
Algorithms and Data Structures

Ulf Leser

Graphs: Single-Source Shortest Paths



Ulf Leser: Algorithms and Data Structures 2

Content of this Lecture

• Shortest Paths
– Single-Source-Shortest-Paths: Dijkstra’s Algorithm
– Shortest Path between two given nodes
– Other



Ulf Leser: Algorithms and Data Structures 3

Shortest Paths in a Graph

• Task: Find the distance between X and 
all other nodes
– Classical problem: Single-Source-Shortest-Paths 
– Famous solution: Dijkstra’s algorithm

• E. Dijsktra: A Note on Two Problems in Connexion
with Graphs. Numerische Mathematik 1 (1959), S. 269–271

X

1

1
2

53

2

14

3

2

6
3

3



Ulf Leser: Algorithms and Data Structures 4

Computer Science is no more about 
computers than astronomy is about 

telescopes.

Attributed to Edsger Dijkstra, 1970.



Ulf Leser: Algorithms and Data Structures 5

Distance in Graphs

• Definition
Let G=(V, E) be a graph. The distance d(u,v) between any 
two nodes u,v∈V for u≠v is defined as
– G unweighted: The length of the shortest path from u to v, or ∞ if 

no path from u to v exists
– G weighted: The minimal aggregated edge weight of all non-cyclic 

paths from u to v, or ∞ if no path from u to v exists
– If u=v, d(u,v)=0

• Remark
– Distance in unweighted graphs is the same as distance in weighted 

graphs with unit cost
– Beware of negative cycles in directed graphs



Ulf Leser: Algorithms and Data Structures 6

Single-Source Shortest Paths in a Graph

• Task: Find the distance between X and all other nodes
• Only positive edge weights allowed 

– Bellman-Ford algorithm solves the general case
• Floyd-Warshall finds distances between any pair of nodes

X

1

1

2

53

2

14

3

2

6
3

3



Ulf Leser: Algorithms and Data Structures 7

Assumptions

• We assume that every node is reachable from X
• There might be many shortest paths to node Y, but distance is unique

– We only want the distances and need no “witness paths”
• Only positive edge weights

– Whenever we extend a path with an edge, its length increases
– Thus, no shortest path may contain a cycle

X

1

1
2

53

2

14

3

2

6
3

3



Ulf Leser: Algorithms and Data Structures 8

Exhaustive Solution

• First approach: Enumerate all paths (“BT”: Backtrack)
– Still need to break cycles (e.g. X – K3 – K4 – X – K3 - …)
– Using DFS: X – K3 – K4 – X [BT-K4] – K5 – K6 [BT-K5] [BT-K4] 

[BT-K3] – K7 – K8 [BT-K7] – K6 [BT-K7] [BT-K3] – K2 – K6 [BT-K2] 
– K1 [BT-K2] [BT-K3] [BT-X] K6 - … 

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3



Ulf Leser: Algorithms and Data Structures 9

Redundant work

• First approach: Enumerate all paths
– Need to break cycles (e.g. X – K3 – K4 – X – K3 - …)
– Using DFS: X – K3 – K4 – X [BT-K4] – K5 – K6 [BT-K5] [BT-K4] 

[BT-K3] – K7 – K8 [BT-K7] – K6 [BT-K7] [BT-K3] – K2 – K6 [BT-K2] 
– K1 [BT-K2] [BT-K3] [BT-X] K6 - … 

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3



Ulf Leser: Algorithms and Data Structures 10

Dijkstra’s Idea

• Enumerate paths from X by their length
– Neither DFS nor BFS

• Assume we reach a node Y by a path p of length l and we 
have already explored all paths from X with length l’ < l 
and that Y was not reached yet

• Then p must be a shortest path between X and Y
– Because any p’ between X and Y would have a prefix of length at 

least l and (a) a continuation with length>0 (only positive weights) 
or (b) would not need a continuation (then p is as short as p’)

