
nodes
Scale-free networks
1,000 yes 709+ 110.9 113.54+ 107.7 69.4+ 98.7
no 166.3+ 149.9 93.3+ 94.2
10,000 yes 957.14+ 1,475.8| 1,136.44-1,123.6 2,374.4+ 3,160.8
no 1,657.7+ 1,475.1 4,320.0+ 4,585.8
50,000 yes| 12,010.1+ 18,966.1| 5,797.84+5,670.1| 58,665.0+ 86,981.6
no 8,535.5+ 7,692.7| 114,993.94+ 129,553.1
Random networks
1,000 yes 104.54+ 140.8 124.44+ 114.8 72.4+ 57.1
no 173.64+ 148.8 93.5+ 77.5
10,000 yes| 2,043.9+ 2,813.6| 1,214.9+1,178.8 2,261.9+ 2,864.4
no 1,738.541,517.5 3,920.7+ 4,105.8
50,000 yes | 31,377.5+ 42,587.0| 6,288.9+ 5,896.7| 54,998.2+ 75.671.1
no - -

Table 12: Comparison between breadth-first search with and without precomputing
reach(v,w). Average time in ms and standard deviation for synthetic graphs with
100 % more edges than nodes.

Table 12 shows the average query time fbst(v, w) with and without applying
reach(v, w) over GRIPP first. The figures show that querying GRIPP forrehiity
first reduces the average query times for both methods ofrtedth-first search.

8 Related Work

To efficiently answer reachability and distance queries;qgamputation of the transitive
closureT'C of a graph is a natural choice [27]. Efficient algorithms formgputing the
TC in relational databases have been developed [2], but tieeo$itheT'C is O(|V]?),
making it inapplicable to large graphs.

To reduce storage space, Cohen and colleagues [7] develop@dHop-Cover that
requires in worst-cas@(|V| x| E|'/?) space and can answer reachability queries with only
two lookups. However, computing the optimal 2-Hop-CoveNRB-hard and requires
the T'C' to be computed first [7]. Schenkel et al. [23] proposed gragtitppning as a
method to get away from the necessary pre-computation adntiee7’C', thus reducing
storage requirements during the index creation process. afiproach works very well
for forests with few connections between the different seles. But for dense graphs,
such as the metabolic network of KEGG, the patrtitioning isvesy effective. Without
partitioning the 2-Hop-Cover is about 5,600 times smalkemt the transitive closure,
while with partitioning this factor shrinks to about 500.h®akel et al. also showed that
the 2-Hop-Cover can be extended to answer distance quéhescomes with the tradeoff
that the size of the 2-Hop-Cover is much larger. Using partihg the 2-Hop-Cover for
KEGG is only two times smaller than the transitive closuselit(R. Schenkel, personal
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communication, May 2006). Even without partitioning theeois just 29.4 times smaller
than the transitive closure — compared to 5,600 times fochaaility. Clearly, these
compression factors make the 2-Hop-Cover not applicabldaige graphs to answer
distance queries.

To index trees and DAGs a wealth of different numbering saeehave been pro-
posed in the literature, especially to support XPath qgertexamples include pre- and
postorder values [12], range-based labeling [5, 28], anddyenumbers [22]. All these
schemes only work on trees. Approaches that use numbeheg®s on DAGs have been
proposed. In previous work, we described an 'unfoldinghtéque, where each node in a
subtree with more than one parent node receives multipleapict postorder values [24].
Since this leads to a combinatorial explosion in the numbegalue pairs, it is only fea-
sible for tree-like DAGs. Instead of labeling successorasoehultiple times, Agrawal et
al. [1] proposed to propagate the intervals of child nodesvards’. The graphs they used
contained no more than 1,000 nodes. Chen et al. [6] presantgtrid index structure
for DAGs, using a region encoding for a spanning tree and ditiadal data structure
for storing non-tree edges which is traversed recursiviedyary time. They applied their
approach to DAGs with 200,000 nodes and 1.8 times more edfjés.not clear how
their approach would perform on larger, cyclic, multi-redtgraphs. In none of these
publications the problem of answering distance queriesdigsissed.

He, Wang, and colleges [14, 26] proposed two indexing gjr@seto answer reach-
ability queries on graphs. For both approaches they firsitiiyestrongly connected
components and collapses these to one node, thereforeingdhe size of the graph.
The remaining structure is a DAG. The first approach uses @g@tion of numbering
schemes and 2-hop cover, while the second is merely basedombering scheme to
encode the DAG. For experiments they used random graph2y@f® nodes and up to
4,000 edges. Itis not clear, if their approach can be usefficceatly index dense graphs
in the size of one million or more nodes. In addition both agghes will not support
distance queries.

