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Abstract

Many applications require querying graph-structured data. As graphs grow in
size, indexing becomes essential to ensure sufficient queryperformance. We present
the GRIPP index structure (GRaph Indexing based on Pre- and Postorder numbering)
for answering reachability and distance queries in graphs.GRIPP requires only linear
space and can be computed very efficiently. Using GRIPP, we can answer reachabil-
ity queries on graphs with 5,000,000 nodes on average in lessthan 5 milliseconds,
which is unrivaled by previous methods. We can also answer distance queries on
large graphs more efficiently using the GRIPP index strucutre. We evaluate the per-
formance and scalability of our approach on real, random, and scale-free networks
using an implementation of GRIPP inside a relational database management system.
Thus, GRIPP can be integrated very easily into existing graph-oriented applications.
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1 Introduction

Managing, analyzing, and querying graph-like data is important in many areas such as
geographic information systems [13], web site analysis [10], and XML documents with
XPointers [23]. In addition, the semantic web builds on RDF,a graph-based data model,
and graph-based query languages such as RQL [18] or SparQL1. Thus, querying graphs
is likely to become even more important in the near future.

In our area of research we mainly deal with data from the life sciences. In every living
cell there exist complex mechanisms involving DNA, proteins, and chemical compounds
that are constitutive for the functioning of the cell. It is now commonly acknowledged that
further progress in understanding the complex mechanisms inside a living cell can only be
achieved if the interplay of many components, organized in networks, is understood [4].

The size of the networks under consideration can be very large. Typical biological
networks, such as gene regulation or protein interaction networks, are currently in the
range of tens of thousands of nodes. This number increases dramatically as activity in
measuring interactions moves from bacteria to higher organisms, such as humans [3].
Already today, networks of biomedical entities (genes, diseases, drugs, etc.) extracted
from large publication databases contain up to 6 million edges2. Every network can also
be considered as graph.

Querying large graphs is a challenge. Important types of queries in labeled, directed
graphs arereachability, distance, andpath queries. We assume that the graph is stored
in a relational database management system. Thus, all queries need to be translated into
SQL queries. Using a naive approach, the queries can be answered by traversing the graph
at query time, starting from nodev and performing a depth-first or breadth-first search [8].
This method does not need any precomputed index, but must traverse the entire graph.

As a second option, we can pre-compute the transitive closure (TC) of the graph.
Stored in a table, we can use the TC as an index with which reachability queries can be
answered by a single table lookup. But on the downside, the size of the TC is in worst-
case quadratic in the number of nodes of the graph [2]. This renders its computation and
storage infeasible for large graphs.

There is a need for new index structures to efficiently answerreachability and distance
queries on large graphs. In this paper we present such an index structure, called GRIPP.
Its main idea is an adaptation of the pre- and postorder numbering scheme – so far only
applied to trees [9] and DAGs [24] – to (cyclic, possibly unrooted) graphs. The GRIPP
index can be computed very efficiently and requires only linear space in the size of the
graph. Querying GRIPP requires multiple queries, but typically orders of magnitude less
queries than graph traversal. Thus, in general the query performance of GRIPP compares
favorably with graph traversal and can be used on graphs far beyond the scope of TC.
The properties of TC, recursive query strategies, and GRIPPare compared qualitatively
in Table 1.

Clearly, indexing trees is simpler than indexing general graphs. In general, the per-
formance of different approaches to indexing and querying graphs largely depends on the
structure of the graphs under study, for instance, whether they are random or scale-free,

1http://www.w3.org/TR/rdf-sparql-query
2See http://www.pubgene.org.
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Query time Index creation

Transitive closure very fast
infeasible for

graphs>10,000
nodes

Recursive strategy very slow no index needed
GRIPP fast fast

Table 1: Different strategies for answering reachability queries on graphs, separating
efforts for indexing and querying.

and whether they are dense or sparse. These differences are often not sufficiently recog-
nized when new methods are developed. We are especially interested in an index structure
that exploits the structure of biological networks, which are, like many other real-world
networks, scale-free. This means that the distribution of the node degree follows a power-
law [15], resulting in very few well connected nodes and manynodes having only one
incoming or outgoing edges (see Figure 1).

Figure 1: A scale-free graph. The darker the nodes, the higher their degree.

Our paper is organized as follows. In the next section we describe our graph data
model and common ways to query graph structured data. In Section 3 we present the
GRIPP index structure itself. In Section 4 we show how to efficiently evaluate reachabil-
ity and distance queries using GRIPP. In Section 5, we describe heuristics for indexing
scale-free graphs. Section 6 gives implementation detailsfor the presented methods. In
Section 7, we give experimental results for synthetic random, synthetic scale-free, and
real biological networks, with graph sizes ranging from 1,000 to five million nodes and
different graph densities. Section 8 discusses related work and Section 9 concludes the
paper.

2 Background

We adopt notation from Cormen et al. [8]. A graphG = (V, E) is a collection of nodes
V and edgesE. We only consider connected graphs with labeled nodes and directed,
unlabeled edges. Thesizeof a graph,|G|, is the number of nodes|V | plus the number of
edges|E|. Thedegreeof a node is the number of incoming and outgoing edges of a node.
Given a graphG, apathp is a sequence of nodes that are connected by directed edges.
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We want to answer reachability and distance queries on graphs.

Definition 2.1 (Reachability) LetG = (V, E) andv, w ∈ V . w is reachablefromv iff at
least one path fromv to w exists.

Definition 2.2 (Distance) Let v, w ∈ V . The length of the shortest path is called the
distancebetweenv andw. If no path betweenv andw exists, the path length is infinite.

Of course, for a given pair of nodesv, w there can exist several paths that are shortest.

2.1 Querying Graphs in Databases

We analyze the problem of answering reachability and distance queries on graphs stored
in a relational database system.

We assume that graphs are stored as a collection of nodes and edges. The informa-
tion on nodes includes a unique identifier and possibly additional information. Edges
are stored as binary relationship between two nodes, i.e., as adjacency list. Additional
attributes on edges can be stored as well.

Reachability is concerned with the question if a path between two nodes exists. Given
two nodesv andw, the functionreach(v, w) returnstrue if a path fromv to w exists,
otherwisefalse. For distance queries we are interested in the length of the shortest path.
The functiondist(v, w) returns the distance, i.e., the length of the shortest path,between
nodesv andw. If no path exists, the function returnsnull.

The simplest way to answer questions on graphs is to traversethe graph at query time
using depth- or breadth-first search [8]. This requires timeproportional to the number of
traversed edges, i.e., in worst-case the size of the graph. In a relational database system
depth- and breadth-first search can not be expressed by standard SQL in all database
systems, but must be implemented using user-defined functions.

The commercial database management systems Oracle and IBM DB2 have imple-
mented recursive query strategies. IBM DB2 supports the SQL2003 standard, while
Oracle uses its own syntax. The implementations aim at hierarchy data, i.e., mainly tree
structured data. Starting with version 10g Oracle also provides methods to handle cy-
cles. Oracle’s implementation traverses graph structureddata in depth-first order. When
answering reachability or distance questions, Oracle enumerates all cycle free paths be-
tween the start and end node. This behavior makes the currentimplementation inefficient
for reachability and distance queries as is discussed in Section 7. We did not evaluate the
implementation of the SQL 2003 standard in IBM DB2.

Another option to answer some queries in graphs is to pre-compute the transitive clo-
sureTC. TheTC of a graph is the set of node pairs(u, v) for which a path fromu to
v exists. Efficient algorithms for computing theTC in relational databases have been
developed [2, 21]. But the size of theTC is O(|V |2), which makes it inapplicable to large
graphs. In addition to that, the transitive closure is only capable of answering reachability
questions. Distance questions can be answered if, in addition to node pairs, the distance
between the nodes is stored as well. Answering questions about path lengths or actual
paths is not possible using the transitive closure alone.
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A different indexing strategy is to label nodes using the pre- and postorder labeling
scheme. But this indexing scheme was only described for treestructured data [9]. As it
allows to maintain the order of child nodes in the tree it is well suited to index XML docu-
ments [11]. In previous work we extended this indexing scheme to index large ontologies
that are structured as directed acyclic graphs (DAGs). We used an ’unfolding’ technique,
where each added ’non-tree’ edge introduces new entries to the index structure [24]. The
target node of the additional edge as well as all successor nodes get additional pre- and
postorder ranks. Thus, each node has as many pre- and postorder values as there are paths
from the root node to this node. Using this technique the index size grows tremendously
with increasing number of edges, making it only feasible fortree-like DAGs. For highly
connected DAGs as well as for graphs we have to apply different indexing methods.

2.2 Pre- and postorder labeling

Our indexing scheme for graphs is based on the pre- and postorder indexing scheme for
trees. We will therefore first explain this indexing scheme for trees in more detail.

Given a tree, in the pre- and postorder indexing scheme each node in the tree receives
three values, a preorder value, a postorder value, and the depth of the node in the tree. Pre-
and postorder values are assigned to a node according to the order in which the nodes are
visited during a depth-first traversal of the tree. The preorder valuevpre is assigned the
first time nodev is encountered during the traversal. The postorder valuevpost is assigned
after all successor nodes ofv have been traversed. Originally, two counters are used, one
for the preorder value and one for the postorder value. Both are incremented after each
assignment. In our implementation we use only one counter for both values as this is
advantageous for querying. We will explain this in the following.

The depth ofv, vdepth, is also assigned during the depth-first traversal. The depth of
the root node of the tree is0. The depth of any nodev in the tree is the distance to the root
node.

Example 2.1 A pre- and postorder labeled tree with depth information canbe seen in
Figure 2(a).

The the list of nodes together with assigned pre- and postorder values and depth in-
formation form an index through which reachability and distance queries on trees can
be answered with a single SQL query. Ifw is reachable fromv, w must have a higher
preorder and lower postorder value thanv, i.e., wpre > vpre ∧ wpost < vpost. However,
the evaluation of this condition in a RDBMS is prohibitivelyslow due to the two non-
equijoins [12]. Fortunately, the test condition can be restricted to a single value using
the following observation. During the creation of the indexa nodev always receives its
preorder value before its successors get their pre- and postorder values. The postorder
value of nodev is assigned after all successor nodes have pre- and postorder values. As
the counter is incremented after every assignment, the pre-as well as postorder values of
any successor nodew of v must lie within the borders given by the pre- and postorder
values ofv, i.e.,[vpre, vpost]. Thus,reach(v ,w)⇔ vpre < wpre < vpost.
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If reach(v ,w) evaluates to true we know there exists a path fromv to w. As in trees
only one path between two nodes may exist this is also the shortest path. The length of
that path iswdepth − vdepth, i.e.,dist(v ,w) = wdepth − vdepth.

Example 2.2 In Figure 2(b), the gray area shows the preorder range in which all reach-
able nodes from nodeB are located.

[0,15,0]A

[1,6,1]B [7,8,1]C [9,14,1]D

[2,3,2]
E

[4,5,2]
F

[10,11,2]
G

[12,13,2]
H

(a) Pre- and postorder labeling of a tree.
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Figure 2: Indexing trees by pre- and postorder labeling.

The method as described only works for trees. As soon as nodeshave multiple incom-
ing edges they are visited multiple times during a traversaland thus no unique pair of pre-
and postorder values can be assigned.

3 GRIPP – A Graph Index Structure

The main idea of the GRIPP index structure is intriguingly simple. In GRIPP every node
in the graph receives at least one pair of pre- and postorder values and depth information.
However, as nodes can have multiple parents, one pair is not sufficient to encode the entire
graph structure. Some nodes in the graph have to be encoded bymore than one pair of
pre- and postorder values and depth information.

For now, we assume that the graph has exactly one root node, i.e., one node without
incoming edges. We also assume that an arbitrary, yet fixed, order among nodes exists,
e.g., an order based on node labels. In Section 5 we explain a suitable order for graphs
and we also show how to deal with graphs with multiple or without root nodes.

For the creation of the GRIPP index we start at the root node ofG. During a depth-
first traversal ofG we assign pre- and postorder values and depth information. We always
traverse child nodes of a node according to their order. A node v with n ≥ 1 incoming
edges is reachedn times during the traversal on edgesei, 1 ≤ i ≤ n. The edgeei on
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which we reachv for the first time is called atree edge. We assign a preorder value and
depth tov and proceed the depth-first traversal. After all successor nodes ofv have a value
pair,v receives its postorder value. Later, we will reach nodev over edgesej , ej 6= ei. We
call those edgesej non-tree edges. Each time we reachv we assign a new triple (preorder
value, postorder value, and depth) to nodev. But we do not traverse child nodes ofv.

