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Content of this Lecture

• Shortest Paths
– Single-Source-Shortest-Paths: Dijkstra’s Algorithm
– Shortest Path between two given nodes
– Other
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Shortest Paths in a Graph

• Task: Find the distance between X and 
all other nodes
– Classical problem: Single-Source-Shortest-Paths 
– Famous solution: Dijkstra’s algorithm

• E. Dijsktra: A Note on Two Problems in Connexion
with Graphs. Numerische Mathematik 1 (1959), S. 269–271
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Computer Science is no more about 
computers than astronomy is about 

telescopes.

Attributed to Edsger Dijkstra, 1970.
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Distance in Graphs

• Definition
Let G=(V, E) be a graph. The distance d(u,v) between any 
two nodes u,v∈V for u≠v is defined as
– G unweighted: The length of the shortest path from u to v, or ∞ if 

no path from u to v exists
– G weighted: The minimal aggregated edge weight of all non-cyclic 

paths from u to v, or ∞ if no path from u to v exists
– If u=v, d(u,v)=0

• Remark
– Distance in unweighted graphs is the same as distance in weighted 

graphs with unit cost
– Beware of negative cycles in directed graphs
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Single-Source Shortest Paths in a Graph

• Task: Find the distance between X and all other nodes
• Only positive edge weights allowed 

– Bellman-Ford algorithm solves the general case
• Floyd-Warshall finds distances between any pair of nodes
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Assumptions

• We assume that every node is reachable from X
• There might be many shortest paths to node Y, but distance is unique

– We only want the distances and need no “witness paths”
• Only positive edge weights

– Whenever we extend a path with an edge, its length increases
– Thus, no shortest path may contain a cycle
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Exhaustive Solution

• First approach: Enumerate all paths (“BT”: Backtrack)
– Still need to break cycles (e.g. X – K3 – K4 – X – K3 - …)
– Using DFS: X – K3 – K4 – X [BT-K4] – K5 – K6 [BT-K5] [BT-K4] 

[BT-K3] – K7 – K8 [BT-K7] – K6 [BT-K7] [BT-K3] – K2 – K6 [BT-K2] 
– K1 [BT-K2] [BT-K3] [BT-X] K6 - … 
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Redundant work

• First approach: Enumerate all paths
– Need to break cycles (e.g. X – K3 – K4 – X – K3 - …)
– Using DFS: X – K3 – K4 – X [BT-K4] – K5 – K6 [BT-K5] [BT-K4] 

[BT-K3] – K7 – K8 [BT-K7] – K6 [BT-K7] [BT-K3] – K2 – K6 [BT-K2] 
– K1 [BT-K2] [BT-K3] [BT-X] K6 - … 
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Dijkstra’s Idea

• Enumerate paths from X by their length
– Neither DFS nor BFS

• Assume we reach a node Y by a path p of length l and we 
have already explored all paths from X with length l’ < l 
and that Y was not reached yet

• Then p must be a shortest path between X and Y
– Because any p’ between X and Y would have a prefix of length at 

least l and (a) a continuation with length>0 (only positive weights) 
or (b) would not need a continuation (then p is as short as p’)
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Example for Idea 

• 1: X – K3
• 2: X – K3 – K2

2: X – K1
• 4: X – K3 – K2 – K6

4: X – K3 – K4
4: X – K3 – K7
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• 5: X – K3 – K4 – K5
• 7: X – K3 – K7 – K8
• Stop (all nodes found)
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Algorithmic Idea

• Enumerate paths by iteratively extending already found 
shortest paths by all possible extensions
– All edges outgoing from the end node of a short path

• These extensions 
– … either lead to a node which we didn’t reach before – then we 

found a path, but cannot yet be sure it is the shortest
– … or lead to a node which we already reached but we are not yet 

sure of we found the shortest path to it – update current best 
distance

– … or lead to a node which we already reached and for which we 
also surely found a shortest path already – these can be ignored

• Extensions are stored in a priority queue with prio=length
• We enumerate nodes by their distance
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Algorithm

• Assumptions
– Nodes have IDs between 1 … |V|
– Edges are (from, to, weight)

• We enumerate nodes by length 
of their shortest paths
– In the first loop, we pick x and update 

distances (A) to all adjacent nodes
– When we pick a node k, we already 

have computed its distance to x in A
– We adapt the current best distances 

to all neighbors of k we haven’t 
picked yet

• Once we picked all nodes, we 
are done

1. G = (V, E);
2. x : start_node;    # x∈V
3. A : array_of_distances;
4. ∀i: A[i]:= ∞;
5. L := V;
6. A[x] := 0;
7. while L≠∅
8. k := L.get_closest_node(x);
9. L := L \ k;
10. forall (k,f,w)∈E do
11. if f∈L then 
12. new_dist := A[k]+w;
13. if new_dist < A[f] then
14. A[f] := new_dist;
15. end if;
16. end if;
17. end for;
18.end while;
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Example for Algorithm
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Example for Algorithm
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• Pick x
• Adapt distances to all neighbors
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Example for Algorithm
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• X is done – remove from L
• Pick K3 (closest to x)
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Example for Algorithm
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Example for Algorithm
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• K3 is done (we cannot find a shorter path)
• Pick K1 (or K2)
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Example for Algorithm
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• Pick K1
• Adapt distances to all neighbors

– There are none
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Example for Algorithm
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• Pick K2
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Example for Algorithm
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• Pick K2
• Adapt distances to all neighbors

– K1 was picked already – ignore
– We found a shorter path to K6
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Example for Algorithm
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• Pick K6 (or K4 or K7)
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Example for Algorithm
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Example for Algorithm
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Example for Algorithm
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• Pick K7
• Adapt distances to all neighbors

