Sommersemester 2015 27. Mai 2015

Übungsblatt 7

Abgabe der schriftlichen Lösungen bis 10. Juni 2015

Aufgabe 39 mündlich

Konstruieren Sie zu einem beliebigen Graphen G mit n Knoten und $m \ge 1$ Kanten einen Graphen G' mit $\omega(G') = \omega(G)$ und $\chi(G') = \chi(G) + 1$. Hinweis: Erweitern Sie G zuerst zu einem Graphen H mit 2n Knoten, indem Sie zu jedem Knoten u in G einen Zwillingsknoten u' mit $N_H(u') = N_G(u)$ hinzufügen, und fügen Sie einen weiteren Knoten hinzu.

Aufgabe 40 Sei G = (V, E) ein Graph. Zeigen Sie: $m\ddot{u}ndlich$

- (a) G ist genau dann 2-fach zusammenhängend, wenn je 2 Knoten von G auf einem gemeinsamen Kreis K liegen.
- (b) Sei die Relation \sim auf E definiert durch $e \sim e'$, falls e und e' auf einem gemeinsamen Kreis liegen. Dann ist \sim eine Äquivalenzrelation.
- (c) Seien E_1, \ldots, E_k die Äquivalenzklassen von \sim und $V_i = V(E_i)$ die zugehörigen Knotenmengen. Dann gilt $||V_i \cap V_j|| \le 1$ für alle $i \ne j$. Bemerkung: Die Teilgraphen $B_i = (V_i, E_i)$ heißen Blöcke und die Knoten $u \in V_i \cap V_j$ heißen Artikulationen von G.
- (d) G ist genau dann 2-fach zusammenhängend, wenn k=1 ist.
- (e) Sei B der Graph, dessen Knotenmenge aus allen Blöcken und Artikulationen von G besteht und in dem jeder Block zu allen darin enthaltenen Artikulationen adjazent ist. Dann ist B ein Wald.
- (f) Falls G zusammenhängend ist, ist B ein Baum. Bemerkung: In diesem Fall heißt B der Blockbaum von G.
- (g) Geben Sie einen Linearzeitalgorithmus an, der B berechnet.

Aufgabe 41 mündlich

Finden Sie einen Linearzeitalgorithmus, der für jeden zusammenhängenden Graphen G eine $(\Delta(G) + 1)$ -Färbung c berechnet, sodass höchstens ein Knoten u eine Farbe $c(u) > \deg(u)$ erhält.

Aufgabe 42 mündlich

Finden Sie einen Linearzeitalgorithmus, der für jeden Graphen G mit $\Delta(G) \leq 3$ eine $\chi(G)$ -Färbung berechnet.

Aufgabe 43 Sei G = (V, E) ein Graph. Zeigen Sie: mündlich

- (a) Sei ℓ die Länge eines längsten Pfades in G. Dann gilt $\chi(G) \leq \ell + 1$.
- (b) Sei d der maximale Minimalgrad $\delta(U)$ aller induzierten Untergraphen U von G. Dann gilt $\chi(G) \leq d+1$.
- (c) G hat mindestens $\chi(G)$ Knoten u vom Grad $\deg(u) \geq \chi(G) 1$.
- (d) Es gilt $2\sqrt{n} \le \chi(G) + \chi(\overline{G}) \le n+1$.
- (e) Für $e = \{u, v\} \in \binom{V}{2} \setminus E$ gilt $\chi(G) = \min\{\chi(G_{uv}), \chi(G \cup e)\}.$
- (f) Es gilt $\Delta(G) \leq \chi'(G) \leq 2\Delta(G) 1$.
- (g) Falls G bipartit ist, gilt $\chi'(G) = \Delta(G)$.

Aufgabe 44 10 Punkte

Für jeden Job j = 1, ..., n ist ein Zeitintervall $I_j = [a_j, b_j]$ vorgegeben, das den Startzeitpunkt a_j und den Endzeitpunkt b_j für diesen Job angibt.

- (a) Wieviele Arbeiter werden benötigt, um alle Jobs zu erledigen, wenn kein Arbeiter gleichzeitig an mehreren Jobs arbeiten kann?
- (b) Finden Sie einen möglichst effizienten Algorithmus, der eine Verteilung aller Jobs auf eine minimale Anzahl k von Arbeitern berechnet. Der Algorithmus soll zudem einen Zeitpunkt z ausgeben, zu dem k Jobs aktiv sind.