We store the pre- and postorder values and the depth togetherwith the node identifier
as instancesin the index table, IND(G). Every node will have as many instances in
IND(G) as it has incoming edges inG. Analogously to the distinction of tree and non-
tree edges we distinguish between tree and non-tree instances inIND(G).

Definition 3.1 (Tree and non-tree instances)Let IND(G) be the index table of graph
G. Letv ∈ V be a node ofG andv′ be an instance ofv in IND(G). v′ is a tree instance
of v, iff it was the first instance created forv in IND(G). Otherwisev′ is a non-tree
instanceof v.

In the following, we refer to any instance inIND(G) of a nodev asv′, to a tree instance
asvT , and to a non-tree instance asvN . The set of tree instances inIND(G) is IT and
the set of non-tree instances isIN . In analogy, the set of tree edges isET and the set of
non-tree edgesEN . We shall need the distinction of instances for querying as explained
in Section 4.

Example 3.1 Figure 3(a) shows a graph and Figure 3(b) shows its index table, resulting
from a traversal in lexicographic order of node labels. NodesA andB have two instances
in IND(G) because they have two incoming edges.

R

A

B C D

E F G H

(a) A graphG.

node pre post depth type
R 0 21 0 tree
A 1 20 1 tree
B 2 7 2 tree
E 3 4 3 tree
F 5 6 3 tree
C 8 9 2 tree
D 10 19 2 tree
G 11 14 3 tree
B 12 13 4 non-tree
H 15 18 3 tree
A 16 17 4 non-tree

(b) Index tableIND(G).

Figure 3: Graph G and its GRIPP index table IND(G). Solid lines in the graph
represent tree edges, dashed lines are non-tree edges.

The GRIPP index structure resembles a rooted tree, which we call the order tree,
O(G).

Definition 3.2 (Order tree) Let G = (V, E) and let IND(G) be its index table. The
order tree,O(G), is a tree that contains all instances ofIND(G) as nodes connected by
all edges ofG.
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Intuitively, O(G) consists of a spanning treeT (G) and a ’non-tree’ partN(G). The
spanning tree contains the tree instance of every node in thegraph and is connected by
only tree edges. The non-tree part ofO(G) contains one node for every non-tree instance
in IND(G) connected by a non-tree edge to a node in the spanning treeT (G). Therefore,
every non-tree instance is a leaf node inO(G), while tree instances can be inner or leaf
nodes. Note that the structure ofO(G) depends on the order in whichG is traversed. In
Section 5 we shall explain how we can select an order that is specifically well suited.

Definition 3.3 (Partitioning) Let G = (V, E) be a graph with the index tableIND(G)
and resulting order treeO(G). O(G) can bepartitionedinto two disjoint graphs: a
spanning treeT (G) = (IT , ET ) and a disconnected non-tree partN(G) = (IN , EN),
with |IT | = |V |, IT ∪ IN = IND(G), ET ∪EN = E.

Example 3.2 In Figure 4 the instances ofIND(G) shown in Figure 3(b) are plotted.
NodesA andB have two nodes inO(G) as they have two instances inIND(G), one tree
and one non-tree instance.

-

6

pre

post

5 10 15 20

5

10

15

20
�R
�A

�B

�E
�B

�F

�A

�C

�A
�D

�G
�B

�D
�H
�A

�

�

Figure 4: Pre-/ postorder plane for GRIPP index table from Figure 3(b). Dotted lines
indicate O(G). Non-tree instances are displayed in gray.

3.1 Properties of the GRIPP index

3.1.1 Time and Space Requirements

The space requirements to store the GRIPP index table is linear in the size of the graph.
The GRIPP index table has as many entries asG has edges plus one entry for the root
node, because (a) every edge traversal generates one instance in IND(G) and (b) every
edge is traversed exactly once.

To create the GRIPP index structure we perform a depth-first search over a graphG.
The depth-first search has a time complexity ofO(|G|) (see [8]). We will analyze the time
complexity to create GRIPP in more detail now. During the index creation we basically
perform four steps for every edge.

These steps are
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• return the next child nodev of a node,

• check ifv has already been seen during the traversal,

• if not addv to the list of traversed nodes, and

• insertv as instance inIND(G).

We assume we can search a specific tuple in a table containingn tuples inlog(n) time
and that insertion is constant. To get the next child node fora node we requirelog(|E|)
time. To get all child nodes for one node we reqiren∗ log(E), with n being the outdegree
of that node. To get the child nodes for all nodes we thereforeneed|E| ∗ log(|E|) time
as we have in total|E| edges. To check if we have already traversed that child node takes
log(|V |) time, i.e., for all child nodes|E| ∗ log(|V |) time. During the traversal we will
add all nodes once to the list of traversed nodes (stored as relational table), which takes
in total |V | time. In addition we add an instance for every child node toIND(G), which
takes|E| time. Therefore, the total required time is|E| ∗ log(|E| ∗ |V |) + |V | + |E| to
create the GRIPP index structure in a relational database system.

3.1.2 Properties ofO(G)

Preorder of tree instance In the GRIPP index structure the tree instance of a nodev
has a lower preorder rank than all non-tree instances of thatnode. Intuitively, we traverse
G in depth-first order. When we reachv for the first time, the traversed edge becomes a
tree edge andv is added with a tree instance to the GRIPP index table. The next time we
reachv it is added with a non-tree instance to the index table. As thecounter for the pre-
and postorder values is never decreased the preorder value of the non-tree instance must
be higher than that of the tree instance.

Distance of nodes inO(G) Let v, w ∈ V andv′, w′ ∈ O(G) be an instance ofv andw,
respectively. Ifv′ is ancestor tow′ in O(G) we can determine the distance ofv′ andw′ in
O(G) by calculatingw′

depth− v′

depth. Note that this is not the distance betweenv andw in
G. To aquire the distance between two nodes we have to do more work (see Section 4.3).

Example 3.3 Figure 5 shows an order treeO(G) for a scale-free graphG with 100 nodes
and 200 edges. The child nodes in the order tree are ordered according to their preorder
values from left to right. During the index creation we traverse the graph in depth-first
order. We stop extending a path if (a) the node has no child nodes or (b) the node has
already been traversed. This means we traverse the graph as ’deep’ as possible. This is
reflected in Figure 5. The tree instancecT of the first traversed child nodec during the
index creation is the left-most child node of the root in Figure 5. Asc has many reachable
nodes inG, cT has many successor nodes inO(G). The remaining child nodes of the root
node have only few successor nodes. These nodes (a) either had no instance inIND(G)
when they were traversed or (b) are non-tree instances of already traversed nodes.
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Figure 5: Order tree created by GRIPP for a graph of 100 nodes and 200 edges.

4 Querying GRIPP

In the following chapter we show how to use GRIPP to efficiently answer reachability and
distance queries for a fixed pair of nodes. As answering distance queries for a fixed pair
of nodes first requires to know if a path between the two nodes exists we first concentrate
on reachability queries and then proceed to answering distance queries.

Recall, in trees both query types can be answered with a single lookup because all
reachable nodes of a nodev have a preorder value that is contained within the borders
given byvpre andvpost anddist(v ,w) = wdepth − vdepth.

When querying the GRIPP index structure in this way, we face two problems. First,
v has multiple instances inIND(G), each with its individual pre- and postorder value.
Second, in the preorder range of an instancev′ we will only find instances of nodes that
are reachable fromv′ in O(G). Nodes reachable fromv in G but not fromv′ in O(G) will
be missed. Thus, to find all reachable nodes inG, we have to extend the search by using
thehop technique.
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4.1 Hop technique

To evaluatereach(v ,w) anddist(v ,w) we use the GRIPP index tableIND(G). Every
non-tree instance ofv in IND(G) is a leaf node inO(G) and therefore has no successors
in O(G). But every nodev also has one tree instancevT in IND(G). If vT is an inner
node inO(G), vT has reachable nodesw′ in O(G) such thatvT

pre < w′

pre < vT
post. Those

can be retrieved with a single query. We call this setreachable instance setof v.

Definition 4.1 (Reachable instance set)Let v ∈ V be a node of graphG and vT ∈
IND(G) its tree instance. Thereachable instance setof v, writtenRIS (v), is the set of all
instances that are reachable fromvT in O(G), i.e., have a preorder value in[vT

pre, v
T
post].

Thus, the first step to answerreach(v ,w) is as follows. We first find the tree instance
vT of v and retrieve its reachable instance set. Ifw′ ∈ RIS (v), with w′ instance ofw, we
finish and returntrue, otherwise we have to extend the search.

Recall that inRIS (v) we only find instances that are reachable fromvT in O(G),
because during the creation ofIND(G) with reaching an already visited node we insert
a non-tree instance inIND(G) and do not traverse the child nodes of that node. There-
fore, if RIS (v) contains non-tree instances of nodes their child nodes might not have an
instance inRIS (v), i.e., these nodes are reachable fromv in G, but not fromv′ in O(G).
To account for those we have to examine all non-tree instances of nodes inRIS (v). We
call those nodeshop nodesfor v.

Definition 4.2 (Hop node) Let v, w ∈ V andwN be a non-tree instance ofw. If wN ∈
RIS (v) thenw is called ahop nodefor v.

Example 4.1 Figure 6 shows the GRIPP index structure for the graph in Figure 3(a)
plotted in a two-dimensional co-ordinate plane. When we query for reach(D ,C ) we
initially consider the reachable instance set ofD. RIS (D) contains non-tree instances of
A andB, i.e., both are hop nodes forD.
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Figure 6: The figure shows O(G) from Figure 3(a). The preorder ranges of RIS (D)
and RIS (B) are in darkgray, the range of RIS (A) is in lightgray. Nodes A and B are
hop nodes for D. .

Every hop node inRIS (v) has a reachable instance set inO(G). The nodes in that set
are reachable fromv in G, but not fromvT in O(G). Thus, we have to identify all hop
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nodes and recursively check their reachable instance sets.Therein, we basically perform a
depth-first search overO(G) using hop nodes in ascending order of their preorder values.
We stop traversingO(G) if we find an instance of nodew or if there exists no further
non-traversed hop node.

In IND(G) there exist|E|− |V | non-tree instances, each of which can be a hop node.
Thus, querying GRIPP forreach(v ,w) requires in worst case|E| − |V | queries. This
is better than a depth-first traversal ofG, as this requires in worst case|E| traversals.
Furthermore, we can save most of those queries by intelligent pruning.

4.2 Reachability queries

Example 4.2 Consider Figure 6 andreach(D ,R). We find non-tree instances of nodesA
andB in RIS (D). If we first useA as hop node, we find non-tree instances ofA andB
in RIS (A). Clearly, we do not need to useA as hop node again. Therefore, we next use
B as hop node. The tree instance ofB is a successor of the tree instance ofA in O(G).
This implies thatRIS (B) is contained inRIS (A), i.e., we will not find new instances in
RIS (B) that are not already contained inRIS (A). Therefore, retrievingRIS (B) is not
necessary and can be pruned.

In general we want to avoid posing queries for preorder ranges which we have already
checked. During our search we keep a listU of all nodes that were used to retrieve a
reachable instance set, i.e., the start node and the hop nodes. Now assume we have found
a new hop nodeh. The decision whether we need to consider the reachable instance set of
h entirely, partly, or not at all, depends on the location of the tree instancehT of h relative
to the tree instances of nodes inU .

4.2.1 Pruning strategies for reachability queries

There are four possible locations ofhT in relation to the tree instanceuT of any node
u ∈ U . These are shown in Figure 7.hT either is

• (a) equal to,

• (b) a successor of,

• (c) an ancestor of, or

• (d) a sibling touT .

Since we may consider all nodes inU for pruning, these results in four possible cases:
(a)hT is equal to the tree instance of any node inU ; (b) hT is successor of the tree instance
of at least one node inU ; (c) hT is ancestor of the tree instance of at least one node inU
and neither (a) nor (b) is true; and (d)hT is sibling to the tree instances of all nodes in
U . Note that the pre- and postorder ranges of two instances cannever overlap. They are
either disjoint or one is entirely contained in the other.