To answer distance queries on graphs Dijkstra’s algorithththe A* algorithm are
used [8]. Dijkstra’s algorithm works well on graphs with wkted edges. For graphs
with unweighted edges — as is the case for biological netsverRijkstra’s algorithm is
basically a breadth-first search. The A* algorithm is an esien for Dijkstra’s algorithm
and requires in addition to weighted edges also some infamabout the 'best’ edge to
choose next. Therefore, both algorithms are not well sudgethswer distance queries on
graphs with unweighted edges.
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9 Discussion and Conclusion

We presented the GRIPP index structure supporting reddlgaid distance queries on
directed graphs. Since creating GRIPP requires only litieag and space, it can be
used to index graphs with millions of nodes. And as the afgors for indexing and
guerying GRIPP are implemented as stored procedures in &BRIPP can be easily
be integrated to index and query graphs in graph based apphs.

With GRIPP, reachability queries on many types of graphsbesanswered in almost
constant time using an almost constant number of queriegekohability queries we be-
lieve that GRIPP can be further improved using the idea dépsing strongly connected
components (SCC) into single nodes. SCC can be computatkarltime [8]. The effect
of this optimization would strongly depend on the propeartéthe graph, i.e., the number
and size of the SCCs, and would be the strongest for very dgaphs. However, given
the current query times which are less than 5 ms even for eggg Igraphs, this is not our
primary next goal.

Distance queries in GRIPP require an order of magnitudedabs than recursive
guery strategies, but the time required is comparable aresithan recursive query strate-
gies. But even for recursive strategies to answer distanegaps GRIPP is important, as
we can answer reachability first, i.e., reducing the timalfetance queries where no path
exists.

In the future, we plan to use GRIPP as an index structure p#thway query lan-
guage (PQL) [20]. PQL provides syntax to pose graph quern#s. are interested in
answering such queries efficiently, i.e., we plan to proddmst based optimization for
such queries. GRIPP is currently the most scaleable indergthod we are aware of. In
addition the execution of reachability queries is very.f&sir distance queries we have to
further evaluate the conditions where GRIPP has advantaggsecursive strategies. To
cover the capabilities of PQL we plan to implement path Ieragtd path queries as well.

Acknowledgment. This work is supported by BMBF grant no. 0312705B (Berlin
Center for Genome-Based Bioinformatics). Many thanks kadoes Vogt who wrote the
software to visualize the GRIPP index structure and thegi@tof queries on GRIPP.
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A GRIPP _breadth — a different index structure

The index structure GRIPBreadth is basically the same as GRIPP. In GRib@éadth
we also assign every node in the graphat least one pre- and postorder value. The
difference is that for GRIPPBreadth we first perform a breadth-first search startingeat th
root node. During the search we store the distance betweeadhnode and every node
in the graph. In the next step we credt¥ D(G) during a depth-first traversal 6f using
the information from the breadth-first search. During theptth-first traversal we assign
the pre- and postorder values and the depth information tma.n

For GRIPP we add a tree instance of nede I N D(G) if we encountew for the first
time during the depth-first traversal. Every other time wecte, i.e. IND(G) already
contains a tree instance of we add a non-tree instancewfo /N D(G). In contrast, in
GRIPPbreadth we only add a tree instanceddo / N D(G) if (a) v has no tree instance
in IND(G) and (b) the depth of the instance ©in O(G) equals the distance of to
the root node found during the breadth-first traversal. {eéner time we add a non-tree
instance ofv to /N D(G).

A.1 Properties of this index structure
A.1.1 Time and Space Requirements

The space requirements to store the GRHP@adth index table are identical to the space
requirements for GRIPP. Only during the index creation wegerarily have to store the
information generated by the breadth-first search.

The time requirements for GRIP#Breadth are higher than for GRIPP, because (a) we
first perform a breadth-first search and (b) during the tisalawe have to evaluate if the
depth inO(G) of a nodev is equal to the distance ofto the root node.

The index creation for large graphs is much slower than expecThis is due to
the breadth-first search. During that search we only addstméhe list that have not
already been traversed. As this step requires a divisioratipa, which is very costly in
a RDBMS, the time increases dramatically with increasingiber of nodes.

A.1.2 Properties of Nodes in O(G)

Node have exactly one tree instance For every node in GG there exists exactly one
tree instance iW(G). Proof omitted.

Preorder of tree instance In the GRIPP index structure the tree instance of a ndus

a lower preorder rank than all non-tree instances of tha¢ rsdve add a tree instance to
IND(G) the first time we see that node. This property does not hol&fRIPP breadth.

In GRIPRPbreadth when we reach a node for the first time we will not gaheadd a tree
instance tad ND(G). Instead we check if the depth of the instancé MD(G) is equal

to the distance to the root node. If the depth is higher thardtstance to the root node
we add a non-tree instance oto /N D(G). We will add a tree instance ofat a later
stage of the traversal. This also means that non-tree itesazan have higher or lower
preorder ranks than the tree instance of a node.
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Shortest paths Given two nodes andw in G and the tree instance$ of v andw” of
w in O(G) created by Algorithm 7. I1£7 is ancestor tav” in O(G) we can immediately
determine the distance betweeandw in G’ by calculatingw, ., — vde,-

The reason for this is as follows. In GRIRPeadth as in GRIPP((G) contains tree
as well as non-tree instances.(MG) created by GRIPBreadth the length of every path
from the tree instance’ of the root node- to a tree instance’ of nodev equals the
distance of- to v in G. Remember, we only create a tree instance fifthe depth ofv”,

i.e. the distance to” in O(G) equals the distance ofto r in G. Every non-tree instance
of vV has the same or a greater distance’tin O(G).