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

5



Ulf Leser: Algorithms and Data Structures 11

Example for Idea 

• 1: X – K3
• 2: X – K3 – K2

2: X – K1
• 4: X – K3 – K2 – K6

4: X – K3 – K4
4: X – K3 – K7

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

K3 1
K2 2
K1 2
K6 4
K4 4
K7 4
K5 5
K8 7

• 5: X – K3 – K4 – K5
• 7: X – K3 – K7 – K8
• Stop (all nodes found)



Ulf Leser: Algorithms and Data Structures 12

Algorithmic Idea

• Enumerate paths by iteratively extending already found 
shortest paths by all possible extensions
– All edges outgoing from the end node of a short path

• These extensions 
– … either lead to a node which we didn’t reach before – then we 

found a path, but cannot yet be sure it is the shortest
– … or lead to a node which we already reached but we are not yet 

sure of we found the shortest path to it – update current best 
distance

– … or lead to a node which we already reached and for which we 
also surely found a shortest path already – these can be ignored

• Extensions are stored in a priority queue with prio=length
• We enumerate nodes by their distance



Ulf Leser: Algorithms and Data Structures 13

Algorithm

• Assumptions
– Nodes have IDs between 1 … |V|
– Edges are (from, to, weight)

• We enumerate nodes by length 
of their shortest paths
– In the first loop, we pick x and update 

distances (A) to all adjacent nodes
– When we pick a node k, we already 

have computed its distance to x in A
– We adapt the current best distances 

to all neighbors of k we haven’t 
picked yet

• Once we picked all nodes, we 
are done

1. G = (V, E);
2. x : start_node;    # x∈V
3. A : array_of_distances;
4. ∀i: A[i]:= ∞;
5. L := V;
6. A[x] := 0;
7. while L≠∅
8. k := L.get_closest_node(x);
9. L := L \ k;
10. forall (k,f,w)∈E do
11. if f∈L then 
12. new_dist := A[k]+w;
13. if new_dist < A[f] then
14. A[f] := new_dist;
15. end if;
16. end if;
17. end for;
18.end while;



Ulf Leser: Algorithms and Data Structures 14

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 ∞
K2 ∞
K3 ∞
K4 ∞
K5 ∞
K6 ∞
K7 ∞
K8 ∞

• Pick x



Ulf Leser: Algorithms and Data Structures 15

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 ∞
K3 1
K4 ∞
K5 ∞
K6 5
K7 ∞
K8 ∞

• Pick x
• Adapt distances to all neighbors



Ulf Leser: Algorithms and Data Structures 16

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 ∞
K3 1
K4 ∞
K5 ∞
K6 5
K7 ∞
K8 ∞

• X is done – remove from L
• Pick K3 (closest to x)



Ulf Leser: Algorithms and Data Structures 17

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 2
K3 1
K4 4
K5 ∞
K6 5
K7 4
K8 ∞

• Pick K3
• Adapt distances (from x) to all neighbors 

(of K3)



Ulf Leser: Algorithms and Data Structures 18

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 2
K3 1
K4 4
K5 ∞
K6 5
K7 4
K8 ∞

• K3 is done (we cannot find a shorter path)
• Pick K1 (or K2)



Ulf Leser: Algorithms and Data Structures 19

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 2
K3 1
K4 4
K5 ∞
K6 5
K7 4
K8 ∞

• Pick K1
• Adapt distances to all neighbors

– There are none



Ulf Leser: Algorithms and Data Structures 20

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 2
K3 1
K4 4
K5 ∞
K6 5
K7 4
K8 ∞

• K1 is done
• Pick K2



Ulf Leser: Algorithms and Data Structures 21

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 2
K3 1
K4 4
K5 ∞
K6 4
K7 4
K8 ∞

• Pick K2
• Adapt distances to all neighbors

– K1 was picked already – ignore
– We found a shorter path to K6



Ulf Leser: Algorithms and Data Structures 22

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 2
K3 1
K4 4
K5 ∞
K6 4
K7 4
K8 ∞