In case (d), no pruning is possible and we have to consider theentire reachable in-
stance set ofh, as there exists no previous reachable instance set that covers instances in
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Figure 7: Possible locations of hT of hop node h relative to uT , u ∈ U .

RIS (h). For the remaining three cases we can apply pruning to ensurethat no instance is
considered twice during the evaluation ofreach(v ,w).

In the first case (see Figure 7(a)), we can skiph entirely. A non-tree instance ofh has
already been used as hop node and therefore the reachable instance set of the tree instance
of h has been checked.

In the second case (see Figure 7(b)) we also can skiph. In this case there existsu ∈ U
such thathT is successor ofuT , i.e.,hT ∈ RIS (u). Thus, the entire reachable instance set
of hop nodeh is contained inRIS (u) and has already been considered.

In the third case we have to be more careful.

Example 4.3 Consider Figure 6 and the queryreach(D ,R). Assume, we have retrieved
RIS (D) andRIS (B) and have expanded the search usingA as hop node.RIS (A) con-
tains the tree instance ofB and D and therefore also containsRIS (B) and RIS (D).
Thus, when we considerRIS (A) we can ’skip’ the range ofRIS (B) andRIS (D).

Skip Strategy We first assume that only oneuT exists that is a successor ofhT . Thus,
RIS (u) is contained inRIS (h). This situation is displayed in Figure 7(c). Considering
the entire reachable instance set ofh leads to duplication of work. To avoid this we use the
skip strategyworking as follows. For every nodeu ∈ U we store the pre- and postorder
value ofuT , i.e., the borders ofRIS (u). In that range all instances are covered byRIS (u)
and we can skip the preorder range without missing instances. We only have to consider
instances fromRIS (h) whose preorder values lie outside the pre- and postorder range of
uT .

If there is more than one successor node ofh in U , the situation is slightly more
complicated. Essentially, we can skip all their ranges whensearchingRIS (h). This could
be optimized by merging ranges iteratively during the search, thus reducing the number
of necessary interval operations. However, we currently donot merge ranges.

We could merge ranges inU only for cases (c) and (d). In case (c) the tree instance of
the hop nodeh is ancestor to tree instances of nodes inU . We could shortenU by deleting
all nodesu that have a tree instance inRIS (h). But as deletion operations are expensive
in RDBMS we currently do not merge ranges in that context. In case (d) ranges can be
adjoining, i.e., theuT

1post + 1 = uT
2pre. In that case we could merge those two entries. But

as this is computationally more expensive than to skip both ranges separately we also do
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not merge ranges in that case. In addition, we search listU only a few times during a
reachability query (shown in Section 7), i.e., the cost to merge ranges might not account
for the gain of merging.

Stop Strategy When querying graphs for reachability between nodesv andw we can
stop extending the search as soon as we have found an instanceof w in the reachable
instance set of the current hop nodeh. But if w /∈ RIS (h) we must find every hop node in
RIS (h) and start a recursive search. It would be advantageous if we knew in advance that
in RIS (h) does not exist a hop node that will extend the search, becausein that case we
do not have to query for the tree instance of every hop node. Wenow show cases where
this property can be pre-computed.

Recall that a hop node for nodes is a nodeh that has a non-tree instance inRIS (s).
h is not used as hop node if the tree instance ofh is in RIS (s) (Figures 7(a), 7(b)). We
can precompute a list of nodesS for which all hop nodes have this property. We call those
nodesstop nodesas their reachable instance sets will not extend the search.

Definition 4.3 (Stop node)Lets ∈ V be a node of graphG and letRIS (s) be its reach-
able instance set inO(G). s is called astop nodeiff all non-tree instances inRIS (s) also
have their corresponding tree instances inRIS (s) or are a non-tree instance ofs.

Intuitively, a stop nodes is a node inG for which in RIS (s) for every non-tree instance
there exists a corresponding tree instance. This means, that all nodes reachable froms
in G are reachable fromsT in O(G), i.e., have an instance inRIS (s). Clearly, nodes
reachable froms in G can also have non-tree instances in other reachable instance sets
thanRIS (s).

When we reach the tree instance ofs during the search we immediately know that we
need not extend the search further using hop nodes ofRIS (s). We only have to check if
w ∈ RIS (s). The GRIPP index structure in Figure 3 contains several stopnodes, namely
nodesR, A, B, E, F , andC. As heuristic, during the search we prefer stop nodes as hop
nodes over non-stop nodes.

Example 4.4 As an illustration for a complex search process Figure 8 shows the evalu-
ation of the reachability queryreach(21 , 52 ) on a graph with 100 nodes and 200 edges.
The query starts by considering the reachable instance set of node 21. InRIS (21 ) there
are two hop nodes, namely 13 and 2. As 13 has the lower preordervalue we use this
node as next hop node.RIS (13 ) contains the tree instance of 21, i.e., we skip that range
during the search. InRIS (13 ) there are several non-tree instances, including a non-tree
instance of stop node 3. Therefore, we use that node as next hop node.RIS (3 ) contains
an instance of node 52, i.e., we can returntrue.

If we had not found node 52 inRIS (3 ) we could also stop our search in this case, as
node 13 as well as 21 are successor nodes of 3 in the order tree.This means no non-tree
instance in a reachable instance set would point to a tree instance outsideRIS (3 ), i.e.,
we could not find an instance of node 52.
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(a) Start at node 21 (in dark).

(b) Hop node
13.

(c) Hop node 3 (also stop node).

Figure 8: reach(21 , 52 ) on a generated scale-free graph with 100 nodes and 200 edges.
In (a) RIS (21 ) is dark. The non-tree instance of the next hop node 13 is light-colored.
In (b) RIS (13 ) is dark. The one non-tree instance of stop node 3 is light-colored, which
is used as next hop node. In (c) RIS (3 ) is dark. Two instances of the end node 52
are in RIS (3 ).
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4.3 Distance queries

To answerdist(v ,w) using GRIPP we begin at nodev and traverse the index structure
using hop nodes. During the traversal we search for an instance of w in the reachable
instance set of the start node or of hop nodes. If we find an instance ofw we can determine
the path length fromv to w using GRIPP. As this path may not be the shortest, we have to
traverse the index structure further. Applying a naive approach we have to systematically
use every non-tree instance as hop node. We stop when no more unused non-tree instance
is available. The length of the shortest path found is the distance betwenv andw.

In the following we first explain how to determine path lengths between two nodes
using GRIPP. Later we will show how to apply different pruning strategies to make the
evaluation of distance queries more efficient.

4.3.1 Determine path lengths

To determine the length of a path we need the depth of nodes in the GRIPP order tree
O(G). Assume two nodesv andw. If an instancew′ of w is element ofRIS (v) we
know that (a)w is reachable fromv and (b) one path betweenv andw has the length
w′

depth − vT
depth with vT tree instance ofv andw′ any instance ofw ∈ RIS (v). This is not

necessarily the distance between the two nodes, as a shorterpath may exist through hop
nodes.

Example 4.5 Figure 9 showsO(G) for the graph in Figure 3(a) with the depth of the
nodes. When querying fordist(D ,E ) we first retrieveRIS (D), which contains two hop
node, namelyA andB. The path length from the tree instanceDT of D to the non-tree
instancesAN andBN of A andB, respectively, is in both cases 2 (AN

depth − DT
depth = 2

andBN
depth − DT

depth = 2). RIS (D) does not contain the end nodeE, but we can extend
the search usingA or B as hop nodes.
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Figure 9: The example shows O(G) from Figure 3(a) together with the depth of the
nodes. The preorder range of RIS (D) is in darkgray. Nodes A and B are hop nodes.

If w is not inRIS (v) we have to extend the search using hop nodes. We can determine
the path length from the tree instancevT of v to the non-tree instancehN

1 of the first hop
nodeh1. If there exists no instance ofw in RIS (h1 ) we proceed with traversingO(G)
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using further hop nodeshi until we find an instancew′ of w. To determine the path length
of the pathp starting atv, containing hop nodesh1...hn and ending atw we have to sum
up the path lengths for every part of the path as shown in Equation 1.

plen(v ,w) = len(vT , hN
1 ) +

n−1∑

i=1

len(hT
i , hN

i+1 ) + len(hN
n ,w ′) (1)

with hi ∈ p, 1 ≤ i ≤ n, len(a, b) = bdepth − adepth with b successor ofa in O(G).

Example 4.6 To evaluatedist(D ,E ) on the GRIPP index structure shown in Figure 9 we
first use nodeA as hop node. We findET ∈ RIS (A) with len(DT ,AN )+ len(AT ,ET ) =
2 + 2 = 4. As next step we useB as hop node. We also findET ∈ RIS (B), in this case
with len(DT ,BN ) + len(BT ,ET ) = 2 + 1 = 3.

There are no further unused hop nodes inRIS (D). There are two non-tree instances
in RIS (A), i.e., A and B, which we have already used with a lower distance. We will
prune hop nodesA andB and thereforedist(D ,E ) = 3.

4.3.2 General query strategy for distance queries

To determine the distance between nodesv andw we use the following query strategy.
We first answerreach(v ,w) as described in Section 4.2. Ifreach(v ,w) = false we stop
and returndist(v ,w) = null . Otherwise, we determine the length of the path found when
computingreach(v ,w) as first upper bound for the distance.

In the second step we perform a breadth-first search overO(G) starting atv. We
traverseO(G) by using hop nodeshi in ascending order of the path length betweenv and
hi. Be aware, this does not mean that we use hop nodes in the orderthey are found during
the search (see also Example 4.7). We stop traversingO(G) as soon as no further hop
node can be used. The length of the shortest path is the distance betweenv andw.

Example 4.7 Figure 10 shows a distance query from nodev to w. We first answer
reach(v ,w). We useh1 as first hop node and find two instances ofw in RIS (h1 ).

We now start the breadth-first search by using hop nodes in ascending order of the
path length betweenv and hop nodes. We first useh1 as hop node asplen(v , h1 ) <
plen(v , h3 ). RIS (h1 ) contains a non-tree instance ofh2. We use the node as hop node
that has the shortest path length tovT . Asplen(v , h2 ) = 5 andplen(v , h3 ) = 7 we use
h2 as next hop node. Finally, we useh3 as hop node. As there are no further hop nodes
the distance betweenv andw is the shortest path length found.

4.3.3 Pruning strategies for distance queries

For reachability queries only the location of the tree instance is important to decide if
we can prune a hop nodeh. In Section 4.2 we identified four possible locations of the
tree instance of a hop nodeh′ in relation to reachable instance sets of used hop nodesU
(Figure 7).

For distance queries in addition to the location of the tree instance of hop nodeh we
also have to consider the path length between the start node and h. We have to compare
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Figure 10: Evaluating distance queries. We use hop nodes in order of their subscripts.

len(vT , hN
1 ) = 2, len(vT , hN

3 ) = 7, and len(hT
1 , hN

2 ) = 3

plen(v , h) to all path lengths betweenv andh over nodes inU . For that reason we store
for everyu ∈ U the depth inO(G) (udepth) and the path length (uplen) betweenv andu.

Example 4.8 Consider Figure 9 anddist(D ,E ). RIS (D) contains non-tree instances of
nodesA andB, both with the same path length toD. We use nodeA as first hop node and
find E with a path length of4. When querying for reachability we will not useB as hop
node, as the tree instance is successor to a used hop node. However, for distance queries
we have to useB as hop node. The path length betweenD andB is two, the currently
shortest path betweenD andE is 4. Thus, usingB as hop node can result in a shorter
path. In this case the path betweenD andE overB is 3.

We now show for all four cases individually when we can prune hop nodes.

hT equalsu ∈ U In case that the tree instancehT of the hop nodeh is equal to the
tree instanceuT of a nodeu ∈ U we have already seen all instances inRIS (h). But if
plen(v , h) 6= plen(v , u) the path lengths betweenv and nodes inRIS (u) are incorrect.
If plen(v , h) ≥ plen(v , u) we do not have to useh as hop node for distance queries
as the path lengths betweenv and nodes inRIS (u) would only increase. Otherwise, if
plen(v , h) < plen(v , u) we must useh as hop node, as we have to adjust the previously
computed path lengths betweenv and nodes inRIS (h).