– K6 was visited already
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Example for Algorithm
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Example for Algorithm
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• Pick K4
• Adapt distances to all neighbors

– X was visited already
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Example for Algorithm
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A Closer Look

• Central: get_closest_node(x)
– Needs to find the node k in L for 

which A[k] is the smallest
– A[k] may change all the time

• Searching A? Resorting A?
• Trick: Organize L as min-heap 

“enhanced” priority queue
– We need to be able to update the 

priority of nodes
– Done in O(log(n)) by removing 

then re-inserting the node

1. G = (V, E);
2. x : start_node;    # x∈V
3. A : array_of_distances;
4. ∀i: A[i]:= ∞;
5. L := V;
6. A[x] := 0;
7. while L≠∅
8. k := L.get_closest_node(x);
9. L := L \ k;
10. forall (k,f,w)∈E do
11. if f∈L then 
12. new_dist := A[k]+w;
13. if new_dist < A[f] then
14. A[f] := new_dist;
15. end if;
16. end if;
17. end for;
18.end while;
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Dijkstra’s Algorithm – Single Operations

• Assume a heap-based PQ L
– L holds at most all nodes (n)
– L4: O(n)
– L5: O(n) (build PQ)
– L9: O(1) (getMin)
– L10: O(log(n)) (deleteMin)
– L11: O(m) (with adjacency list)
– L12: O(1)

• Requires additional array LA of 
size |V| storing membership of 
nodes in L

– L16: O(log(n)) (updatePQ)
• Store in LA pointers to nodes in L; 

then remove/insert node 

1. G = (V, E);
2. x : start_node;    # x∈V
3. A : array_of_distances_from_x;
4. ∀i: A[i]:= ∞;
5. L := V; # organized as PQ
6. A[x] := 0;
7. update( L);
8. while L≠∅
9. k := L.get_closest_node();
10. L := L \ k;
11. forall (k,f,w)∈E do
12. if f∈L then 
13. new_dist := A[k]+w;
14. if new_dist < A[f] then
15. A[f] := new_dist;
16. update( L);
17. end if;
18. end if;
19. end for;
20.end while;
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Dijkstra’s Algorithm - Loops

• Central costs
– L10: O(log(n)) (deleteMin)
– L16: O(log(n)) (del+ins)

• Loops
– Lines 8-19: O(n)
– Line 11-18: All edges exactly once
– Together: O(m+n)

• Altogether: O((n+m)*log(n))
– With Fibonacci heaps: Amortized 

costs are O(n*log(n)+m))
– Also possible in O(n2); this is 

better in dense graphs (m~n2)

1. G = (V, E);
2. x : start_node;    # x∈V
3. A : array_of_distances;
4. ∀i: A[i]:= ∞;
5. L := V; # organized as PQ
6. A[x] := 0;
7. update( L);
8. while L≠∅
9. k := L.get_closest_node();
10. L := L \ k;
11. forall (k,f,w)∈E do
12. if f∈L then 
13. new_dist := A[k]+w;
14. if new_dist < A[f] then
15. A[f] := new_dist;
16. update( L);
17. end if;
18. end if;
19. end for;
20.end while;
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Single-Source, Single-Target

• Task: Find the distance between X and only Y
• Solution: Dijkstra as well

– We can stop as soon as Y appears at the min position of the PQ
– We can visit edges in order of increasing weight (might help)
– Worst-case complexity unchanged

• Things are different in planar graphs (navigators!)
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Outlook: Highway Hierarchies

• Shortest-Path Routing on maps
• Exploit Highway hierarchy

– Autobahn, Bundesstrasse, 
Regionalstrasse, Strasse, Pfad …

• Iterative refinement in layered
maps

• “towards O(1)” [SS07]
• Extensions

– Second best non-overlapping path
– Fleet management: Traveling salesman
– Logistics: Pick-up-and-delivery with intermediate stocks
– Budget optimization (gasoline, empty trips, slepp-restrictions, road 

tolls, border / customs regulations, …)
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Faster SS-ST Algorithms

• Trick 1: Pre-compute all distances
– Transitive closure with distances
– Requires O(|V|2) space: Prohibitive for large graphs
– How? See next lecture
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→ A B C D E F G X Y
A 0 - - - - - - - -
B 3 0 2 - - - - - -
C - - 0 - - - - - -
D 4 1 3 0 3 4 6 7 3
E 6 6 7 5 0 1 11 4 8
F - - 6 - - 0 - - -
G - - - - - - 0 - -
X 2 2 4 1 4 5 7 0 4
Y - - 2 - - - 3 - 0
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Faster SS-ST Algorithms

• Trick 2: Two-hop cover with distances
– Find a (hopefully small) set S of nodes such that

• For every pair of nodes v1,v2, at least one shortest path from v1 to v2
goes through a node s∈S

• Thus, the distance between v1,v2 is min{ d(v1,s)+d(s,v2) | s∈S)
• S is called a 2-hop cover

– Problem: Finding a minimal S is NP-complete 
• And S need not be small
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More Distances

• Graphs with negative edge weights
– Shortest paths (in terms of weights) may be very long (edges)
– Bellman-Ford algorithm is in O(n2*m)

• All-pairs shortest paths
– Only positive edge weights: Use Dijkstra n times
– With negative edge weights: Floyd-Warshall in O(n3)

• See next lecture

• Reachability
– Simple in undirected graphs: Compute all connected components
– In digraphs: Use graph traversal or a special graph indexing 

method
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