Vorlesungsskript
Theoretische Informatik I11

Sommersemester 2008

Prof. Dr. Johannes Kobler

Humboldt-Universitat zu Berlin
Lehrstuhl Komplexitat und Kryptografie

15. Juni 2009

Inhaltsverzeichnis

1 Einleitung

2 Suchen und Sortieren
2.1 Suchen von Mustern in Texten
2.1.1 String-Matching mit endlichen Automaten . .
2.1.2 Der Knuth-Morris-Pratt-Algorithmus
2.2 Durchsuchen von Zahlenfolgen
2.3 Sortieralgorithmen
2.3.1 Sortieren durch Einftigen
2.3.2 Sortieren durch Mischen
2.3.3 Losen von Rekursionsgleichungen
2.3.4 Eine untere Schranke fiir das Sortierproblem .
2.3.5 QuickSort L
2.3.6 HeapSort
2.3.7 BucketSort 0.
2.3.8 CountingSort
2.3.9 RadixSort
2.3.10 Vergleich der Sortierverfahren
2.4 Datenstrukturen fiir dynamische Mengen
2.4.1 Verkettete Listen
2.4.2 Binédre Suchbdume
2.4.3 Balancierte Suchbaume

3 Graphalgorithmen
3.1 Grundlegende Begrifte
3.2 Datenstrukturen fiir Graphen
3.3 Keller und Warteschlange

24
24
26
26

ii

3.4 Durchsuchen von Graphen 28

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6

Suchwalder 29
Klassifikation der Kanten eines (Di-)Graphen 29
Spannbaume und Spannwalder 31
Berechnung der Zusammenhangskomponenten 32
Breiten- und Tiefensuche 32
Starke Zusammenhangskomponenten 36

1 Einleitung

In den Vorlesungen Thl 1 und ThI 2 standen folgende Themen im
Vordergrund:

e Mathematische Grundlagen der Informatik, Beweise fithren, Mo-
dellierung Aussagenlogik,
Pradikatenlogik

e Welche Probleme sind losbar?

e Welche Rechenmodelle sind adédquat?

e Welcher Aufwand ist notig?

(Berechenbarkeitstheorie)
(Automatentheorie)

(Komplexitatstheorie)
Dagegen geht es in der VL Thl 3 in erster Linie um folgende Frage:

e Wie lassen sich eine Reihe von praktisch relevanten Problem-
stellungen moglichst effizient 16sen?

o Wie lasst sich die Korrektheit von Algorithmen beweisen und
wie lasst sich ihre Laufzeit abschatzen?

Die Untersuchung dieser Fragen lasst sich unter dem Themengebiet
Algorithmik zusammenfassen.

Der Begrift Algorithmus geht auf den persischen Gelehrten Muhammed
Al Chwarizmi (8./9. Jhd.) zurtick. Der alteste bekannte nicht-triviale
Algorithmus ist der nach Euklid benannte Algorithmus zur Berechnung
des groBiten gemeinsamen Teilers zweier natiirlicher Zahlen (300 v.
Chr.). Von einem Algorithmus wird erwartet, dass er jede Problemein-
gabe nach endlich vielen Rechenschritten 16st (etwa durch Produktion
einer Ausgabe). Ein Algorithmus ist ein ,Verfahren“ zur Losung eines
Entscheidungs- oder Berechnungsproblems, das sich prinzipiell auf
einer Turingmaschine implementieren lasst (Church-Turing-These).

Die Registermaschine

Bei Aussagen zur Laufzeit von Algorithmen beziehen wir uns auf die
Registermaschine (engl. random access machine; RAM). Dieses Modell
ist etwas flexibler als die Turingmaschine, da es den unmittelbaren
Lese- und Schreibzugriff (random access) auf eine beliebige Speiche-
reinheit (Register) erlaubt. Als Speicher stehen beliebig viele Register
zur Verfiigung, die jeweils eine beliebig grofe natiirliche Zahl speichern
konnen. Auf den Registerinhalten sind folgende arithmetische Ope-
rationen in einem Rechenschritt ausfithrbar: Addition, Subtraktion,
abgerundetes Halbieren und Verdoppeln. Unabhéngig davon geben
wir die Algorithmen in Pseudocode an. Das RAM-Modell benutzen
wir nur zur Komplexitatsabschatzung.

Die Laufzeit von RAM-Programmen wird wie bei TMs in der Lange
der Eingabe gemessen. Man beachte, dass bei arithmetischen Pro-
blemen (wie etwa Multiplikation, Division, Primzahltests, etc.) die
Léange einer Zahleingabe n durch die Anzahl [logn| der fiir die Binér-
kodierung von n benétigten Bits gemessen wird. Dagegen bestimmt
bei nicht-arithmetischen Problemen (z.B. Graphalgorithmen oder
Sortierproblemen) die Anzahl der gegebenen Zahlen die Lange der
Eingabe.

Asymptotische Laufzeit und Landau-Notation

Definition 1. Seien [und g Funktionen von N nach R*. Wir schrei-
ben f(n) = O(g(n)), falls es Zahlen ng und ¢ gibt mit

Vn >mng: f(n) <c-g(n).

Die Bedeutung der Aussage f(n) = O(g(n)) ist, dass f ,nicht
wesentlich schneller” als g wéachst. Formal bezeichnet der Term
O(g(n)) die Klasse aller Funktionen f, die obige Bedingung erfiil-
len. Die Gleichung f(n) = O(g(n)) driickt also in Wahrheit eine
Element-Beziehung f € O(g(n)) aus. O-Terme koénnen auch auf

der linken Seite vorkommen. In diesem Fall wird eine Inklusionsbe-
ziechung ausgedriickt. So steht n? + O(n) = O(n?) fiir die Aussage
{n*+[]f€0Mm)}COMm).
Beispiel 2.

e Tlog(n) +n® = O(n?) ist richtig.

e Tlog(n)n® = O(n?) ist falsch.

o 27O = O(2") ist richtig.

e 20" = O(2") ist falsch (siehe Ubungen). q

Es gibt noch eine Reihe weiterer niitzlicher Groflenvergleiche von
Funktionen.

Definition 3. Wir schreiben f(n) = o(g(n)), falls es fir jedes ¢ > 0
eine Zahl ng gibt mit

Vn >mng: f(n) <c-g(n).

Damit wird ausgedrickt, dass f ,wesentlich langsamer® als g wdchst.
Auferdem schreiben wir

o f(n)=2Q(g(n)) fir gln) = O(f(n)), d.-h. f wichst mindestens
so schnell wie g)

e f(n) =w(g(n)) fir g(n) = o(f(n)), d.-h. f wichst wesentlich
schneller als g, und

o [(n) =O(g(n)) fir f(n) = O(g(n)) A f(n) = Qg(n)), d-h. f

und g wachsen ungefihr gleich schnell.

2 Suchen und Sortieren

2.1 Suchen von Mustern in Texten

In diesem Abschnitt betrachten wir folgende algorithmische Problem-
stellung.

String-Matching (STRINGMATCHING):

Gegeben: Ein Text x = z1---x, und ein Muster y = y1 - Ym
iiber einem Alphabet X.

Gesucht: Alle Vorkommen von y in z.

Wir sagen y kommt in x an Stelle i vor, falls x;\q - x;1, = y ist.
Typische Anwendungen finden sich in Textverarbeitungssystemen
(emacs, grep, etc.), sowie bei der DNS- bzw. DNA-Sequenzanalyse.

Beispiel 4. Sei ¥ = {A4,C,G,U}.

Text = AUGACGAUGAUGUAGGUAGCGUAGAUGAUGUAG,
Muster y = AUGAUGUAG.

Das Muster y kommt im Text x an den Stellen 6 und 24 vor. N

Bei naiver Herangehensweise kommt man sofort auf folgenden Algo-
rithmus.