During a breadth-first search we will never get the situationthatplen(v , h) < plen(v , u)
as we use non-tree instances in ascending order of their pathlength tov, i.e.,plen(v , h) ≥
plen(v , u) always holds and we can therefore always prune.

Example 4.9 That case is displayed in Figure 11.RIS (v) contains two non-tree in-
stances, i.e.,uN andhN , with len(vT , uN ) < len(vT , hN ). If we useuN first we addu to
the list of used nodesU and retrieveRIS (u). As next non-tree instance we considerhN

and find thath = u. As len(vT , uN ) < len(vT , hN ) we do not have to useh to retrieve
RIS (u) again. Otherwise, if we usedhN first we also had to useuN as we had to adjust
the path lengths to nodes inRIS (h).
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Figure 11: Case h = u for distance queries.

hT successor ofu ∈ U In the second casehT is successor of the tree instanceuT of at
least one node inU . For reachability queries we can prune that case entirely, as RIS (h)
is contained in at least oneRIS (u). For distance queries we also have to compare the
path length fromv directly toh to the path length fromv overu to h, i.e.,plen(v , h) and
plen(v , u) + len(uT , hT ).

If plen(v , h) 6= plen(v , u) + len(uT , hT ) we have to adjust the path lengths in
RIS (u). If plen(v , h) ≥ plen(v , u) + len(uT , hT ) the path lengths betweenv and nodes
in RIS (u) will remain constant or even increase. To answer distance queries we are not
interested in longer path and therefore we will not useh as hop node. Otherwise, if
plen(v , h) < plen(v , u) + len(uT , hT ) we must useh as hop node and adjust the path
lengths betweenv and nodes inRIS (u).

Example 4.10 Consider Figure 12.RIS (v) contains two hop nodes, namelyu and h
with len(vT , uN ) < len(vT , hN ). We useu as first hop node. In the next step we consider
hN . We find thathT is successor ofuT . We reachhT over two different paths, one directly
from v to h, and one fromv overu to h. Therefore there exist two different path lengths
fromv to h.

• plen(v , h) = plen(vT , hN )

• plen(v , h) = plen(vT , uN ) + len(uT , hT )

We have to useh as hop node only if the path betweenv andh overu is longer than
the path directly toh. In every other case we can prune.
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Figure 12: Case hT successor of uT for distance queries.

hT ancestor ofu ∈ U In the third case ishT is ancestor of the tree instanceuT of a
node inU and neither of the previous two cases are true. For reachability queries we
exclude the range between pre- and postorder value of every nodeu ∈ RIS (h). For
distance queries we must consider the path length betweenv andh to decide if we can
skip a preorder range.
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If plen(v , h) + len(hT , uT ) ≥ plen(v , u) the path lengths betweenv and nodes in
RIS (u) will remain constant or even increase, i.e., we can skip the area. Otherwise, if
plen(v , h) + len(hT , uT ) < plen(v , u) we cannot skip the area and must adjust the path
lengths betweenv and nodes inRIS (u).

Example 4.11 Consider Figure 13. Here again,RIS (v) contains two hop nodes,u and
h with len(vT , uN ) < len(vT , hN ). We useu as first hop node. In the next step we useh
as hop node. AshT is ancestor ofuT we reachuT over two different paths, one directly
from v to u, and one fromv overh to u. Therefore there exist two different path lengths
fromv to u.

• plen(v , u) = plen(vT , uN )

• plen(v , u) = plen(vT , hN ) + len(hT , uN )

If len(vT , uN ) < len(vT , hN )+ len(hT , uT ) we can skip the preorder range between
uT

pre anduT
post, otherwise not.

During a breadth-first search of the index structureplen(v , u) ≤ plen(v , h) as we
usedu before we usedh as hop node. As we use hop nodes in ascending order of their
path lengths tov the non-tree instanceuN of u must have an equal or lower distance than
the non-tree instance ofhN . Therefore during a breadth-first search we can always skip
the preorder range of used hop nodes inRIS (h).
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Figure 13: Case hT ancestor of uT for distance queries.

hT sibling to all u ∈ U In the last case ishT sibling to all nodesu ∈ U . In this case
we have to retrieveRIS (h) regardless of the path length betweenv andh as we know
nothing about instances inRIS (h).

plen(v,h) > plen(v,w)-2 When querying fordist(v ,w) we can also prune hop nodes if
plen(v , h) ≥ plen(v ,w) regardless of the location of the tree instance of the hop node. If
we usedh as hop node the path length betweenv andw would only increase. Actually,
we can prune hop nodes ifplen(v , h) > plen(v ,w)− 2. If plen(v , h) = plen(v ,w) we
can only find a path fromv to w overh of plen(v ,w) = plen(v ,w) + 1, as we require
at least one step to reachw in RIS (h). Similarly, if plen(v , h) = plen(v ,w) − 1 we
can only find a path length overh of plen(v ,w) = plen(v ,w), which is not shorter than
the currently shortest path. Therefore we can prune ifplen(v ,w) > plen(v ,w) − 2.
In contrast, ifplen(v , h) = plen(v ,w) − 2 we could find a path betweenv andw of
plen(v ,w) = plen(v ,w)− 1, i.e., we can not prune in that case.
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In addition for a breadth-first search over GRIPP we have to put nodes on a stack.
As we know that only hop nodes withplen(v , h) > plen(v ,w) − 2 might contribute to
shorter paths we do not have to put any hop node on the stack whose path length tov
exceeds the current upper bound. Therefore, performing first a reachability query and
returning an initial upper bound for the distance reduces the number of nodes that are put
on the stack.

4.3.4 Distance queries in GRIPP – depth-first vs. breadth-first search

We can use two different search strategies for distance queries in GRIPP - depth-first
or breadth-first search. Using depth-first search we can answer reach(v ,w) very fast
using few hop nodes (experimentally verified in Section 7). Therefore fordist(v ,w) we
can quickly determine a first upper bound for the distance andproceed the depth-first
traversal. After we have found and instancew′ of w we proceed using hop nodes whose
non-tree instances are sibling tow′ in O(G). For such a hop nodeh it could be the case
thatplen(v , h) > dist(v ,w). This means that usingh will not contribute to the result – as
we will find shorter paths by using successive hop nodes. Concluding, using a depth-first
search might lead to unnecessarily used hop nodes.

In contrast, during a breadth-first search we use hop nodes inascending order of their
distance to the query node. This means that we always use a hopnodeh with plen(v , h) <
dist(v ,w), i.e.,h might be on the shortest path betweenv andw. In addition, when using
breadth-first search the pruning strategies for the caseshT = uT andhT ancestor ofuT

are simpler, as we do not have to compare path lengths.

Example 4.12 Figures 14 and 15 on pages 21 and 22 show the evaluation of a distance
query on a graph with 100 nodes and 200 edges.

To evaluatereach(21 , 7 ) we first perform a reachability query. We start at node21
and use node2 as first hop node. We find three instances of node7 in RIS (2 ). The
shortest path length is11.

In the next step we start the breadth-first search over the GRIPP index tree. During
the search we add non-tree instances to the list of not traversed non-tree instances. The
added non-tree instances up to path length7 are shown in Table 2. The table also reflects
the progression during the breadth-first traversal.
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(a) Insert non-tree instances inRIS (2 ). (b) Skip the already searched area ofRIS (2 )
and add remaining non-tree instances.

Figure 14: First two steps on the evaluation of dist(21 , 7 ).
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(a) The tree instance of16 is
successor to the tree instance
of 2 and 13. But we have to
use16 as hop node as the path
lengths between21 and nodes in
RIS (16 ) decreases.

(b) In RIS (3 ) there is another instance of7. The path length over
hop node3 is 9.

Figure 15: Two further hop steps during dist(21 , 7 ). The shortest path is 21−2−11−
92− 17− 3− 22− 75− 38− 7
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1 2 13
2 23 16 98
3 11suc 24 13eq

4
5 3 15 87o 65o

6 5 20 14 91o 59o

7 3eq, 31, 47o, 36o 13eq, 30suc, 51o 4, 1, 13eq, 19, 42

Table 2: Added non-tree instances to the list of not traversed non-tree instances. The table also shows the progression of the
search. We did not use non-tree instances with superscript o = without successors, eq = equals a previous hop node, and suc =
successor of a previous hop node and path length correct.
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5 Heuristics for GRIPP

In this section we show that GRIPP is especially well suited for dense graphs. In GRIPP,
mostly two criteria influence the performance of queries: (1) The order of child nodes
during the index creation, and (2) the order in which hop nodes are used during the search
phase.

5.1 Order of child nodes

Consider a queryreach(v ,w). Clearly, the best GRIPP index structure would contain
all reachable nodes fromv in G in RIS (v) and therefore the query could be answered
with a single lookup. This is only the case whenv has been traversed before all of its
successors. We obviously cannot compute a special index structure for every possible
start node. However, we can learn from this observation thata ’good’ order is one where
nodes with many reachable nodes inG also should have large reachable instance sets in
O(G), i.e., that these nodes should be traversed early during index creation. With such
nodes, we scan large fractions of the graph with few queries.This helps in pruning hop
nodes.

This criteria can be satisfied easily in scale-free graphs, which contain few highly con-
nected nodes (called hubs in the following) and many sparsely connected nodes. Hubs
have many incoming and outgoing edges and a high chance of having a large set of suc-
cessor nodes. To ensure that hubs also get a large reachable instance set we need to
traverse them early during the GRIPP index creation. We achieve this goal by choosing
child nodes in the order of their degree during index creation. As another positive effect,
hubs are also reached by many nodes. Thus, they tend to appearearly as hop node in the
search phase, even if the start nodev of a query is not a hub. Thereby, the search quickly
reaches a node very close to the root of the order tree. Ordering nodes according to their
degree is advantageous for all types of graphs, not only for scale-free graphs. In Section 7
we show the influence of the graph type on query performance empirically.

5.2 Order of hop nodes

The second criteria that influences the query performance isthe order in which hop nodes
are used during the search phase. Given nodev, RIS (v) can contain several hop nodes
h. Following our explanation above the best strategy is to usethe hop node that has the
largest reachable instance set first. Clearly, this would bethe best order in which to use
hop nodes. But this strategy has a major disadvantage. In order to decide which hop
node has the largest reachable instance set we need the pre- and postorder values of the
tree instances for all hop nodes. As this is also time consuming we currently follow a
different strategy, i.e., we use hop nodes in order of their preorder values of the non-tree
instances. Clearly, we could precompute and store the size of the reachable instance set
for every hop node, but experimental evidence shows that thenumber of recursive calls
for this strategy increases only marginally.
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5.3 Effect of node order on distance queries

For distance queries we perform a breadth-first search over GRIPP. We use hop nodes in
the order of the path length to the query node. As explained inSection 4 this has the
advantage, that we only use hop nodes that could be on a shortest path to the target node.

The weak point during the evaluation of distance queries is the index structure itself.
Consider the querydist(v ,w). If we find an instance ofw in RIS (v) the path fromv to
w is not necessarily the shortest path. We still have to use allhop nodes inRIS (v) with
plen(v , h) < plen(v ,w). It would be advantageous to have an index structure where we
knew for at least for some paths that these are the shortest. Appendix A shows such an
index structure. For that structure we first perform a breadth-first search starting at any
node and then create the index structure during a depth first search using the information
from the breadth-first search. This has the advantage that every path inO(G) between
two tree instances is shortest, i.e., we could prune even more hop nodes. But there are
two disadvantages, namely that with growing graph sizes thetime required to execute the
breadth-first search does not grow linear but exponential. In addition, querying this index
structure for reachability requires more recursive calls and is therefore on average about
100 % slower than querying the index struture created by depth-first search alone (data
not shown).

6 Implementation

In this section we present details on our implementation of GRIPP as stored procedures
in a RDBMS. We explain how to deal with graphs with multiple orno root, describe how
we compute the list of stop nodes, and sketch the search algorithms.

6.1 GRIPP index table

Before we create the GRIPP index we add a virtual root noder to the graph. We add
an edge betweenr and the node that has the highest degree among all nodes. We then
traverse and label the nodes as explained in Section 3 starting fromr using the degree of
nodes as order criteria. However, some nodes are not reachedduring this traversal, e.g.,
nodes without incoming edges or nodes in not connected subgraphs. We find those nodes
and add another edge fromr to the node with the highest degree. This is repeated until all
nodes have at least one instance in the index table. This way,we uniformly handle graphs
with none, one, or multiple root nodes.