Knowing this we can also deduce the distance between twosnogedw in G if vT
is ancestor tav”. The distance then i&ist(v, w) = wj,,,;, — vi,,.,- But note, we can not
ease the condition that the instancewofan also be a non-tree instance.

If v7" is no ancestor ofv” in O(G) we can not immediately determine the distance
betweenv andw in G. We have to execute a more complicated search as shown in
Section 4.3.

A.2 Comparison GRIPP and GRIPP breadth

In the order tree created by GRIPP the first child nod¥ the root node contains tree
instances for all nodesthat are reachable fromin G. The higher connected the graph
is, i.e. the more edges this graph contains, the more trégnicss are successors of the
tree instance of in O(G). The remaining child nodes to the root then contain only few
tree instances and some non-tree instance. The generarappe of GRIPP is narrow,
but deep.

In contrast, in the order tree created by GRIBadth is broad and shallow. The
differences can be seen in Figures 19 and 20 for a identiadd-$ze graph of 100 nodes
and 200 edges.

A.2.1 Advantages of GRIPPbreadth

The advantage of GRIPPBreadth lies in the fact that every path between tree inst&anc
in O(G) is shortest, i.e., we can immediately determine the distdoetween nodes if
one tree instance is ancestor of the other tree instan¢@). This also means that
during the execution of distance queries we can prune moéea.oBut experiments show
(data not shown) that the average time to execute distarergeguor a pair of nodes only
decreases by about 10 % compared to the execution time fdPIBRI

A.2.2 Disadvantages of GRIPBoreadth

GRIPPbreadth has several disadvantages, namely increasetnoragate compared to
GRIPP and increased average query time for reachabilitsi@pi€l he increased creation
time stems mainly from the breadth-first traversal as dsedgarlier.

To understand the reason for the increased execution tineednéook at Figures 19
and 20. In GRIPP the first traversed node during the indexioreavhich is also a stop
node, has many reachable instances in the order tree. Wieeyigifor reach (v, w) with
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v in that set it is very likely that we find (a) an instanceuobr (b) an instance of the stop
node inRIS(v), i.e., we can terminate the search very fast. In GRbPEadth this is not
the case. Many nodes have some reachable instances in érdéresd This means, during
a reachability search we might have to use many nodes as ligs nBut this also means
that on average reachability queries require more time &®PBlbreadth than on GRIPP.
Experiments show that the average time increases by ove¥ol@ata not shown).

As distance queries are not considerably faster on GRIieRdth and the index cre-
ation as well as reachability queries are much slower we vatlinvestigate further in
GRIPPbreadth.

A.3 Algorithm for GRIPP _breadth

Algorithm 7 shows the procedures and functions to compwteGRIPPbreadth index
structure. We first compute the talBREADTH_INFO by applying a breadth-first search
over the graph. We use the informationBREADTH_INFO during the depth-first traversal
to compute the GRIPBreadth index structure.
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Figure 19: Order tree created by GRIPP for a graph of 100 nodes and 200 edges.
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Algorithm 7:  The GRIPP algorithm to computéND((G) according to
GRIPPbreadth
pre_post < 0
PROCEDURE compute_GRIPP (root_node)
BREADTH_INFO « breadth_first (root_node)

pre_node «— pre_post

pre_post «<— pre_post + 1

traverse (root_node, 0,BREADTH_INFO)

GRIPP « GRIPP A (root_node, pre_node, pre_post, 0, T)
end

FUNCTION breadth_first(root_node)
BREADTH_INFO « (root_node, 0)

push@ode_stack, (root_node, 0))

repeat
(next_node, node_dist) «+ pop(ode_stack)

forall child € children(next_node) do

if child ¢ BREADTH_INFO then
pushfode_stack, (child, node_dist +1))

BREADTH_INFO <+ BREADTH_INFO A (child, node_dist +1)
end
end
until node_stack = ()

return BREADTH_INFO
end

PROCEDURE traverse (next_node, cur_dist, BREADTH_INFO)

seen «— seen U next_node

while child « next (children(next_node)) do

pre_node «— pre_post

pre_post «— pre_post + 1

if child ¢ seen AND cur_dist +1=getDepth (child, BREADTH_INFO) then
node_inst <+ T

traverse (child, cur_dist +1)
else
| node_inst +— N

end

end

GRIPP « GRIPP A (child, pre_node, pre_post, cur_dist, node_inst)
end
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