Algorithmus naive-String-Matcher(z,y)

I Input: Text x=x---x, und Muster y=9y;---ypn
2 V=0
3 for 1 :=0 to n—m do

2 Suchen und Sortieren

A if 201 Tiym =1+ ym then
5 V.=V u{i}
¢ Output: V

Die Korrektheit von naive-String-Matcher ergibt sich wie folgt:
e In der for-Schleife testet der Algorithmus alle potentiellen Stel-
len, an denen y in vorkommen kann, und
o fiigt in Zeile 4 genau die Stellen ¢ zu V hinzu, fir die
Tig1 - Tigm = Y ist.
Die Laufzeit von naive-String-Matcher lasst sich nun durch fol-
gende Uberlegungen abschétzen:
e Die for-Schleife wird (n — m + 1)-mal durchlaufen.
e Der Test in Zeile 4 benotigt maximal m Vergleiche.

Dies fiihrt auf eine Laufzeit von O(nm) = O(n?). Fiir Eingaben der
Form z = a™ und y = al™/?) ist die Laufzeit tatsichlich ©(n?).

2.1.1 String-Matching mit endlichen Automaten

Durch die Verwendung eines endlichen Automaten lasst sich eine
erhebliche Effizienzsteigerung erreichen. Hierzu konstruieren wir einen
DFA M,, der jedes Vorkommen von y in der Eingabe = durch Erreichen
eines Endzustands anzeigt. M, erkennt also die Sprache

L ={z € X" |y ist Suffix von z}.

Konkret konstruieren wir M, = (Z,%, 6,0, m) wie folgt:
e M, hat m + 1 Zustande, die den m + 1 Prafixen y;---ys,
k=0,...,m, von y entsprechen, d.h. Z ={0,...,m}.

e Liest M, im Zustand k das Zeichen yj1, so wechselt M, in den
Zustand k + 1, d.h. §(k,yp1) =k + 1 fir k=0,...,m — 1L

2.1 Suchen von Mustern in Texten

Y4 Ym

i Yo Y3
OROROROERO

e Falls das néachste Zeichen a nicht mit y;,; ibereinstimmt
(engl. mismatch), wechselt M, in den Zustand

d(k,a) = max{j < m |y ---y; ist Suffix von y; - - - yxa}.

Der DFA M, speichert also in seinem Zustand die maximale Léange
k eines Prafixes y; - - - yx von y, das zugleich ein Suffix der gelesenen
Eingabe ist:

A

0(0,2) = max{k < m | y; - - -y, ist Suffix von z}.

Die Korrektheit von M, folgt aus der Beobachtung, dass M, isomorph
zum Aquivalenzklassenautomaten Mg, fiir L ist. Mg, hat die Zustéin-
de [y1---yk], K =0,...,m, von denen nur [y - - - Y| €in Endzustand
ist. Die Uberfiihrungsfunktion ist definiert durch

O(fyr - yxl,a) = [y1 -+ -5,

wobei y; - - -y; das langste Prafix von y = y; - - - Y, ist, welches Suffix
von y; - - - y;ja ist (siche Ubungen).

Beispiel 5. Fiir das Muster y = laola hat M, folgende Gestalt:

(6o 1 23 45
alfo 2 00 5 0
111411
00 0300 3

2 Suchen und Sortieren

M, macht bei der Suche nach dem Muster y = laola im Text x = olalaolala
folgende Uberginge:

e
» 0,0, dind \%

Il a o 1l a 1
3 4 5 6 7 8 9 10

2 Q—
a
2

Insgesamt erhalten wir somit folgenden Algorithmus.

Algorithmus DFA-String-Matcher(z,y)

1 Input: Text z =2y ---2, und Muster y =y, ym
2 konstruiere den DFA M, = (Z,%,0,0,m)

3 V=10

4 k:=0

5 for i:=1 to n do

6 k:=0(k,x;)

7 if k=m then V.=V U{i—m}
s QOutput: V

Die Korrektheit von DFA-String-Matcher ergibt sich unmittelbar
aus der Tatsache, dass M, die Sprache

L(M,) = {z € ¥* | y ist Suffix von z}

erkennt. Folglich fiigt der Algorithmus genau die Stellen j = ¢ —m zu

V' hinzu, fir die y ein Suffix von xy - - - 2; (also xj1q - - xj4m = y) ist.

2.1 Suchen von Mustern in Texten

Die Laufzeit von DFA-String-Matcher ist die Summe der Laufzei-
ten fiir die Konstruktion von M, und fiir die Simulation von M, bei
Eingabe z, wobei letztere durch O(n) beschrankt ist. Fir 0 ist eine
Tabelle mit (m + 1)||2|| Eintragen

O(k,a) =max{j < k+ 1|y ---y; ist Suffix von y; - - - yra}

zu berechnen. Jeder Eintrag 6(k, a) ist in Zeit O(k?) = O(m?) bere-
chenbar. Dies fithrt auf eine Laufzeit von O(||%]|m?) fir die Konstruk-
tion von M, und somit auf eine Gesamtlaufzeit von O(||Z||m? + n).
Tatséchlich lasst sich M, sogar in Zeit O(]|X||m) konstruieren.

2.1.2 Der Knuth-Morris-Pratt-Algorithmus

Durch eine Modifikation des Riicksprungmechanismus’ lasst sich die
Laufzeit von DFA-String-Matcher auf O(n+ m) verbessern. Hierzu
vergegenwartigen wir uns folgende Punkte:

e Tritt im Zustand k ein Mismatch a # yiy1 auf, so ermittelt
M, das langste Prafix p von y; - - -y, das zugleich Suffix von
Y1 - - - yra ist, und springt in den Zustand j = d(k,a) = |p|.

e Im Fall j > 0 hat p also die Form p = p'a, wobei p’ = y; - - - y,;_1
sowohl echtes Préfix als auch echtes Suffix von y; - - -y, ist. Zu-
dem gilt y; = a.

e Die Idee beim KMP-Algorithmus ist nun, bei einem Mismatch
unabhéngig von a auf das néchst kleinere Préifix p = y; - - - y;
von vy - - - Yx zu springen, das auch Suffix von g - - -y ist.

e Stimmt nach diesem Riicksprung das néchste Eingabezeichen
a mit y;4q tberein, so wird dieses gelesen und der KMP-
Algorithmus erreicht (nach einem kleinen Umweg tiber den
Zustand 7) den Zustand ¢ + 1 = j, in den auch M, wechselt.

e Andernfalls springt der KMP-Algorithmus nach derselben Me-
thode solange weiter zurtick, bis das néchste Eingabezeichen a

2 Suchen und Sortieren

»passt (also y;+1 = a und somit pa ein Prafix von y ist) oder
der Zustand 0 erreicht wird.

e In beiden Fallen wird a gelesen und der Zustand d(k, a) ange-
nommen.

Der KMP-Algorithmus besucht also alle Zustande, die auch M,
besucht, fithrt aber die Riickspriinge in mehreren Etappen aus.
Die Sprungadressen werden durch die so genannte Prdfizfunktion
m:{L,...,m} — {0,...,m — 1} ermittelt:

(k) =max{0 < j <k—1]y -y, ist Suffix von y; - - - yx }

Beispiel 6. Fir das Muster y = laola ergibt sich folgende Prdfizfunk-
tion m:

\ [[
DLOSOROR0H0
S IERE 4 5]
L(k)][0 |

Wir kénnen uns die Arbeitsweise dieses Automaten wie folgt vorstellen:

1. Erlaubt das ndichste Eingabezeichen einen Ubergang vom aktuel-
len Zustand k nach k + 1, so fihre diesen aus.

2. Ist ein Ubergang nach k + 1 nicht méglich und k > 1, so springe
in den Zustand w(k) ohne das ndchste Zeichen zu lesen.