Algorithm 1 shows the algorithm to compute the GRIPP index table IND(G).

Example 6.1 Figure 16(b) shows the GRIPP index strucutre that is createdafter apply-
ing Algorithm 1 to the graph in Figure 16(a) using child nodesordered by node degree
descending and node label ascending.
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Algorithm 1: The GRIPP algorithm to computeIND(G)

pre post← 0 seen← ∅
PROCEDURE compute GRIPP()

while ¬empty(node \ seen) do
pre node← pre post

pre post← pre post + 1
next node← next(node \ seen) // order by degree

traverse(next node, 0)
GRIPP← GRIPP ∪ (next node, pre node, pre post, 0, T)
pre post← pre post + 1

end
end

PROCEDURE traverse(next node, cur dist)
seen← seen ∪ next node

while child← next(children(next node)) // order by degree

do
pre node← pre post

pre post← pre post + 1
if child /∈ seen then

node inst← T
traverse(child, cur dist +1)

else
node inst← N

end
GRIPP← GRIPP ∪ (child, pre node, pre post, cur dist +1,node inst)
pre post← pre post + 1

end
end

6.2 Stop node list

To create the list of stop nodes would we have to check the reachable instance set of every
node. As this is too time consuming we currently test only selected nodes. We are espe-
cially interested in nodes whose reachable instance set covers many instances. Therefore,
we only consider child nodesc of the virtual root node as stop node candidates. In addi-
tion for everyc we compute the size ofRIS (c), |RIS (c)|. We only considerc as stop node
candidate if|RIS (c)| ≥ t, with t being the cut-off value. For our experiments we use the
cut-off valuet = 0.0005 ∗ max (|RIS (c)|), which we determined empirically as tradeoff
between the number of nodes we must evaluate during the stop node list generation and
the number of stop nodes found. Furthermore, we only consider a node as stop node if
it is a potential hop node, i.e., if it has a non-tree instancein IND(G). For a stop node
candidates we check if the tree instancehT of any hop node inRIS (s) has a preorder
value that is lower than that of the tree instancesT of s. In that case,hT is sibling tosT in
O(G) ands is not a stop node; otherwise,s is a stop node and is added to the list of stop
nodes.

Example 6.2 Applying that heuristic to the GRIPP index structure from Figure 3(b) the
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(a) A graphG.

node pre post depth type
A 0 19 0 tree
B 1 6 1 tree
E 2 3 2 tree
F 4 5 2 tree
D 7 16 1 tree
G 8 11 2 tree
B 9 10 3 non-tree
H 12 15 2 tree
A 13 14 3 non-tree
C 17 18 1 tree
R 20 23 0 tree
A 21 22 3 non-tree

(b) IND(G) created by Algorithm 1

Figure 16: Graph G and its GRIPP index table IND(G). Solid lines in the graph
represent tree edges, dashed lines are non-tree edges.

only stop node for the graph is nodeA.

Algorithm 2 shows the procedure to compute the list of the stop nodes. The child
nodes to the root node are retrieved according to the size of their reachable instance sets.

Algorithm 2: The algorithm to compute the stop node list

PROCEDURE compute stop nodes(root node)
t← 0
while cand← next(children(root node)) // order by |RIS |
do

if t = 0 then
t← post(cand) −pre(cand)

end
if post(cand) −pre(cand) >t

ANDhasNon-tree(cand)

ANDstopNodeCond(cand) then
STOP NODES← STOP NODES ∪ (node(cand), pre(cand), post(cand));

end
end

end

FUNCTION stopNodeCond(cand)

forall non tree inst ∈ RIS(cand) do
tree inst← getTree(non tree inst)

if tree inst /∈ RIS(cand) then return false
end
return true

end
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6.3 Search algorithm – Reachability.

The search phase is implemented as a stored procedure in a RDBMS. The GRIPP index
as well as all temporary information (stop nodes, visited hop nodes, etc.) is stored in
relational tables. The instance type of a node, i.e., tree ornon-tree, is stored as special
attribute. We created b-tree indexes on relevant attributes, including a combined index on
the attributes preorder, node, and instance type. Given a query reach(v ,w), Algorithm 3
starts by addingv to the listU of used nodes. It then tests ifw ∈ RIS (v) with a query
over the index table. If that is true the algorithm immediately returnstrue. Otherwise, it
checks ifv is a stop node. If that is the case, we know that (a)RIS (v) does not contain
the end node and (b) no hop node will extend our search and therefore returnfalse.

If v is no stop node the algorithm checks ifRIS (v) contains a non-tree instance of a
stop node. If so, the algorithm performs a depth-first searchusing this node as next hop
node.

In the next step the algorithm searches for hop nodesu in RIS (v). As the algo-
rithm has already retrievedRIS (u) we do not want to search the non-tree instances again.
Knowing the pre- and postorder values of these instancesu the algorithm can determine
the preorder ranges for which non-tree instances have to be retrieved. These non-tree in-
stances are used in ascending order of their preorder rank asnext hop nodes to perform a
depth-first search. For every hop nodeh we determine the location of its tree instancehT

and test ifRIS (h) is completely covered from reachable instance sets from nodes inU .
If not, we pursue, usingh as next hop node. We stop once we found an instance ofw or
if there are no more non-traversed hop nodes. All checks are implemented as relational
queries.
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Algorithm 3: Reachability queries on GRIPP index structure.

FUNCTION reachability(query, target)
if target ∈ RIS(query) then

return true
else

used hop← used hop ∪ (node(query), pre(query), post(query))
if query ∈ STOP NODES then

used stop← used stop ∪ (node(query), pre(query), post(query))
return false

else
while non tree inst← nextStop(RIS(query)) do

tree inst← getTree(non tree inst)

result← reachability(tree inst, target)

if result = true then return true
end
if query ∈ RIS(used stop) then return false
used hop in RIS← getUsedHopInRIS(query)

i left← pre(query)
repeat

next used hop← next(used hop in RIS) // order by preorder

if next used hop 6= ∅ then i right← pre(next used hop)
else i right← post(query)
if i left < i right then

// get non-tree instances ordered by preorder

non tree instances← getNonTree(i left, i right)

foreach non tree inst ∈ non tree instances do
tree inst← getTree(non tree inst)

if hasChildren(tree inst)

AND tree inst 6= used hop

AND tree inst /∈ RIS(used hop) then
result← reachability(tree inst, target)

if result = true then return true
end
if query ∈ RIS(used stop) then return false

end
end
i left← post(next used hop)

until i right = post(query)
end
return false

end
end
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6.4 Search algorithm – Distance.

The search phase fordist(v ,w) is implemented as a stored procedure in a RDBMS. As for
reachability queries the GRIPP index and the list of stop nodes as well as all temporary
information (visited hop nodes, not used non-tree instances etc.) is stored in relational
tables. The type and the depth of an instance inO(G) are stored as special attributes in the
index table. Given a querydist(v ,w), Algorithm 4 starts by first computingreach(v ,w)
using an extended reachability search algorithm. If a path betweenv andw exists the
algorithm proceeds in a second step with a breadth-first search to determine the distance
betweenv andw.

The basic algorithm to determinereach(v ,w) shown in Algorithm 3 was extended
to return a path length betweenv andw. The procedure shown in Algorithm 5 has as
additional parameter the path lengthplen betweenv and the query node. For the first
call this path length is0. The path length between the query node and the next hop
node isplen(query , hop) = plen + len(query , hop), with len(query , hop) = hopdepth −
querydepth . As soon as the algorithm finds an instance ofw in a reachable instance set it
returns the path length betweenv andw. If the algorithm finds more than one instance of
w in a set it returns the shortest path length.

If a path betweenv andw exists Algorithm 4 proceeds with a breadth-first search
using the path length returned from the reachability searchas first upper bound for the
distance. For the breadth-first search it adds all non-tree instances inRIS (v) together
with the length of the path tov to the list of not used non-tree instances. As pruning
criteria only non-tree instance are added to the list that have a path length that is shorter
than the upper bound.

During the breadth-first search Algorithm 6 uses non-tree instances in that list in as-
cending order of their distance tov. For every non-tree instance it first retrieves the
corresponding tree instance of the node. In the next step thealgorithm checks if that node
can be pruned. It first checks if the node has already been usedas hop node (regardless the
path length as we perform a breadth-first search). If yes, that node is pruned and the algo-
rithm proceeds with the next non-tree instance. Otherwise,it checks if the tree instance
of that node is successor to a previously used hop node. If yes, the algorithm also has to
consider the path lengths. If the path length over the used hop node is shorter than this
path the algorithm can prune that hop node. Otherwise, if thehop node is no successor or
the path is longer that node is used as next hop node.

When Algorithm 6 uses a node as hop node that node is added to the list of used hop
nodes and it is checked if its reachable instance set contains instances of the target node.
If that is the case, the algorithm determines the shortest path length between the query
and an instance of the target node. If that path is shorter than the previously shortest path
it corrects the upper bound. In the next step the algorithm adds all non-tree instances of
the reachable instance set of the hop node to the list of not used non-tree instances. But
we do not want to add all instances, i.e., we want to leave out non-tree instances that are
already covered by a reachable instance set of a used hop nodeand we do not add non-
tree instances that are further away from the query node thanthe currently shortest path
length. After the algorithm has added the remaining non-tree instances it proceeds with
the next non-tree instance.
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The algorithm terminates if there are no more non-tree instances in the list or the found
path length between the query and the target node is lower than the path length between
the next non-tree instance and the query node. In both cases the algorithm returns the
currently shortest path length as distance between the query and the target node.

Algorithm 4: Breadth-first search for distance between two nodes.

FUNCTION distance(query, target)
plen = plenReachability(query, null, target)

if plen 6= null then
used hop plen← used hop plen ∪ (node(query), pre(query), post(query),
depth(query), 0)
foreach non tree inst ∈ getNonTree(pre(query), post(query)) do

if len(query, non tree inst) < plen then
not used non tree← not used non tree ∪ (node(non tree inst),
len(query, non tree inst))

end
end
return distance breadth(not used non tree, used hop plen, plen, target)

else
return null

end
end
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Algorithm 5: Extended algorithm for reachability queries on GRIPP index structure.

FUNCTION plenReachability(query, plen, target)

if target ∈ RIS(query) then
return min(plen + len(query, target)

else
used hop← used hop ∪ (node(query), pre(query), post(query))
if query ∈ STOP NODES then

used stop← used stop ∪ (node(query), pre(query), post(query))
return null

else
while non tree inst← nextStop(RIS(query)) do

tree inst← getTree(non tree inst)

plen← plenReachability(tree inst, plen +len(query, non tree inst),
target)

if plen 6= null then return plen

end
if query ∈ RIS(used stop) then return null
used hop in RIS← getUsedHopInRIS(query)

i left← pre(query)
repeat

next used hop← next(used hop in RIS)

if next used hop 6= ∅ then i right← pre(next used hop)
else i right← post(query)
if i left < i right then

non tree instances← getNonTree(i left, i right)

foreach non tree inst ∈ non tree instances do
tree inst← getTree(non tree inst)

if hasChildren(tree inst)

AND tree inst 6= used hop

AND tree inst /∈ RIS(used hop) then
plen← plenReachability(tree inst, plen +len(query,
non tree inst), target)

if plen 6= null then return plen

end
if query ∈ RIS(used stop) then return null

end
end
i left← post(next used hop)

until i right = post(query)
end
return null

end
end



6 IMPLEMENTATION 33

Algorithm 6: Breadth-first search.