• Pick K6 (or K4 or K7)



Ulf Leser: Algorithms and Data Structures 23

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 2
K3 1
K4 4
K5 ∞
K6 4
K7 4
K8 ∞

• Pick K6
• Adapt distances to all neighbors

– There are none



Ulf Leser: Algorithms and Data Structures 24

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 2
K3 1
K4 4
K5 ∞
K6 4
K7 4
K8 ∞

• Pick K7



Ulf Leser: Algorithms and Data Structures 25

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 2
K3 1
K4 4
K5 ∞
K6 4
K7 4
K8 7

• Pick K7
• Adapt distances to all neighbors

– K6 was visited already



Ulf Leser: Algorithms and Data Structures 26

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 2
K3 1
K4 4
K5 ∞
K6 4
K7 4
K8 7

• Pick K4



Ulf Leser: Algorithms and Data Structures 27

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 2
K3 1
K4 4
K5 5
K6 4
K7 4
K8 7

• Pick K4
• Adapt distances to all neighbors

– X was visited already



Ulf Leser: Algorithms and Data Structures 28

Example for Algorithm

X

1

1

2

53

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

X 0
K1 2
K2 2
K3 1
K4 4
K5 5
K6 4
K7 4
K8 7

• Pick K5 … Pick K8 



Ulf Leser: Algorithms and Data Structures 29

A Closer Look

• Central: get_closest_node(x)
– Needs to find the node k in L for 

which A[k] is the smallest
– A[k] may change all the time

• Searching A? Resorting A?
• Trick: Organize L as min-heap 

“enhanced” priority queue
– We need to be able to update the 

priority of nodes
– Done in O(log(n)) by removing 

then re-inserting the node

1. G = (V, E);
2. x : start_node;    # x∈V
3. A : array_of_distances;
4. ∀i: A[i]:= ∞;
5. L := V;
6. A[x] := 0;
7. while L≠∅
8. k := L.get_closest_node(x);
9. L := L \ k;
10. forall (k,f,w)∈E do
11. if f∈L then 
12. new_dist := A[k]+w;
13. if new_dist < A[f] then
14. A[f] := new_dist;
15. end if;
16. end if;
17. end for;
18.end while;



Ulf Leser: Algorithms and Data Structures 30

Dijkstra’s Algorithm – Single Operations

• Assume a heap-based PQ L
– L holds at most all nodes (n)
– L4: O(n)
– L5: O(n) (build PQ)
– L9: O(1) (getMin)
– L10: O(log(n)) (deleteMin)
– L11: O(m) (with adjacency list)
– L12: O(1)

• Requires additional array LA of 
size |V| storing membership of 
nodes in L

– L16: O(log(n)) (updatePQ)
• Store in LA pointers to nodes in L; 

then remove/insert node 

1. G = (V, E);
2. x : start_node;    # x∈V
3. A : array_of_distances_from_x;
4. ∀i: A[i]:= ∞;
5. L := V; # organized as PQ
6. A[x] := 0;
7. update( L);
8. while L≠∅
9. k := L.get_closest_node();
10. L := L \ k;
11. forall (k,f,w)∈E do
12. if f∈L then 
13. new_dist := A[k]+w;
14. if new_dist < A[f] then
15. A[f] := new_dist;
16. update( L);
17. end if;
18. end if;
19. end for;
20.end while;



Ulf Leser: Algorithms and Data Structures 31

Dijkstra’s Algorithm - Loops

• Central costs
– L10: O(log(n)) (deleteMin)
– L16: O(log(n)) (del+ins)

• Loops
– Lines 8-19: O(n)
– Line 11-18: All edges exactly once
– Together: O(m+n)

• Altogether: O((n+m)*log(n))
– With Fibonacci heaps: Amortized 

costs are O(n*log(n)+m))
– Also possible in O(n2); this is 

better in dense graphs (m~n2)