3. Andernfalls (d.h. k = 0 und ein Ubergang nach 1 ist nicht
maoglich) lies das néchste Zeichen und bleibe im Zustand 0.

Der KMP-Algorithmus macht bei der Suche nach dem Muster y =
laola im Text x = olalaolala folgende Uberginge:

2.1 Suchen von Mustern in Texten

3 C
/}\J
: o o o6 o
AT
o &

[a
0o 1 2 3 4 5 6 7 8 9 10 4q

Auf die Frage, wie sich die Préfixfunktion m moglichst effizient berech-
nen lasst, werden wir spater zu sprechen kommen. Wir betrachten
zunéchst das Kernstiick des KMP-Algorithmus, das sich durch eine
leichte Modifikation von DFA-String-Matcher ergibt.

DFA-String-Matcher(x,y) KMP-String-Matcher(z,y)

1 Imput: Text x¢---z, und
Muster y;---ym

1 Input: Text z,-- -2,
und Muster y;---ym

2 konstruiere M, 2
5 V=0 35 V=10
1 k=0 1 k:=0
5 for i:=1 to n do 5 for 1:=1 to n do
6 k:=0(k,z;) 6
8
7 if £k =m then 9 if k=m then
8 Vi=VU{i—m} 10 Vi=VU{i—m},
9 Output: V 11 Output: V

Die Korrektheit des Algorithmus KMP-String-Matcher ergibt sich
einfach daraus, dass er den Zustand m an genau den gleichen Text-
stellen besucht wie DFA-String-Matcher, und somit wie dieser alle
Vorkommen von y im Text x findet.

2 Suchen und Sortieren

Fiir die Laufzeitanalyse von KMP-String-Matcher (ohne die Berech-
nung von KMP-Prefix) stellen wir folgende Uberlegungen an.

e Die Laufzeit ist proportional zur Anzahl der Zustandsiibergénge.
e Bei jedem Schritt wird der Zustand um maximal Eins erhoht.

e Daher kann der Zustand nicht 6fter verkleinert werden als er
erhoht wird (Amortisationsanalyse).

e Es gibt genau n Zustandsiibergange, bei denen der Zustand
erhoht wird bzw. unveréndert bleibt.

e Insgesamt finden also hochstens 2n = O(n) Zustandsiibergénge
statt.

Nun kommen wir auf die Frage zurtick, wie sich die Prafixfunktion m
effizient berechnen lésst. Die Aufgabe besteht darin, fiir jedes Préfix
Y1 Y, © > 1, das ldngste echte Préafix zu berechnen, das zugleich
Suffix von y; - - - y; ist.

Die Idee besteht nun darin, mit dem KMP-Algorithmus das Muster
y im Text ys - - -y, zu suchen. Dann liefert der beim Lesen von y;
erreichte Zustand k gerade das langste Prafix y; - - - yi, das zugleich
Suffix von ys - - - y; ist (d.h. es gilt 7(i) = k). Zudem werden bis zum
Lesen von y; nur Zustande kleiner als ¢ erreicht. Daher sind die 7-
Werte fiir alle bis dahin auszufithrenden Riickspriinge bereits bekannt
und 7 kann in Zeit O(m) berechnet werden.

Prozedur KMP-Prefix(y)

1om(1):=0

2 k=0
3 for 1:=2 to m do

4 while (k> 0Ay; # ypr1) do k:=7w(k)
5 if y; =ypy1 then k:=k+1
6 (i) =k

7 return(m)

Beispiel 7. Die Verarbeitung des Musters y = laola durch

2.2 Durchsuchen von Zahlenfolgen

KMP-Prefix ergibt folgendes Ablaufprotokoll:

e |k 1 23 4 5]
|

mk)Jo 0 0 1 2]

N

Wir fassen die Laufzeiten der in diesem Abschnitt betrachteten String-
Matching Algorithmen in einer Tabelle zusammen:

Algorithmus Vorverarbeitung Suche | Gesamtlaufzeit
naiv 0 O(nm) O(nm)
DFA (einfach) O([|2||m?) O(n) | O(||%||m? + n)
DFA (verbessert) O(]|1Z||m) O(n) | O(|X|lm+n)
Knuth-Morris-Pratt O(m) O(n) O(n)

2.2 Durchsuchen von Zahlenfolgen

Als néchstes betrachten wir folgendes Suchproblem.

Element-Suche

Gegeben: Eine Folge aq,...,a, von natiirlichen Zahlen und eine
Zahl a.

Gesucht: Ein Index ¢ mit a; = a (bzw. eine Fehlermeldung, falls

a & {ay,...,a,} ist).

Typische Anwendungen finden sich bei der Verwaltung von Daten-
satzen, wobei jeder Datensatz tiber einen eindeutigen Schlissel (z.B.
Matrikelnummer) zugreifbar ist. Bei manchen Anwendungen kénnen
die Zahlen in der Folge auch mehrfach vorkommen. Gesucht sind dann

2 Suchen und Sortieren

evtl. alle Indizes ¢ mit a; = a. Durch eine sequentielle Suche lésst sich
das Problem in Zeit O(n) 16sen.

Algorithmus Sequential-Search

I Input: Eine Zahlenfolge a4,...,a, und eine Zahl a

2 1:=0

3 repeat

4 t:=1+1

5 until (i =nVa=a)

¢ Output: i, falls a; =a bzw. Fehlermeldung, falls
a; # a

Falls die Folge a4, ...,a, sortiert ist, d.h. es gilt a; < a; fiir ¢ < j,
bietet sich eine Bindrsuche an.

Algorithmus Binary-Search

i Input: Eine Zahlenfolge ay,...,a, und eine Zahl «a
2 [:=1

3 r=n

1

while [<r do
5 m:= |[(l+7r)/2]
6 if a <a,, then r:=m else [:=m+1
Output: [, falls a;, =a bzw. Fehlermeldung, falls

a; # a

-

Offensichtlich gibt der Algorithmus im Fall a & {ay,...,a,} eine Feh-
lermeldung aus. Im Fall a € {ay,...,a,} gilt die Schieifeninvariante
a; < a < a,. Daher muss nach Abbruch der while-Schleife a = ¢
sein. Dies zeigt die Korrektheit von Binary-Search.

Da zudem die Lénge [— r + 1 des Suchintervalls [/, 7] in jedem Schlei-
fendurchlauf mindestens auf | (I —7)/2] + 1 reduziert wird, werden
hochstens [logn] Schleifendurchlaufe ausgefithrt. Folglich ist die Lauf-
zeit von Binary-Search hochstens O(logn).

2.3 Sortieralgorithmen

2.3 Sortieralgorithmen

Wie wir im letzten Abschnitt gesehen haben, lassen sich Elemente in
einer sortierten Folge sehr schnell aufspiiren. Falls wir diese Operation
ofters ausfithren miissen, bietet es sich an, die Zahlenfolge zu sortieren.

Sortierproblem
Gegeben: Eine Folge a4, ..., a, von natiirlichen Zahlen.
Gesucht: Eine Permutation a;,, ..., a;, dieser Folge mit a;, < a;,.,

firyj=1,...,n—1.

Man unterscheidet vergleichende Sortierverfahren von den tibrigen Sor-
tierverfahren. Wahrend erstere nur Ja-Nein-Fragen der Form ,,a,<a;?“
oder ,a;<a;?" stellen diirfen, konnen letztere auch die konkreten Zah-
lenwerte a; der Folge abfragen. Vergleichsbasierte Verfahren benétigen
im schlechtesten Fall Q(nlogn) Vergleiche, wihrend letztere unter
bestimmten Zusatzvoraussetzungen sogar in Linearzeit arbeiten.