FUNCTION distance breadth(not used non tree, used hop plen, plen, target)

while next non tree← next(not used non tree) do
if plen < plen(next non tree)+1 then break
next tree← getTree(next non tree)

if next tree /∈ used hop plen then
if next tree /∈ RIS(used hop plen) OR (next tree ∈ RIS(used hop plen)

ANDplen(next non tree) < plen(used hop plen)+len(used hop plen,
next tree)) then

used hop plen← used hop plen ∪ (node(next tree), pre(next tree),
post(next tree), depth(next tree), plen(next non tree))
if target ∈ RIS(next tree) then

new len = plen(next non tree) + len(next tree, target)

if new len < plen then
plen = new len

if plen < plen(next non tree)+1 then break
end

end
used hops in RIS← getUsedHopInRIS(next tree)

i left← pre(next tree)
repeat

next used hop← next(used hops in RIS)

if next used hop 6= ∅ then i right← pre(next used hop)
else i right← post(next tree)
if i left < i right then

non tree instances← getNonTree(i left, i right)

foreach non tree inst ∈ non tree instances do
// do not add non-tree instances further away

from the query node than plen

if plen(next tree) + len(next tree, non tree inst) < plen

then
not used non tree← not used non tree ∪
(node(non tree inst), plen(next tree) + len(next tree,
non tree inst))

end
end

end
i left← post(next used hop)

until i right = post(next tree)
end

end
end
return plen

end
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7 Experimental Results

To evaluate our approach we use synthetic as well as real-world data. We compare GRIPP
to two other well known methods. For the index creation we compare GRIPP with the
transitive closure. Clearly, querying the transitive closure would be fastest, but as we
can not compute the transitive closure for large graphs, we also compare GRIPP with
recursive query strategies.

We created random as well as scale-free synthetic graphs in the size of 1,000 to
5,000,000 nodes and 0 to 450% more edges than nodes using the method described in
[3]. For real-world data we took data from metabolic and protein-protein interaction net-
works. We used the data from the metabolic networks of KEGG [17], aMAZE [19],
and Reactome [16]. Nodes represent enzymes, chemical compounds or reactions, while
edges represent the participation of an enzyme or compound in a reaction. For protein-
protein interaction networks we used STRING [25]. Nodes arechemical compounds or
biomolecules, i.e., DNA, RNA, or proteins and edges represent interactions between com-
pounds or biomolecules. Edges in STRING are labeled with a confidence value for the
protein-protein interaction. In STRING 95 we included edges with a confidence of 95 %
or higher. In STRING 90 and STRING 75 we included edges with 90% and 75 % con-
fidence, respectively. We only included nodes with at least one edge in all three datasets.
Table 3 shows the size of the different graphs. Note that in STRING 75 there are 7 times
more edges than nodes.

Database No. nodes No. edges Density
Metabolic networks

Reactome 3,677 14,447 3.9
aMAZE 11,876 35,846 3.0
KEGG 14,269 35,170 2.5

Protein-protein interaction networks
STRING 95 75,132 207,764 2.8
STRING 90 135,145 952,940 7.1
STRING 75 196,493 1,383,134 7.0

Table 3: Number of nodes and edges in biological networks.

We have implemented all algorithms as stored procedures in ORACLE 9i. Tests were
performed on a DELL dual Xeon machine with 4 GB RAM. Queries were run without
rebooting the database. We created b-tree indexes on all selection predicates of the GRIPP
index table, including a combined index on the attributes preorder, node, instance type,
and depth.

For every number of nodes, edges, and graph type we generatedfive different graphs.
For every graph we created a GRIPP index structure and noted the time required to create
the index structure and size of the generated structure.
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7.1 Index Creation

We compare the time required to compute the GRIPP index with the time required to
compute the transitive closure using the semi-naive algorithm from [21]. Note that in our
experience the logarithmic algorithm is not faster in a RDBMS (data not shown).

No. nodes Scale-free graphs Random graphs
TC GRIPP Stop nodes TC GRIPP Stop nodes

1,000 47.3 2.3 0.1 49.8 2.2 0.1
5,000 2,007.8 11.3 0.1 2,277.0 11.4 0.1

10,000 12,555.1 23.0 0.1 14,694.3 23.3 0.1
50,000 - 119.5 0.2 - 127.6 0.3

100,000 - 235.8 0.4 - 237.4 0.4
500,000 - 1,196.6 2.6 - 1,203.9 2.6

1,000,000 - 2,539.8 5.8 - 2,588.7 6.0
5,000,000 - 16,062.5 38.2 - 16,901.0 37.2

Table 4: Average time (sec) to compute the GRIPP index table and the transitive
closure for synthetic graphs with 100 % more edges than nodes.

Table 4 shows the results for scale-free graphs with 1,000 toone million nodes and
100 % more edges than nodes. For graphs of 50,000 or more nodeswe could not compute
the transitive closure. For instance, for graphs with 50,000 nodes and 100,000 edges the
computation did not complete within 24 hours. In contrast, computing the GRIPP index
table for the same graphs took less than 120 seconds. The timefor the stop node list for
those graph is under one second.

The data show that GRIPP scales roughly linear in the number of nodes for a fixed
density. For example, we computed the GRIPP index table for ascale-free graph with
5,000,000 nodes and 10,000,000 edges in less than 5 hours. This means that we can
compute the GRIPP index table even for much larger graphs as we did.

No. edges Scale-free graphs Random graphs
GRIPP Stop nodes GRIPP Stop nodes

100,000 168.3 120.0 169.1 185.4
150,000 199.8 0.6 200.3 0.6
200,000 235.8 0.4 237.4 0.4
250,000 277.1 0.4 276.8 0.4
300,000 313.8 0.5 316.0 0.5
350,000 349.1 0.6 353.7 0.5
400,000 388.0 0.7 390.3 0.6
450,000 505.1 0.7 554.3 0.7

Table 5: Average time (sec) to compute the GRIPP index table and the stop node
list for synthetic graphs with 100,000 nodes and increasing number of edges.

Table 5 shows that GRIPP also scales roughly linear with increasing number of edges.
For example, the computation of the GRIPP index table for 100,000 nodes and 400,000



7 EXPERIMENTAL RESULTS 36

edges took less than 400 seconds, compared to about 240 seconds for a graph with
100,000 nodes and 200,000 edges.

For the creation of the GRIPP index structure we also have to take into account the
time required to compute the stop nodes as presented in Section 6.2. Table 4 shows that
even for large graphs with fixed density of 2 the computation takes less than 40 seconds.
For graphs with a fixed number of nodes and increasing densitythe time to compute the
stop nodes decreases with increasing density (shown in Table 5). The reason for this is
the number of stop node candidates that have to be evaluated.Graphs with extremely low
density have many child nodes to the root node, i.e., many nodes have to be evaluated,
while graphs with higher density have fewer child nodes to the root.

No. nodes Scale-free graphs Random graphs
TC GRIPP Stop

nodes
TC GRIPP Stop

nodes
1,000 619,231.6 2,181.2 1.0 637,401.6 2,151.6 1.0
5,000 15,137,809.8 10,885.0 1.0 15,686,250.8 10,766.6 1.0

10,000 60,918,470.4 22,006.5 1.0 62,858,373.2 21,784.3 1.0
50,000 - 110,199.3 1.0 - 109,149.3 1.0

100,000 - 218,482.8 1.0 - 215,554.4 1.0
500,000 - 1,092,203.6 1.0 - 1,092,203.6 1.0

1,000,000 - 2,184,524.6 1.0 - 2,156,309.2 1.0
5,000,000 - 10,922,541.4 1.0 - 10,782,940.6 1.0

Table 6: Average size (tuples) of the transitive closure, GRIPP index table, and stop
node list for synthetic scale-free and random graphs with 100 % more edges than
nodes.

Table 6 shows that the size of the GRIPP index table grows linear with the size of the
graph. The GRIPP index table of a scale-free graph with 10,000 nodes and 20,000 edges
contains about 22,000 instances. In contrast, the transitive closure of the same graph
contains more than 60 million node pairs. For random graphs GRIPP requires about the
same time and size as for scale-free graphs of the same size.

Table 7 shows the time and space required to compute the GRIPPindex table on
real-world graphs. The time required to compute the GRIPP index table for metabolic
networks of Reactome, aMAZE, and KEGG and for protein-protein interaction networks
of STRING corresponds well with the time required for synthetic networks of the same
size.

The time to compute the stop node list for metabolic networksalso complies with the
time for synthetic networks of the same size. In contrast, for protein-protein interaction
networks the time required to compute the stop node list is much higher than for gen-
erated graphs. The main reason is that all three networks of STRING are comprised of
many unconnected subgraphs, i.e., the virtual root node hasmany child nodes. But this
also means that during the stop node list generation we have to check many stop node
candidates. This explains the high time consumption, as this step is time consuming.
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Database No. nodes No. edges GRIPP index Stop nodes
Time Size Time Size

Metabolic networks
Reactome 3,677 14,447 14.1 14,910 0.3 23
aMAZE 11,876 35,846 37.2 37,636 0.1 1
KEGG 14,269 35,170 39.2 36,591 0.1 2

Protein-protein interaction networks
STRING 95 75,132 207,764 225.9 225,868 163.1 3,178
STRING 90 135,145 952,940 851.1 967,838 139.7 477
STRING 75 196,493 1,383,134 1,237.0 1,404,139 196.4 492

Table 7: Time in seconds and storage space in tuples required to compute and store
the GRIPP index table and the stop node list for real world graphs.

7.2 Query times for reachability queries

We compare querying GRIPP to answer reachability queries with a recursive depth-first
search stopping as soon as the target node is found. For the comparison we randomly
selected 1,000 pairs of nodes for every graph and computedreach(v ,w).

We also tested Oracle’s 10g implementation of recursive SQLqueries. It outperforms
our own recursive function for very small and sparse graphs.However, it is extremely
slow already for medium-sized graphs. A single query on a graph with 1,000 nodes and
1,500 edges took more than 7 hours to complete. The reason seems to be that Oracle
enumerates all paths in the graph beginning from the start node and this number grows
exponentially.

No. nodes TC recursive GRIPP
1,000 1.0± 0.00 372.0± 297.37 2.2± 0.95
5,000 1.0± 0.00 1,810.9± 1,509.88 2.2± 1.01

10,000 1.0± 0.00 3,676.8± 3,010.51 2.3± 1.02
50,000 - 18,345.5± 14,989.95 2.3± 1.03

100,000 - - 2.3± 1.04
500,000 - - 2.3± 1.05

1,000,000 - - 2.3± 1.05
5,000,000 - - 2.3± 1.03

Table 8: Average number of calls to answer reach(v,w) for the three different query
strategies on scale-free graphs.

Table 8 shows the average number of recursive calls for the different query strategies
on scale-free graphs with 1,000 to 5,000,000 nodes and 100 % more edges than nodes.
Clearly, we need only one lookup to answer reachability using the transitive closure. The
number of recursive calls for the recursive query strategy depends on the size of the graph.
For graphs of 1,000 nodes and 2,000 edges we required on average 372 recursive calls,
ranging from 1 call for a node without child nodes to 795 callsin worst case. This also
explains the high standard deviation.

When querying graphs using GRIPP the number of recursive calls remains almost
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No. nodes TC recursive GRIPP
1,000 0.4± 0.08 242.1± 201.11 2.8± 1.23
5,000 0.5± 0.11 1,383.4± 1,193.34 3.0± 1.44

10,000 0.5± 0.67 3,283.1± 2,777.78 3.0± 1.43
50,000 - 34,062.9± 28,210.27 3.6± 1.87

100,000 - - 3.2± 1.44
500,000 - - 3.6± 1.65

1,000,000 - - 3.8± 1.77
5,000,000 - - 4.5± 3.02

Table 9: Average query time (ms) to answer reach(v,w) for the three different query
strategies on scale-free graphs.

constant over different sizes of graphs. The maximum numberof recursive calls ranges
from 6 to 9 for different sizes of scale-free graphs. This is surprising, as we would expect
that the number of calls depends on the number of non-tree instances inIND(G), i.e.,
that for GRIPP the number of recursive calls increases with growing size of the graph.

We can explain that behavior by the following consideration. When querying for
reach(v ,w) we start withRIS (v) and extend the search using hop nodes. We only use
hop nodes whose tree instance (a) is sibling to or (b) ancestor of the tree instance ofv.
This also means, that we constantly exclude more and more nodes from being used as hop
node. As we preferably use a stop node as hop node we quickly cover the vast majority
of the instances inIND(G). Clearly, in worst case we have to use as many hop nodes as
unique nodes have non-tree instances inIND(G). But our results show that in synthetic
as well as real-world networks this is not the case.

The query times (shown in Table 9) for the different strategies correspond well with
the number of recursive calls. For GRIPP the average query times range from 2.8 to
4.5 ms for scale-free graphs. For example for 50,000 nodes and 100,000 edges querying
GRIPP requires on average about 3.6 ms compared to 34,100 ms for querying the graph
recursively. The time difference between GRIPP and recursive query strategies grows as
the size ofG increases.