1. G = (V, E);
2. x : start_node;    # x∈V
3. A : array_of_distances;
4. ∀i: A[i]:= ∞;
5. L := V; # organized as PQ
6. A[x] := 0;
7. update( L);
8. while L≠∅
9. k := L.get_closest_node();
10. L := L \ k;
11. forall (k,f,w)∈E do
12. if f∈L then 
13. new_dist := A[k]+w;
14. if new_dist < A[f] then
15. A[f] := new_dist;
16. update( L);
17. end if;
18. end if;
19. end for;
20.end while;



Ulf Leser: Algorithms and Data Structures 32

Single-Source, Single-Target

• Task: Find the distance between X and only Y
• Solution: Dijkstra as well

– We can stop as soon as Y appears at the min position of the PQ
– We can visit edges in order of increasing weight (might help)
– Worst-case complexity unchanged

• Things are different in planar graphs (navigators!)

X

Y

1

1

2

53

2

14

3

2

6
3

3



Ulf Leser: Algorithms and Data Structures 33

Outlook: Highway Hierarchies

• Shortest-Path Routing on maps
• Exploit Highway hierarchy

– Autobahn, Bundesstrasse, 
Regionalstrasse, Strasse, Pfad …

• Iterative refinement in layered
maps

• “towards O(1)” [SS07]
• Extensions

– Second best non-overlapping path
– Fleet management: Traveling salesman
– Logistics: Pick-up-and-delivery with intermediate stocks
– Budget optimization (gasoline, empty trips, slepp-restrictions, road 

tolls, border / customs regulations, …)



Ulf Leser: Algorithms and Data Structures 34

Faster SS-ST Algorithms

• Trick 1: Pre-compute all distances
– Transitive closure with distances
– Requires O(|V|2) space: Prohibitive for large graphs
– How? See next lecture

X

D

B

FE

A

G

C

Y

1

1

2
53

2

14

3

2

6
3

3

→ A B C D E F G X Y
A 0 - - - - - - - -
B 3 0 2 - - - - - -
C - - 0 - - - - - -
D 4 1 3 0 3 4 6 7 3
E 6 6 7 5 0 1 11 4 8
F - - 6 - - 0 - - -
G - - - - - - 0 - -
X 2 2 4 1 4 5 7 0 4
Y - - 2 - - - 3 - 0



Ulf Leser: Algorithms and Data Structures 35

Faster SS-ST Algorithms

• Trick 2: Two-hop cover with distances
– Find a (hopefully small) set S of nodes such that

• For every pair of nodes v1,v2, at least one shortest path from v1 to v2
goes through a node s∈S

• Thus, the distance between v1,v2 is min{ d(v1,s)+d(s,v2) | s∈S)
• S is called a 2-hop cover

– Problem: Finding a minimal S is NP-complete 
• And S need not be small

X

D

B

F

E

A

G

C

Y



Ulf Leser: Algorithms and Data Structures 36

More Distances

• Graphs with negative edge weights
– Shortest paths (in terms of weights) may be very long (edges)
– Bellman-Ford algorithm is in O(n2*m)

• All-pairs shortest paths
– Only positive edge weights: Use Dijkstra n times
– With negative edge weights: Floyd-Warshall in O(n3)

• See next lecture

• Reachability
– Simple in undirected graphs: Compute all connected components
– In digraphs: Use graph traversal or a special graph indexing 

method


	Foliennummer 1
	Content of this Lecture
	Shortest Paths in a Graph
	Foliennummer 4
	Distance in Graphs
	Single-Source Shortest Paths in a Graph
	Assumptions
	Exhaustive Solution
	Redundant work
	Dijkstra’s Idea
	Example for Idea 
	Algorithmic Idea
	Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	Example for Algorithm
	A Closer Look
	Dijkstra’s Algorithm – Single Operations
	Dijkstra’s Algorithm - Loops
	Single-Source, Single-Target
	Outlook: Highway Hierarchies
	Faster SS-ST Algorithms
	Faster SS-ST Algorithms
	More Distances