2.3.1 Sortieren durch Einfiigen

Ein einfacher Ansatz, eine Zahlenfolge zu sortieren, besteht darin,

sequentiell die Zahl a; (i = 2,...,n) in die bereits sortierte Teilfolge
ai, ..., a;_1 eingufiigen.
Algorithmus Insertion-Sort(ay,...,a,)

1 for i:=2 ton do z:=aq;

2 ji=1—1

3 while (j > 1Aa; > z) do

| Aj41 = Qj

5 ji=7—-1

6 Aj41 ‘= 2

Die Korrektheit von Insertion-Sort lasst sich induktiv durch den
Nachweis folgender Schleifeninvarianten beweisen:

2 Suchen und Sortieren

e Nach jedem Durchlauf der for-Schleife sind a4, ..., a; sortiert.

e Nach jedem Durchlauf der while-Schleife gilt z < a; fir
k=j4+2,...,1.

Zusammen mit der Abbruchbedingung der while-Schleife folgt hieraus,
dass z in Zeile 5 an der jeweils richtigen Stelle eingefiigt wird.
Da zudem die while-Schleife fir jedes i = 2,...,n hochstens (i — 1)-

mal ausgefithrt wird, ist die Laufzeit von Insertion-Sort durch
", O(i — 1) = O(n?) begrenzt.

Bemerkung 8.

o [st die Fingabefolge ay, . .., a, bereits sortiert, so wird die while-
Schleife niemals durchlaufen. Im besten Fall ist die Laufzeit
daher 37, O(1) = O(n).

e [st die Fingabefolge ay,. .., a, dagegen absteigend sortiert, so
wandert z in v — 1 Durchliufen der while-Schleife vom Ende
an den Anfang der bereits sortierten Teilfolge aq,...,a;. Im
schlechtesten Fall ist die Laufzeit also Y1, O(i — 1) = O(n?).

e Bei einer zufdlligen Eingabepermutation der Folge 1, ... n wird
z im Erwartungswert in der Mitte der Teilfolge ay, ..., a; einge-

figt. Folglich betrigt die (erwartete) Laufzeit im durchschnittli-
chen Fall ebenfalls Y7, ©O(5) = O(n?).

2.3.2 Sortieren durch Mischen

Wir konnen eine Zahlenfolge auch sortieren, indem wir sie in zwei
Teilfolgen zerlegen, diese durch rekursive Aufrufe sortieren und die
sortierten Teilfolgen wieder zu einer Liste zusammenfiigen.

Diese Vorgehensweise ist unter dem Schlagwort “Divide and Conquer”
(auch “divide et impera”, also “teile und herrsche”) bekannt. Dabei
wird ein Problem gel6st, indem man es

e in mehrere Teilprobleme aufteilt,

2.3 Sortieralgorithmen

e die Teilprobleme rekursiv 16st, und
e die Losungen der Teilprobleme zu einer Gesamtlosung des ur-
spriinglichen Problems zusammenfiigt.

Die Prozedur Mergesort(A,l,r) sortiert ein Feld A[l...r|, indem sie

e ¢s in die Felder A[l...m] und A[m + 1...r] zerlegt,
e diese durch jeweils einen rekursiven Aufruf sortiert, und

e die sortierten Teilfolgen durch einen Aufruf der Prozedur
Merge(A,l,m,r) zu einer sortierten Folge zusammenfiigt.

Algorithmus Mergesort(A,l,r)

1 if [<r then

2 m:= [(l+71)/2]

3 Mergesort(A,l,m)

4 Mergesort(A,m+ 1,r)
5 Merge(A,l,m,r)

Die Prozedur Merge(A, [, m,r) mischt die beiden sortierten Felder
All...m]und A[m + 1...7] zu einem sortierten Feld A[l...r].

Prozedur Merge(A,l,m,r)

1 allokiere Speicher fuer ein neues Feld BJl...7]
2 =1
3 k:=m+1
. for i:=1[to r do
5 if j > m then
6 Bli] := Alk]
7 k=k+1
8 else if £k > r then
9 Bli] := A[j]
10 ji=7+1
11 else if A[j] < Alk] then
12 Bli] := A[j]

2 Suchen und Sortieren

13 ji=7+1
14 else

15 Bli] := Alk]
16 k=k+1

17 kopiere das Feld BJ[l...r| in das Feld A[l...r]
15 gib den Speicher fuer B wieder frei

Man beachte, dass Merge fiir die Zwischenspeicherung der gemisch-
ten Folge zusétzlichen Speicher benotigt. Mergesort ist daher kein
“in place”-Sortierverfahren, welches neben dem Speicherplatz fir die
Eingabefolge nur konstant viel zusatzlichen Speicher belegen darf.
Zum Beispiel ist Insertion-Sort ein “in place”-Verfahren. Auch
Mergesort kann als ein “in place”-Sortierverfahren implementiert
werden, falls die zu sortierende Zahlenfolge nicht als Array, sondern
als mit Zeigern verkettete Liste vorliegt (hierzu muss allerdings auch
noch die Rekursion durch eine Schleife ersetzt werden).

Unter der Voraussetzung, dass Merge korrekt arbeitet, konnen wir
per Induktion iiber die Lange n = r — [+ 1 des zu sortierenden Arrays
die Korrektheit von Mergesort wie folgt beweisen:

n = 1: In diesem Fall tut Mergesort nichts, was offensichtlich korrekt
ist.

n~ n -+ 1: Um eine Folge der Lange n + 1 > 2 zu sortieren, zerlegt
sie Mergesort in zwei Folgen der Lénge hochstens n. Diese
werden durch die rekursiven Aufrufe nach IV korrekt sortiert
und von Merge nach Voraussetzung korrekt zusammengefiigt.

Die Korrektheit von Merge lasst sich leicht induktiv durch den Nach-
weis folgender Invariante fiir die for-Schleife beweisen:

e Nach jedem Durchlauf enthélt BJl---i] die i — [+ 1 kleinsten
Elemente aus A[l---m] und A[m + 1---r] in sortierter Reihen-
folge.

e Hierzu wurden die ersten j — 1 Elemente von A[l---m] und die
ersten k — 1 Elemente von A[m + 1---7] nach B kopiert.

2.3 Sortieralgorithmen

Nach dem letzten Durchlauf (d.h. ¢ = r) enthélt daher B[l ---r| al-
le r — [+ 1 Elemente aus A[l---m] und A[m + 1---7] in sortierter
Reihenfolge, womit die Korrektheit von Merge bewiesen ist.

Um eine Schranke fiir die Laufzeit von Mergesort zu erhalten, schat-
zen wir zunéchst die Anzahl V'(n) der Vergleiche ab, die Mergesort im
schlechtesten Fall benotigt, um ein Feld A[l - - - r] der Lénge n = r—I+1
zu sortieren. Offensichtlich erfiillt V(n) die Rekursionsgleichung

Vin) = 0, falls n =1,
A\ V(In/2) + V([n/2]) + M(n), n>2.

Dabei ist M (n) =n — 1 die Anzahl der Vergleiche, die Merge beno-
tigt, um die beiden sortierten Felder A[l...m] und Ajm +1...7] zu
mischen. Falls n eine Zweierpotenz ist, erhalten wir also die Rekursion

V(1) =0und V(n) =2V (n/2) +n—1,n> 2.
Fiir die Funktion f(k) = V(2%) gilt dann
f(0)=0und f(k) =2f(k—1)+2F — 1,k > 1.

Aus den ersten Folgengliedern

f(0) =0,
f) =1
f(2) = 2+22-1 = 1-22+1,
f(3) = 2-2242+25-1 = 2.2541,
f(4) = 2.2-224242-1 = 3-2441

lisst sich vermuten, dass f(k) = (k — 1) - 2¥ + 1 ist. Dies lésst
sich leicht durch Induktion tiber k verifizieren, so dass wir fir
V' die Losungsfunktion V(n) = nlogy,n — n + 1 erhalten. Ist n
keine Zweierpotenz, so konnen wir die Anzahl der Fragen durch
V(n) < V(n') <V(2n) = O(V(n)) abschiatzen, wobei n’ < 2n die
kleinste Zweierpotenz grofler als n ist.