Figure 17 shows the average number of calls and average querytimes on scale-free and
random graphs of 100,000 nodes and 100,000 to 450,000 edges.For both types of graphs
the average number of calls and average time decreases with increasing graph density.
This can be explained as follows. With increasing graph density the number successor
nodes of the node with the highest degree also increases. Remember, we traverse this
node first during the index creation. If this node has incoming edges it is a stop node.
Therefore, when we reach a stop node during a reachability search we cover more and
more nodes with increasing graph density. And as the number of edges increases it is
more and more likely to find an instance of the stop node in a reachable instance set.

For graphs up to 150,000 edges querying GRIPP has advantageson scale-free graphs.
For denser graphs GRIPP performs better on random graphs. This behaviour can also
be explained with the number of successor nodes of the node with the highest degree.
During the generation of scale-free graphs a node with many incoming and outgoing
edges is likely to get more edges, while in random graphs nodes for new edges are chosen
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randomly. In sparse scale-free graphs most highly connected nodes are reachable from
the first traversed node, but this also means that more nodes are reachable in sparse scale-
free graphs than in random graphs. In denser graphs this reverses as in scale-free graphs
it is more likely that a new edge is added between (well connected) nodes that are both
already reachable from the node with the highest degree. In contrast, in random graphs the
nodes for the new edge are chosen randomly, i.e., giving the possibility to enlarge the set
of successor nodes. Therefore, the number of successor nodes of the first traversed node
grows faster for random graphs than for scale-free graphs with increasing graph density
and this means that queries can be answered faster.
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Figure 17: Average query time and average number of calls for synthetic scale-free
and random networks of 100,000 nodes and increasing number of edges using GRIPP.
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Figure 18: Average query time and average number of calls for real-world networks
using GRIPP.

Figure 18 shows the average number of calls and average time for reachability queries
on real-world networks. The average number of calls and average query time for the
metabolic networks of Reactome, aMAZE, and KEGG is slightlyhigher than the number
for synthetic scale-free graphs. This indicates that, although the networks are scale-free,
they still have a different structure than our synthetic graphs. For the protein-protein
interaction database STRING the number of recursive calls is only slightly higher than
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the number for synthetic scale-free or random graphs of comparable size while the aver-
age query time is much higher. This can be explained by the following observation. In
STRING every interaction between two proteins is represented as two directed edges, i.e.,
one leading from protein 1 to protein 2 and one from protein 2 to protein 1. In the order
tree of GRIPP we therefore always find a non-tree instance of protein 1 in the reachable
instance set of protein 1. Clearly, we must evaluate if we need protein 1 as hop node,
which is not the case. As this testing also takes time the average time for reachability
queries increases while the number of calls remains low.

7.3 Query times for distance queries

We measured query performance for distance queries on generated random and scale-free
graph of different sizes. We compared GRIPP with recursive query strategies. We have
implemented the query strategy for GRIPP as described in Section 6.4. We compare that
approach with two different breadth-first search strategies as stored procedures in Oracle.

7.3.1 GRIPP against breadth-first search

We have implemented two different approaches for the breadth-first search. The first
approach (breadth-first single) is the standard implementation of a breadth-first search.
Given a query node, all child nodes of that node are added to the stack in arbitrary order.
The nodes on the stack are processed according to their orderon the stack. We add the
child nodes of every processed node to the stack if that node is or has not been on the
stack. The algorithm terminates as soon as we find the target node as child node or if no
more nodes are on the stack.

The second approach is a set based approach (named as breadth-first set). In the first
step we add all child nodes of the query node together with thedistance1 to the stack.
Instead of processing every node separately we process all nodes with the same distance to
the query node at once. We use a single SQL statement to process all nodes with distance
i on the stack and add the child nodes of these nodes that are notalready on the stack to
the stack with distancei + 1. In the next step we process all nodes with distancei + 1.
The algorithm terminates if no more nodes are on the stack or if a child node is the target
node and then the algorithm returns the distance.

Table 10 shows the average number of calls for 1,000 randomlyselected node pairs
for the different methods. For GRIPP the number of recursivecalls consists of the number
of hop nodes required to determine reachability plus the number of hop nodes required
during the breadth-first search. The number of calls for the standard breadth-first search
is the number of nodes for which we retrieved and added child nodes to the stack and the
number of calls for the set based breadth-first search is the number of SQL queries.

The comparison between GRIPP and the standard breadth-firstsearch shows that on
average queries on GRIPP require an order of magnitude less calls than using breadth-
first search. This can be explained as follows. For a standardbreadth-first search we have
to use every node in the graph for querying i.e., in worst-case the total number of nodes
in the graph. In contrast, during a breadth-first search in GRIPP we use every hop node
at most once, i.e., in worst-case as many hop nodes as unique nodes in the graph have
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No. nodes Average
distance

GRIPP breadth-first single breadth-first set

Scale-free networks
1,000 6.25 22.0± 37.9 370.1± 297.3 6.3± 4.0

10,000 7.38 192.4± 354.6 3,724.2± 2,993.7 7.7± 4.9
50,000* 8.42 1,046.7± 1,925.8 19,229.3± 15,290.7 9.0± 5.9

Random networks
1,000 8.26 40.3± 60.7 380.0± 298.4 8.2± 5.0

10,000 10.67 402.5± 625.4 3,783.6± 3,035.0 10.4± 6.0
50,000 12.52 2,081.9± 3,167.0 - -

Table 10: Average number of calls and standard deviation for synthetic graphs with
100 % more edges than nodes.

non-tree instances in GRIPP. In addition during the search in GRIPP we can prune hop
nodes. We do not use hop nodes if the hop node has no successor nodes inO(G) or if the
hop node is successor of a used hop node inO(G) and the path lengths between the query
node and node in the reachable instance set of the hop node will not decrease. Therefore
querying GRIPP requires fewer calls than querying the graphdirectly.

The set based approach requires the fewest number of calls. This is clear, as we only
perform one SQL query for every distance. But the database system must compute more
for every single call. Therefore not only the number of callsis important but also the time
required to get the distance. Clearly, GRIPP could also be searched that way, but it is not
yet implemented.

The table also shows that the number of calls for all three methods is higher for random
graphs than for scale-free graphs. The reason is that the average distance is higher for
random graphs than for scale-free graphs. A higher distancealso means that more nodes
must be queried during the search.

No. nodes Avg.
distance

GRIPP breadth-first single breadth-first set

Scale-free networks
1,000 6.25 70.9± 110.9 166.3± 149.9 93.3± 94.2

10,000 7.38 957.1± 1,475.8 1,657.7± 1,475.1 4,320.0± 4,585.8
50,000* 8.42 12,010.1± 18,966.1 8,535.5± 7,692.7 114,993.9± 129,553.1

Random networks
1,000 8.26 104.5± 140.8 173.6± 148.8 93.5± 77.5

10,000 10.67 2,043.9± 2,813.6 1,738.5± 1,517.5 3,920.7± 4,105.8
50,000 12.52 31,377.5± 42,587.0 - -

Table 11: Average time in ms and standard deviation for synthetic graphs with 100 %
more edges than nodes.

Table 11 shows the average query times for distance queries for 1,000 randomly se-
lected node pairs. The figures show that for small, scale-free graphs , i.e., scale-free
graphs with up to 10,000 nodes and 20,000 edges querying GRIPP is fastest. For larger
graphs the standard breadth-first search is fastest.
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The following observation helps to understand that behavior. In GRIPP the larger the
graph becomes, the more nodes are reachable from the first node traversed during the
creation of GRIPP. In GRIPP this also means that the length ofthe longest path from the
root to a leave node increases. The target node in a reachableinstance set of a large graph
might therefore also be further away than in a small graph. During the search we first
perform a reachability query on GRIPP to determine if a path exists and return the upper
bound for the distance. With increasing size of the graph this upper bound also increases.
During the breadth-first search we add all non-tree instances to the list of non-traversed
nodes that have a path length to the query node that is shorterthan the upper bound. As
the upper bound for large graphs is high we add many non-tree instances to the list of
not traversed non-tree instances that will never be considered as hop nodes as we find a
shorter upper bound afterwards during the traversal. This explains the steep increase in
time between 10,000 and 50,000 nodes.

The set based approach is only faster for graphs with 1,000 nodes, still in the same
range as the other two approaches for 10,000 nodes, but much slower for 50,000 nodes.
There are two reasons, namely (a) increasing average distance, and (b) entire execution of
the last query. First, with increasing average distance thenumber of calls also increases.
In every call we retrieve the child nodes for all nodes with distancei from the query node
on the stack. For every child node the database system has to check if it is already on
the stack or if it has to be added. For every call we use only oneSQL statement with a
division operation, i.e., select nodes, that are in the set of child nodes, but not already in
the stack relation. As division operations are very costly in a RDBMS the distance query
takes much more time with increasing path length and graph size.

The second reason is that we have to execute the last query entirely. Consider the case
where the distance between two nodes isi. We look for child nodes of nodes with distance
i−1 to the query node. In the standard breadth-first search we will consider the nodes one
at a time. If we find the target node immediately we can terminate the search, i.e., in best
case execute only one additional query. In contrast, in the set based approach we have to
retrieve all child nodes and afterwards look for the target node. Therefore the set based
approach clearly has disadvantages against the standard implementation of a breadth-first
search.

7.3.2 Breadth-first search combined with GRIPP reachability

For the GRIPP distance search we first perform a reachabilityquery to determine if a path
between the query and the target node exists, i.e., we can answer distance queries where
no path exists very fast. In contrast, using breadth-first search in worst case we have to
traverse the entire graph to determine if a path exists. For example, for a scale-free graph
with 10,000 nodes and 20,000 edges for almost 40 % of the randomly selected node pairs
reach(v ,w) = false. The standard breadth-first search (breadth-first single) requires
on average 1,700 ms to returndist(v ,w) = null. We can split those node pairs in two
groups, one group where the query node has no outgoing edges (4̃0 % of the node pairs),
i.e., no recursive queries are necessary, and one group where the query node has outgoing
edges (̃60 %). For the group with no outgoing edges queries require onaverage 1.3 ms
to return an answer, while for the group with outgoing edges aquery reqires on average



8 RELATED WORK 43

2,846 ms. Using GRIPP we can reduce that to 20 ms on average.

No.
nodes

reach(v ,w) GRIPP breadth-first single breadth-first set

Scale-free networks
1,000 yes 70.9± 110.9 113.5± 107.7 69.4± 98.7

no 166.3± 149.9 93.3± 94.2
10,000 yes 957.1± 1,475.8 1,136.4± 1,123.6 2,374.4± 3,160.8

no 1,657.7± 1,475.1 4,320.0± 4,585.8
50,000 yes 12,010.1± 18,966.1 5,797.8± 5,670.1 58,665.0± 86,981.6

no 8,535.5± 7,692.7 114,993.9± 129,553.1
Random networks

1,000 yes 104.5± 140.8 124.4± 114.8 72.4± 57.1
no 173.6± 148.8 93.5± 77.5

10,000 yes 2,043.9± 2,813.6 1,214.9± 1,178.8 2,261.9± 2,864.4
no 1,738.5± 1,517.5 3,920.7± 4,105.8

50,000 yes 31,377.5± 42,587.0 6,288.9± 5,896.7 54,998.2± 75.671.1
no - -

Table 12: Comparison between breadth-first search with and without precomputing
reach(v ,w). Average time in ms and standard deviation for synthetic graphs with
100 % more edges than nodes.

Table 12 shows the average query time fordist(v ,w) with and without applying
reach(v ,w) over GRIPP first. The figures show that querying GRIPP for reachability
first reduces the average query times for both methods of the breadth-first search.

8 Related Work

To efficiently answer reachability and distance queries, pre-computation of the transitive
closureTC of a graph is a natural choice [27]. Efficient algorithms for computing the
TC in relational databases have been developed [2], but the size of theTC is O(|V |2),
making it inapplicable to large graphs.