2 Suchen und Sortieren

Da die Laufzeit T'(n) von MergeSort asymptotisch durch die Anzahl
V(n) der Vergleiche beschréankt ist, folgt 7'(n) = O(V(n)).

Satz 9. MergeSort ist ein vergleichendes Sortierverfahren mit einer
Laufzeit von O(nlogn).

2.3.3 Losen von Rekursionsgleichungen

Im Allgemeinen liefert der “Divide and Conquer”-Ansatz einfach zu

implementierende Algorithmen mit einfachen Korrektheitsbeweisen.

Die Laufzeit T'(n) erfillt dann eine Rekursionsgleichung der Form

D(n) + X0, T(n) + C(n),

Dabei ist D(n) der Aufwand fir das Aufteilen der Probleminstanz
und C'(n) der Aufwand fiir das Verbinden der Teillosungen. Um solche
Rekursionsgleichungen zu 16sen, kann man oft eine Losung ,raten
und per Induktion beweisen. Mit Hilfe von Rekursionsbdumen lassen
sich Losungen auch , gezielt raten“. Eine asymptotische Abschatzung
liefert folgender Hauptsatz der Laufzeitfunktionen (Satz von Akra &
Bazzi).

Satz 10 (Mastertheorem). Sei T : N — N eine Funktion der Form
¢

T(n) = ZT(M) + f(n) mit n; € {|ayn], [aun]},

=1

falls n , klein“ ist,

sonst.

wobei 0 < oy < 1,1=1,..
gilt im Fall f(n) =

U, fest gewdhlte reelle Zahlen sind. Dann
O(nk fur ein k> 0:

falls 5, ok < 1,

falls 5, ok =1,

falls ¢, o > 1,

)
O(nk),
O(nklogn),
@<nc)7

T(n)=

wobei ¢ Lisung der Gleichung Y, af = 1 ist.

10

2.3 Sortieralgorithmen

Beispiel 11. Die Anzahl V(n) der Vergleiche von MergeSort erfillt
die Rekursion

Vin) =V([n/2]) +V([n/2]) + n— 1,
dh. 1l =2 0 =ay=1/2 und f(n) =n—1= O(n*) firk = 1.
Wegen ¢_ aFf =1/2+1/2 =1 folgt daher V(n) = ©(nlogn).

2.3.4 Eine untere Schranke fiir das Sortierproblem

Frage. Wie viele Vergleichsfragen bendtigt ein vergleichender Sor-
tieralgorithmus A mindestens, um eine Folge (a1, ..., a,) vonn Zahlen
zu sortieren?

Zur Beantwortung dieser Frage betrachten wir alle n! Eingabefolgen
(ay,...,a,) der Form (7(1),...,m(n)), wobei m € S,, eine beliebige
Permutation auf der Menge {1,...,n} ist. Um diese Folgen korrekt zu
sortieren, muss A solange Fragen der Form a; < a; (bzw. m(i) < 7(j))
stellen, bis hochstens noch eine Permutation 7 € S, mit den er-
haltenen Antworten konsistent ist. Damit A moglichst viele Fragen
stellen muss, beantworten wir diese so, dass mindestens die Halfte
der verbliebenen Permutationen mit unserer Antwort konsistent ist
(Mehrheitsvotum). Diese Antwortstrategie stellt sicher, dass nach ¢ Fra-
gen noch mindestens n!/2° konsistente Permutationen iibrig bleiben.
Daher muss A mindestens

[logy(n!)] = nlogyn —nlog, e + 15logn + O(1) = nlogy,n — O(n)

Fragen stellen, um die Anzahl der konsistenten Permutationen auf
Eins zu reduzieren.

Satz 12. Fin vergleichendes Sortierverfahren benotigt mindestens
[log,(n!)] Fragen, um eine Folge (ai,...,a,) von n Zahlen zu sortie-
ren.

2 Suchen und Sortieren

Wir kénnen das Verhalten von A auch durch einen Fragebaum B
veranschaulichen, dessen Wurzel mit der ersten Frage von A markiert
ist. Jeder mit einer Frage markierte Knoten hat zwei Kinder, die
die Antworten ja und nein auf diese Frage reprasentieren. Stellt A
nach Erhalt der Antwort eine weitere Frage, so markieren wir den
entsprechenden Antwortknoten mit dieser Frage. Andernfalls gibt A
eine Permutation 7 der Eingabefolge aus und der zugehorige Antwort-
knoten ist ein Blatt, das wir mit 7 markieren. Nun ist leicht zu sehen,
dass die Tiefe von B mit der Anzahl V(n) der von A benotigten
Fragen im schlechtesten Fall iibereinstimmt. Da jede Eingabefolge
zu einem anderen Blatt fithrt, hat B mindestens n! Blétter. Folglich
kénnen wir in B einen Pfad der Lange [log,(n!)] finden, indem wir
jeweils in den Unterbaum mit der grofSeren Blatterzahl verzweigen.

Da also jedes vergleichende Sortierverfahren mindestens 2(nlogn)
Fragen bendtigt, ist Mergesort asymptotisch optimal.

Korollar 13. MergeSort ist ein vergleichendes Sortierverfahren

mit einer im schlechtesten Fall asymptotisch optimalen Laufzeit von
O(nlogn).

2.3.5 QuickSort

Ein weiteres Sortierverfahren, das den “Divide and Conquer”-Ansatz
benutzt, ist QuickSort. Im Unterschied zu MergeSort wird hier
das Feld vor den rekursiven Aufrufen umsortiert. Als Folge hiervon
bereitet die Zerlegung in Teilprobleme die Hauptarbeit, wahrend das
Zusammenfiigen der Teillosungen trivial ist. Bei MergeSort ist es
gerade umgekehrt.

Algorithmus QuickSort(A4,1,r)

1 if [<r then m:=Partition(A4,[,r)
2 QuickSort(A,l,m —1)
3 QuickSort(A,m+1,7)

11

2.3 Sortieralgorithmen

Die Prozedur QuickSort(A,!,r) sortiert ein Feld A[l...r] wie folgt:
e Zuerst wird die Funktion Partition(A, [, r) aufgerufen.
e Diese wahlt ein Pivotelement, welches sich nach dem Aufruf in
A[m| befindet, und sortiert das Feld so um, dass gilt:
Al <Alm] < AJj] firalled, jmit [<i<m<j<r. (%)
e Danach werden die beiden Teilfolgen A[l...m — 1] und A[m +
1...7r] durch jeweils einen rekursiven Aufruf sortiert.

Die Funktion Partition(A,l, r) pivotisiert das Feld A[l...r], indem
sie

e 1 = A[r] als Pivotelement wahlt,
e die tibrigen Elemente mit x vergleicht und dabei umsortiert und

e den neuen Index 7 + 1 von x zuriickgibt.

Prozedur Partition(A,l,r)

1:=10—-1
for j: =1 tor—1 do

if A[j] < A[r] then

1i=1+1

5 if i <j then
6 vertausche A[i| und A[j]
7 if i+1<r then
8 vertausche A[i+ 1] und A[r]
9 return(i+1l)

= w [\ =

Unter der Voraussetzung, dass die Funktion Partition korrekt ar-
beitet, d.h. nach ihrem Aufruf gilt (x), folgt die Korrektheit von
QuickSort durch einen einfachen Induktionsbeweis iiber die Lange
n =r — [+ 1 des zu sortierenden Arrays.