To reduce storage space, Cohen and colleagues [7] developedthe 2-Hop-Cover that
requires in worst-caseO(|V |∗|E|1/2) space and can answer reachability queries with only
two lookups. However, computing the optimal 2-Hop-Cover isNP-hard and requires
theTC to be computed first [7]. Schenkel et al. [23] proposed graph partitioning as a
method to get away from the necessary pre-computation of theentireTC, thus reducing
storage requirements during the index creation process. This approach works very well
for forests with few connections between the different sub-trees. But for dense graphs,
such as the metabolic network of KEGG, the partitioning is not very effective. Without
partitioning the 2-Hop-Cover is about 5,600 times smaller than the transitive closure,
while with partitioning this factor shrinks to about 500. Schenkel et al. also showed that
the 2-Hop-Cover can be extended to answer distance queries.This comes with the tradeoff
that the size of the 2-Hop-Cover is much larger. Using partitioning the 2-Hop-Cover for
KEGG is only two times smaller than the transitive closure itself (R. Schenkel, personal
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communication, May 2006). Even without partitioning the cover is just 29.4 times smaller
than the transitive closure – compared to 5,600 times for reachability. Clearly, these
compression factors make the 2-Hop-Cover not applicable for large graphs to answer
distance queries.

To index trees and DAGs a wealth of different numbering schemes have been pro-
posed in the literature, especially to support XPath queries. Examples include pre- and
postorder values [12], range-based labeling [5, 28], and Dewey numbers [22]. All these
schemes only work on trees. Approaches that use numbering schemes on DAGs have been
proposed. In previous work, we described an ’unfolding’ technique, where each node in a
subtree with more than one parent node receives multiple pre- and postorder values [24].
Since this leads to a combinatorial explosion in the number of value pairs, it is only fea-
sible for tree-like DAGs. Instead of labeling successor nodes multiple times, Agrawal et
al. [1] proposed to propagate the intervals of child nodes ’upwards’. The graphs they used
contained no more than 1,000 nodes. Chen et al. [6] presenteda hybrid index structure
for DAGs, using a region encoding for a spanning tree and an additional data structure
for storing non-tree edges which is traversed recursively at query time. They applied their
approach to DAGs with 200,000 nodes and 1.8 times more edges.It is not clear how
their approach would perform on larger, cyclic, multi-rooted graphs. In none of these
publications the problem of answering distance queries wasdiscussed.

He, Wang, and colleges [14, 26] proposed two indexing strategies to answer reach-
ability queries on graphs. For both approaches they first identify strongly connected
components and collapses these to one node, therefore reducing the size of the graph.
The remaining structure is a DAG. The first approach uses a combination of numbering
schemes and 2-hop cover, while the second is merely based on anumbering scheme to
encode the DAG. For experiments they used random graphs with2,000 nodes and up to
4,000 edges. It is not clear, if their approach can be used to efficiently index dense graphs
in the size of one million or more nodes. In addition both approaches will not support
distance queries.

To answer distance queries on graphs Dijkstra’s algorithm and the A* algorithm are
used [8]. Dijkstra’s algorithm works well on graphs with weighted edges. For graphs
with unweighted edges – as is the case for biological networks – Dijkstra’s algorithm is
basically a breadth-first search. The A* algorithm is an extension for Dijkstra’s algorithm
and requires in addition to weighted edges also some information about the ’best’ edge to
choose next. Therefore, both algorithms are not well suitedto answer distance queries on
graphs with unweighted edges.
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9 Discussion and Conclusion

We presented the GRIPP index structure supporting reachability and distance queries on
directed graphs. Since creating GRIPP requires only lineartime and space, it can be
used to index graphs with millions of nodes. And as the algorithms for indexing and
querying GRIPP are implemented as stored procedures in a RDBMS GRIPP can be easily
be integrated to index and query graphs in graph based applications.

With GRIPP, reachability queries on many types of graphs canbe answered in almost
constant time using an almost constant number of queries. For reachability queries we be-
lieve that GRIPP can be further improved using the idea of collapsing strongly connected
components (SCC) into single nodes. SCC can be computed in linear time [8]. The effect
of this optimization would strongly depend on the properties of the graph, i.e., the number
and size of the SCCs, and would be the strongest for very densegraphs. However, given
the current query times which are less than 5 ms even for very large graphs, this is not our
primary next goal.

Distance queries in GRIPP require an order of magnitude lesscalls than recursive
query strategies, but the time required is comparable or slower than recursive query strate-
gies. But even for recursive strategies to answer distance queries GRIPP is important, as
we can answer reachability first, i.e., reducing the time fordistance queries where no path
exists.

In the future, we plan to use GRIPP as an index structure for the pathway query lan-
guage (PQL) [20]. PQL provides syntax to pose graph queries.We are interested in
answering such queries efficiently, i.e., we plan to providea cost based optimization for
such queries. GRIPP is currently the most scaleable indexing method we are aware of. In
addition the execution of reachability queries is very fast. For distance queries we have to
further evaluate the conditions where GRIPP has advantagesover recursive strategies. To
cover the capabilities of PQL we plan to implement path length and path queries as well.

Acknowledgment. This work is supported by BMBF grant no. 0312705B (Berlin
Center for Genome-Based Bioinformatics). Many thanks to Johannes Vogt who wrote the
software to visualize the GRIPP index structure and the execution of queries on GRIPP.
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A GRIPP breadth – a different index structure

The index structure GRIPPbreadth is basically the same as GRIPP. In GRIPPbreadth
we also assign every node in the graphG at least one pre- and postorder value. The
difference is that for GRIPPbreadth we first perform a breadth-first search starting at the
root node. During the search we store the distance between the root node and every node
in the graph. In the next step we createIND(G) during a depth-first traversal ofG using
the information from the breadth-first search. During this depth-first traversal we assign
the pre- and postorder values and the depth information to a node.

For GRIPP we add a tree instance of nodev to IND(G) if we encounterv for the first
time during the depth-first traversal. Every other time we reachv, i.e. IND(G) already
contains a tree instance ofv, we add a non-tree instance ofv to IND(G). In contrast, in
GRIPPbreadth we only add a tree instance forv to IND(G) if (a) v has no tree instance
in IND(G) and (b) the depth of the instance ofv in O(G) equals the distance ofv to
the root node found during the breadth-first traversal. Every other time we add a non-tree
instance ofv to IND(G).

A.1 Properties of this index structure

A.1.1 Time and Space Requirements

The space requirements to store the GRIPPbreadth index table are identical to the space
requirements for GRIPP. Only during the index creation we temporarily have to store the
information generated by the breadth-first search.

The time requirements for GRIPPbreadth are higher than for GRIPP, because (a) we
first perform a breadth-first search and (b) during the traversal we have to evaluate if the
depth inO(G) of a nodev is equal to the distance ofv to the root node.

The index creation for large graphs is much slower than expected. This is due to
the breadth-first search. During that search we only add nodes to the list that have not
already been traversed. As this step requires a division operation, which is very costly in
a RDBMS, the time increases dramatically with increasing number of nodes.

A.1.2 Properties of Nodes in O(G)

Node have exactly one tree instanceFor every nodev in G there exists exactly one
tree instance inO(G). Proof omitted.

Preorder of tree instance In the GRIPP index structure the tree instance of a nodev has
a lower preorder rank than all non-tree instances of that node as we add a tree instance to
IND(G) the first time we see that node. This property does not hold forGRIPPbreadth.
In GRIPPbreadth when we reach a node for the first time we will not generally add a tree
instance toIND(G). Instead we check if the depth of the instance inIND(G) is equal
to the distance to the root node. If the depth is higher than the distance to the root node
we add a non-tree instance ofv to IND(G). We will add a tree instance ofv at a later
stage of the traversal. This also means that non-tree instances can have higher or lower
preorder ranks than the tree instance of a node.
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Shortest paths Given two nodesv andw in G and the tree instancesvT of v andwT of
w in O(G) created by Algorithm 7. IfvT is ancestor towT in O(G) we can immediately
determine the distance betweenv andw in G by calculatingwT

depth − vT
depth.

The reason for this is as follows. In GRIPPbreadth as in GRIPPO(G) contains tree
as well as non-tree instances. InO(G) created by GRIPPbreadth the length of every path
from the tree instancerT of the root noder to a tree instancevT of nodev equals the
distance ofr to v in G. Remember, we only create a tree instance forv if the depth ofvT ,
i.e. the distance torT in O(G) equals the distance ofv to r in G. Every non-tree instance
of vN has the same or a greater distance torT in O(G).

Knowing this we can also deduce the distance between two nodes v andw in G if vT

is ancestor towT . The distance then isdist(v, w) = wT
depth − vT

depth. But note, we can not
ease the condition that the instance ofw can also be a non-tree instance.

If vT is no ancestor ofwT in O(G) we can not immediately determine the distance
betweenv and w in G. We have to execute a more complicated search as shown in
Section 4.3.

A.2 Comparison GRIPP and GRIPP breadth

In the order tree created by GRIPP the first child nodec of the root node contains tree
instances for all nodesv that are reachable fromc in G. The higher connected the graph
is, i.e. the more edges this graph contains, the more tree instances are successors of the
tree instance ofc in O(G). The remaining child nodes to the root then contain only few
tree instances and some non-tree instance. The general appearance of GRIPP is narrow,
but deep.

In contrast, in the order tree created by GRIPPbreadth is broad and shallow. The
differences can be seen in Figures 19 and 20 for a identical scale-free graph of 100 nodes
and 200 edges.

A.2.1 Advantages of GRIPPbreadth

The advantage of GRIPPbreadth lies in the fact that every path between tree instances
in O(G) is shortest, i.e., we can immediately determine the distance between nodes if
one tree instance is ancestor of the other tree instance inO(G). This also means that
during the execution of distance queries we can prune more often. But experiments show
(data not shown) that the average time to execute distance queries for a pair of nodes only
decreases by about 10 % compared to the execution time for GRIPP.

A.2.2 Disadvantages of GRIPPbreadth

GRIPPbreadth has several disadvantages, namely increased creation time compared to
GRIPP and increased average query time for reachability queries. The increased creation
time stems mainly from the breadth-first traversal as discussed earlier.

To understand the reason for the increased execution time have a look at Figures 19
and 20. In GRIPP the first traversed node during the index creation, which is also a stop
node, has many reachable instances in the order tree. When querying forreach(v ,w) with
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v in that set it is very likely that we find (a) an instance ofw or (b) an instance of the stop
node inRIS (v), i.e., we can terminate the search very fast. In GRIPPbreadth this is not
the case. Many nodes have some reachable instances in the order tree. This means, during
a reachability search we might have to use many nodes as hop nodes. But this also means
that on average reachability queries require more time on GIRPPbreadth than on GRIPP.
Experiments show that the average time increases by over 100% (data not shown).

As distance queries are not considerably faster on GRIPPbreadth and the index cre-
ation as well as reachability queries are much slower we willnot investigate further in
GRIPPbreadth.

A.3 Algorithm for GRIPP breadth

Algorithm 7 shows the procedures and functions to compute the GRIPPbreadth index
structure. We first compute the tableBREADTH INFO by applying a breadth-first search
over the graph. We use the information inBREADTH INFO during the depth-first traversal
to compute the GRIPPbreadth index structure.
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Figure 19: Order tree created by GRIPP for a graph of 100 nodes and 200 edges.

Figure 20: Order tree created by GRIPP breadth for a graph of 100 nodes and 200
edges.
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Algorithm 7: The GRIPP algorithm to computeIND(G) according to
GRIPPbreadth

pre post← 0
PROCEDURE compute GRIPP(root node)

BREADTH INFO← breadth first(root node)

pre node← pre post

pre post← pre post + 1
traverse(root node, 0,BREADTH INFO)

GRIPP← GRIPP ∧ (root node, pre node, pre post, 0, T)
end

FUNCTION breadth first(root node)
BREADTH INFO← (root node, 0)
push(node stack, (root node, 0))
repeat

(next node, node dist)← pop(node stack)
forall child ∈ children(next node) do

if child /∈ BREADTH INFO then
push(node stack, (child, node dist +1))
BREADTH INFO← BREADTH INFO ∧ (child, node dist +1)

end
end

until node stack = ∅
return BREADTH INFO

end

PROCEDURE traverse(next node, cur dist, BREADTH INFO)
seen← seen ∪ next node

while child← next(children(next node)) do
pre node← pre post

pre post← pre post + 1
if child /∈ seen AND cur dist +1=getDepth(child, BREADTH INFO) then

node inst← T
traverse(child, cur dist +1)

else
node inst← N

end
end
GRIPP← GRIPP ∧ (child, pre node, pre post, cur dist, node inst)

end
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