Die Korrektheit von Partition wiederum folgt leicht aus folgender
Invariante fiir die for-Schleife:

Alk) < Afr]fir k=1,...,iund A[k] > A[r] fur k =i+ 1,..., 7. (x%)

2 Suchen und Sortieren

Da namlich nach Ende der for-Schleife 7 = r — 1 ist, garantiert die
Vertauschung von A[i + 1] und A[r] die Korrektheit von Partition.

Wir miissen also nur noch die Giiltigkeit der Schleifeninvariante (s:)
nachweisen. Um eindeutig definierte Werte von j vor und nach je-
der Iteration der for-Schleife zu haben, ersetzen wir diese durch eine
semantisch aquivalente while-Schleife:

Prozedur Partition(A,l,r)
1:=10-1
ji=10-1
while j <r—1 do
Ji=7+1
5 if A[j] < A[r] then
6 ti=1+1
7 if < <j then
8 vertausche A[i] und Alj]
o if 141 <7 then
10 vertausche A[i+ 1] und A[r]
11 return(i+1)

IS w N —

Nun lasst sich die Invariante (xx) leicht induktiv beweisen.

Induktionsanfang: Vor Beginn der while-Schleife gilt die Invariante,
da ¢ und 57 den Wert [— 1 haben.

Induktionsschritt: Zunéchst wird j hochgezahlt und dann A[j] mit
Alr] verglichen.
Im Fall A[j] < A[r] wird auch ¢ hochgezéhlt (d.h. nach Zeile
6 gilt A[i] > Alr]). Daher gilt nach der Vertauschung in Zei-
le 8: A[i] < Alr] und A[j] > Alr], weshalb die Giltigkeit der
Invariante erhalten bleibt.
Im Fall A[j] > A[r] behélt die Invariante ebenfalls ihre Giiltig-
keit, da nur 7 hochgezahlt wird und ¢ unverandert bleibt.

12

2.3 Sortieralgorithmen

Als néachstes schéitzen wir die Laufzeit von QuickSort im schlechtes-
ten Fall ab. Dieser Fall tritt ein, wenn sich das Pivotelement nach
jedem Aufruf von Partition am Rand von A (d.h. m = [oder
m = r) befindet. Dies fithrt namlich dazu, dass Partition der Reihe
nach mit Feldern der Lange n,n — 1,n — 2,...,1 aufgerufen wird.
Da Partition fiir die Umsortierung eines Feldes der Lénge n genau
n — 1 Vergleiche benoétigt, fiihrt QuickSort insgesamt die maximal
mogliche Anzahl

Vim = 3= 1= () =6
i=1
von Vergleichen aus. Dieser ungiinstige Fall tritt insbesondere dann
ein, wenn das Eingabefeld A bereits (auf- oder absteigend) sortiert
ist.

Im besten Fuall zerlegt das Pivotelement das Feld dagegen jeweils in
zwei gleich groBe Felder, d.h. V(n) erfiillt die Rekursion

n=1,
n > 2.

0,
Vi(n) =

{V(L(n— D2+ V(I -1)/2])+n -1,
Diese hat die Losung V(n) = nlog,n — O(n) (vgl. die worst-case
Abschéatzung bei MergeSort).
Es gibt auch Pivotauswahlstrategien, die in linearer Zeit z.B. den
Median bestimmen. Dies fithrt auf eine Variante von QuickSort mit
einer Laufzeit von ©(nlogn) bei allen Eingaben. Allerdings ist die
Bestimmung des Medians fiir praktische Zwecke meist zu aufwandig.
Bei der Analyse des Durchschnittsfalls gehen wir von einer zufalli-
gen Eingabepermutation A[l...n] der Folge 1,...,n aus. Dann ist
die Anzahl V(n) der Vergleichsanfragen von QuickSort eine Zu-
fallsvariable. Wir konnen V'(n) als Summe 7, <, X;; folgender
Indikatorvariablen darstellen:

¥ {1, falls die Werte ¢ und j verglichen werden,
0,

sonst.

2 Suchen und Sortieren

Ob die Werte 7 und j verglichen werden, entscheidet sich beim ersten
Aufruf von Partition(A,l[,r), bei dem das Pivotelement z = Alr]
im Intervall

Li={i,...,5}

liegt. Bis zu diesem Aufruf werden die Werte im Intervall /;; nur mit
Pivotelementen auflerhalb von I;; verglichen und bleiben daher im
gleichen Teilfeld Al ...r] beisammen. Ist das erste Pivotelement z in
I;; nun nicht gleich ¢ oder j, dann werden ¢ und j nicht miteinander
verglichen. Das liegt daran dass im Fall i < x < j die Werte ¢ und
j bei diesem Aufruf in zwei verschiedene Teilfelder getrennt werden
ohne miteinander verglichen zu werden.

Die Werte 7 und j werden also genau dann verglichen, wenn das erste
Pivotelement z im Intervall I;; den Wert ¢ oder j hat. Da die Eingabe
eine Zufallsfolge ohne Mehrfachvorkommen ist, nimmt = jeden Wert
in I;; mit Wahrscheinlichkeit 1/(j — ¢+ 1) an. Daher findet mit Wahr-
scheinlichkeit p;; = 2/(j — i + 1) ein Vergleich zwischen den Werten ¢
und j statt.

Der Erwartungswert von V(n) = 71« j<, X;; berechnet sich nun zu

BVl = ¥ A=Y Y -5y
1<z<j<n o i=1 j=i] ? i=1 k=2
n—1 n 2 ’ n—1
ZZ <2 logn = O(nlogn).
i=1 k= =1

Damit ist die durchschnittliche Laufzeit von QuickSort O(nlogn).
Dass dies fiir vergleichende Sortierverfahren asymptotisch optimal ist,
wird in den Ubungen gezeigt.

Satz 14. QuickSort ist ein vergleichendes Sortierverfahren mit einer
im Durchschnitt asymptotisch optimalen Laufzeit von O(nlogn).

Unabhéngig davon nach welcher (deterministischen) Strategie das Pi-
votelement gewahlt wird, wird es immer Eingabefolgen geben, fiir die

2.3 Sortieralgorithmen

QuickSort (%) Vergleiche bendtigt. Eine Moglichkeit, die Effizienz

von QuickSo rt im Durchschnittsfall auf den schlechtesten Fall zu
iibertragen, besteht darin, eine randomisierte Auswahlstrategie fir
das Pivotelement anzuwenden.

Die Prozedur RandomQuickSort(A,l,r) arbeitet &hnlich wie
QuickSort. Der einzige Unterschied besteht darin, dass als Pivotele-
ment ein zufalliges Element aus dem Feld A[l...r] gewéhlt wird.

Algorithmus RandomQuickSort(A,l,r)

1 if [<r then

2 m := RandomPartition(A,l,r)

3 RandomQuickSort(A,l,m — 1)
] RandomQuickSort(A,m+ 1,r)

Prozedur RandomPartition(A,l,r)

I guess randomly j € {l,...,r}
> if j <r then

3 vertausche A[j] und Alr]
+ return(Partition(A4,l,r))

Es ist nicht schwer zu zeigen, dass sich RandomQuickSort bei jeder
Eingabefolge AJl,...,r| gleich verhélt wie QuickSort bei einer zu-
filligen Permutation dieser Eingabefolge (siehe Ubungen). Daher ist
die erwartete Laufzeit von RandomQuickSort auch im schlechtesten
Fall durch O(nlogn) beschrénkt, falls die Zahlenwerte paarweise
verschieden sind.

Satz 15. RandomQuickSort ist ein randomisiertes vergleichendes
Sortierverfahren mit einer im schlechtesten Fall asymptotisch optima-
len erwarteten Laufzeit von O(nlogn).

2 Suchen und Sortieren

2.3.6 HeapSort

HeapSort benutzt als Datenstruktur einen so genannten Heap, um
ein Feld zu sortieren.

H

AN

-+ [logyn| — 1 jeweils die mazximale

Definition 16. Ein Heap H mit n Knoten ist
ein geordneter Bindrbaum nebenstehender Form.
Das heifst,

e H hat in Tiefei =0,1,..
Anzahl von 2° Knoten und

e in Tiefe |logyn| sind alle Knoten linksbindig angeordnet.
Zudem ist jeder Knoten v mit einer Zahl H[v] beschriftet, deren Wert

mindestens so groff ist wie die Werte der Kinder von v (sofern vor-

handen).

Ein Heap H mit n Knoten lasst sich in einem Feld H[1, ..., n| spei-
chern. Dabei gilt:
e Das linke Kind von Knoten ¢ hat den Index left(:) = 2i.
e Das rechte Kind von Knoten ¢ hat den Index right(i) = 2i + 1.
e Der Elternknoten von Knoten ¢ hat den Index parent(i) =
[i/2].
Die Heap-Eigenschaft lasst sich nun wie folgt formulieren. Fir alle
Knoten i € {1,...,n} gilt

(20 <n = HJi| > H2i) A (2i +1 < n= HJi| > H2i +1).

Da die Knoten im Intervall {|n/2| +1,...,n} keine Kinder haben,
ist fiir sie die Heap-Eigenschaft automatisch erfiillt.

Ist H[1,...,n| ein Heap, dann représentiert auch jedes Anfangsstiick
H[1,...,r], 1 <r <n, einen Heap H, mit r Knoten. Zudem ist fiir
1 <@ <r <n der Teilbaum von H, mit Wurzel 7 ein Heap, den wir
mit H;, bezeichnen.

14

2.3 Sortieralgorithmen

Da die Wurzel H[1] eines Heaps den grofiten Wert haben muss, konnen
wir eine in einem Feld H[1, ..., n| gespeicherte Zahlenfolge sortieren,
indem wir H zuerst zu einem Heap umsortieren und dann sukzessive

e die Wurzel H[1] mit dem letzten Heap-Element vertauschen,

e den rechten Rand des Heaps um ein Feld nach links verschieben
(also die vormalige Wurzel des Heaps herausnehmen) und

e die durch die Ersetzung der Wurzel verletzte Heap-Eigenschaft
wieder herstellen.

Sei H[1,...,n| ein Feld, so dass der Teilbaum H,;, die Heap-
Eigenschaft in allen Knoten bis auf seine Wurzel ¢ erfiillt. Dann
stellt die Prozedur Heapify(H,i,r) die Heap-Eigenschaft im gesam-
ten Teilbaum H;, her.

Prozedur Heapify(H,i,r)

1 if (28 <r)A(H[2t¢] > H[i]) then

2 T =21

3 else

| Ti=1

5 if (264 1<r)A(H[2t+ 1] > H[z]) then
6 r:=21+1

7 if x > 1 then
8 vertausche H|z] und HJ[i|}
) Heapify(H, z,r)

Unter Verwendung der Prozedur Heapify ist es nun leicht, ein Feld
zu sortieren.

Algorithmus HeapSort(H,1,n)

1 for i:=|n/2| downto 1 do
2 Heapify(H,i,n)
|

for r :=n downto 2 do
vertausche H[l] und H|r]
5 Heaplfy(H7 Lr— 1)

2 Suchen und Sortieren

Wir setzen zunéchst voraus, dass die Prozedur Heapify korrekt ar-
beitet. D.h. Heapify(H,i,r) stellt die Heap-Eigenschaft im gesamten
Teilbaum H;, her, falls H;, die Heap-Eigenschaft hochstens in seiner
Wurzel ¢ nicht erfiillt. Unter dieser Voraussetzung folgt die Korrektheit
von HeapSort mittels folgender Schleifeninvarianten, die sich sehr
leicht verifizieren lassen.

Invariante fiir die erste for-Schleife (Zeilen 1 — 2):

Fir j =14,...,n ist der Teilbaum H;,, ein Heap.
Nach Beendigung dieser Schleife (d.h. i = 1) ist demnach H,,, ein
Heap.

Invariante fiir die zweite for-Schleife (Zeilen 3 — 5):
HIr],..., H[n] enthalten die n —r+ 1 groBten Feldelemen-
te in sortierter Reihenfolge und der Teilbaum H;,_; ist
ein Heap.

Am Ende der zweiten for-Schleife (d.h. r = 2) enthélt also H[2,...,n]
die n — 1 groBten Elemente in sortierter Reihenfolge, d.h. H[1,... n]
ist sortiert.

Als néchstes zeigen wir die Korrektheit von Heapify. Sei also
HI[1,...,n] ein Feld, so dass der Teilbaum H;, die Heap-Eigenschaft
in allen Knoten bis auf seine Wurzel ¢ erfiillt. Dann miissen wir zeigen,
dass Heapify(H,i,r) die Heap-Eigenschaft im gesamten Teilbaum
H; , herstellt.

Heapify(H,i,r) bestimmt den Knoten x € {i,2i,2i + 1} mit ma-
ximalem Wert H(z). Im Fall x = i erfilllt der Knoten i bereits die
Heap-Eigenschaft. Ist = dagegen eines der Kinder von 7, so vertauscht
Heapify die Werte von ¢ und x. Danach ist die Heap-Eigenschaft
hochstens noch im Knoten - verletzt. Daher folgt die Korrektheit von
Heapify durch einen einfachen Induktionsbeweis iiber die Rekursi-
onstiefe.

Es ist leicht zu sehen, dass Heapify(H,i,r) maximal 2h(i) Vergleiche
benétigt, wobei h(i) die Hohe des Knotens ¢ in Hy,. ist. Daher ist die

15

2.3 Sortieralgorithmen

O(log r) beschrankt.

Laufzeit von Heapify(H,,r) durch O(h(i)) =
= |logy, n| wird Heapify

Fiir den Aufbau eines Heaps H der Tiefe ¢
in der ersten for-Schleife fiir hochstens

e 29 =1 Knoten der Hohe h = ¢,

e 2! = 2 Knoten der Hohe h =t — 1,

e 2!71 Knoten der Hohe h =t — (t — 1) =1

aufgerufen. Fiir h = 1,...,t sind das also hochstens 27" Knoten
der Hohe h. Da Heapify fiir einen Knoten der Hohe h hochstens 2h
Vergleichsfragen stellt, benotigt der Aufbau des Heaps maximal

! _ ¢ n < h
Vi(n) §2hz_jlh2t hSQ;h?h <2n;?:4n

Vergleiche. Fiir den Abbau des Heaps in der zweiten for-Schleife wird
Heapify genau (n — 1)-mal aufgerufen. Daher benétigt der Abbau
des Heaps maximal

Va(n) < 2(n —1)[logy n) < 2nlogyn
Vergleiche.
Satz 17. HeapSort ist ein vergleichendes Sortierverfahren mit einer
im schlechtesten Fall asymptotisch optimalen Laufzeit von O(nlogn).
Die Floyd-Strategie

Die Floyd-Strategie benotigt beim Abbau des Heaps im Durchschnitt
nur halb so viele Vergleiche wie die bisher betrachtete Williams-
Strategie. Die Idee besteht darin, dass Heapify(H,1,r) beginnend
mit der Wurzel i = 1 sukzessive die Werte der beiden Kinder des
aktuellen Knotens ¢; vergleicht und jeweils zu dem Kind 7,4 mit dem

2 Suchen und Sortieren

groBeren Wert absteigt, bis nach ¢ < [log, | Schritten ein Blatt i,
erreicht wird.

Nun geht Heapify auf diesem Pfad bis zum ersten Knoten i;
mit H([i;] > H[l] zuriick und fithrt auf den Werten der Knoten
ij,%-1,--.,% einen Ringtausch aus, um die Heap-Eigenschaft herzu-
stellen. Dies erfordert

t+(t—j+1)=2t—j+1

Vergleiche (im Unterschied zu 2j Vergleichen bei der Williams-
Strategie). Da sich der Knoten i;, an dessen Stelle der Wurzelknoten
eingefiigt wird, im Mittel sehr weit unten im Baum befindet (d.h.
t—j=0(1)), spart man auf diese Art asymptotisch die Halfte der
Vergleiche.

2.3.7 BucketSort

Die Prozedur BucketSort sortiert n Zahlen aq,...,a, aus einem
Intervall [a, b) wie folgt (z.B. fiir n =10, a = 0 und b = 100):

1. Erstelle fiir j = 1,...,n eine Liste L; fiir das halb offene Intervall
Li=la+ (-5 a+552) = [10(- 1),105).

2. Bestimme zu jedem Element a; das Intervall I;, zu dem es gehort,
und flige es in die entsprechende Liste L; ein.

3. Sortiere jede Liste L;.

4. Fiuge die sortierten Listen L; wieder zu einer Liste zusammen.

Im schlechtesten Fall kommen alle Schliissel in die gleiche Liste. Dann
hat BucketSort dieselbe asymptotische Laufzeit wie das als Unter-
routine verwendete Sortierverfahren. Sind dagegen die zu sortierenden
Zahlenwerte im Intervall [a,b) (anndhernd) gleichverteilt, so ist die
durchschnittliche Laufzeit von BucketSort ©(n). Dies gilt sogar,
wenn als Unterroutine ein Sortierverfahren der Komplexitit O(n?)
verwendet wird.

16

2.3 Sortieralgorithmen

Wir schitzen nun die erwartete Laufzeit von BucketSort ab, wobei
wir annehmen, dass die Folgenglieder a; im Intervall [a, b) unabhéngig
gleichverteilt sind. Sei X; die Zufallsvariable, die die Lange der Liste
L; beschreibt. Dann ist X; binomialverteilt mit Parametern n und
p = 1/n. Also hat X; den Erwartungswert

E[X;]=np=1
und die Varianz
VIXi]=np(l—p)=1-1/n<1.

Wegen V[X;] = E[X?] — E[X;])? ist E[X?] = V[Xi] + E[X;]* < 2.
Daher folgt fiir die erwartete Laufzeit 7'(n) von BucketSort:

T(n)=0(n)+E rzl O(Xf)] =0 (n + niE[Xf]) = O(n).

=0 =0

2.3.8 CountingSort

Die Prozedur CountingSort sortiert eine Zahlenfolge, indem sie zu-
néchst die Anzahl der Vorkommen jedes Wertes in der Folge und
daraus die Rangzahlen C[i] = |{j | A[j] < i}|| der Zahlenwerte
1 =0,...,k bestimmt. Dies funktioniert nur unter der Einschrankung,
dass die Zahlenwerte natiirliche Zahlen sind und eine Obergrenze k
fiir ihre Grofle bekannt ist.

Algorithmus CountingSort(A4,1,n,k)

for i:=0 to k do C[i| =0
for j:=1 to n do C[A[j]] :=C[A[j]] +1
for i:=1 to k do C[i] :=CJ[i]+ C[i — 1]
for j:=1 to n do

BIC[A[]]] := A[J]
s ClAL) = ClA[f]] -1
7 for j:=1 to n do A[j] := Bl|j]

=W N =

ot

2 Suchen und Sortieren

Satz 18. CountingSort sortiert n natirliche Zahlen der Grifse
hochstens k in Zeit O(n + k) und Platz O(n + k).

Korollar 19. CountingSort sortiert n natirliche Zahlen der Grifle
O(n) in linearer Zeit und linearem Platz.

2.3.9 RadixSort

RadixSort sortiert d-stellige Zahlen a = a4 - - - a; eine Stelle nach der
anderen, wobei mit der niederwertigsten Stelle begonnen wird.
Algorithmus RadixSort(A,1,n)

1 for ¢1:=1 to d do
2 sortiere A[l,...,n] nach der i-ten Stelle

Hierzu sollten die Folgenglieder moglichst als Festkomma-Zahlen vor-
liegen. Zudem muss in Zeile 2 ,stabil® sortiert werden.

Definition 20. Ein Sortierverfahren heifst stabil, wenn es die relative
Reihenfolge von Elementen mit demselben Wert nicht verandert.

Es empfiehlt sich, eine stabile Variante von CountingSort als Unter-
routine zu verwenden. Damit CountingSort stabil sortiert, brauchen
wir lediglich die for-Schleife in Zeile 4 in der umgekehrten Reihenfolge
zu durchlaufen:

I for j:=1 to n do C[A[j]] :=C[A[j]] +1
> for i:=1 to k do C[i] :=Cli]+ C[i — 1]
3 for j:=n downto 1 do

. BICIAL]] = ALJ]

s CIAL) = ClAL]] - 1

¢ for j:=1 to n do Alj]:= B[j]

Satz 21. RadixSort sortiert n d-stellige Festkomma-Zahlen zur Ba-
sis b in Zeit ©(d(n + b)).

2.3 Sortieralgorithmen

RadixSort sortiert beispielsweise n O(log n)-stellige Bindrzahlen in
Zeit ©(nlogn). Wenn wir r benachbarte Ziffern zu einer , Ziffer®
z€40,...,0" — 1} zusammenfassen, erhalten wir folgende Variante
von RadixSort.

Korollar 22. Fur jede Zahl 1 < r < d sortiert RadixSort n d-
stellige Festkomma- Zahlen zur Basis b in Zeit O(d/.(n 4+ b")).

Wihlen wir beispielsweise r = [log, n], so erhalten wir fir d =
O(log n)-stellige Binarzahlen eine Komplexitat von

O (d.(n+2") =0(n+2")=06(n).

2.3.10 Vergleich der Sortierverfahren

Folgende Tabelle zeigt die Komplexititen der betrachteten vergleichs-
basierten Sortierverfahren.

Insertion-| MergeSort Quick- Heap-
Sort Sort Sort
worst-case 0O(n?) O(nlogn) O(n?) |O(nlogn)
average-case 0O(n?) O(nlogn) |O(nlogn)|O(nlogn)
Speicherplatz O(1) O(n) bzw. ©(1)| O(logn) O(1)
stabil ja ja nein nein

Wir fassen auch die wichtigsten Eigenschaften der betrachteten
Linearzeit-Sortierverfahren zusammen.

e BucketSort: Im Durchschnitt linearer Zeitverbrauch, falls die
n Zahlen in einem Intervall [a, b) gleichverteilt sind.

e CountingSort: Sogar im schlechtesten Fall lineare Zeit, falls
die Werte natiirliche Zahlen sind und O(n) nicht tibersteigen.

2 Suchen und Sortieren

e RadixSort: Bitweises Sortieren in linearer Zeit, falls die zu
sortierenden Zahlen in Festkomma-Darstellung nicht mehr als
O(logn) Bit haben.

2.4 Datenstrukturen fiir dynamische Mengen

Viele Algorithmen benétigen eine Datenstruktur fiir dynamische Men-
gen. Eine solche Datenstruktur S sollte im Prinzip beliebig viele
Elemente aufnehmen kénnen. Die Elemente x € S werden dabei
anhand eines Schlissels k = key(x) identifiziert. Auf die Elemente
x € S wird meist nicht direkt, sondern mittels Zeiger (engl. pointer)
zugegriffen.

Typische Operationen, die auf einer dynamische Mengen S auszufiih-
ren sind:

Insert(S,z): Fugt z in S ein.
Remove(S, z): Entfernt x aus S.

Search(S, k): Gibt fiir einen Schliissel k (einen Zeiger auf) das Ele-
ment x € S mit key(z) = k zurtick, falls ein solches Element
existiert, und nil sonst.

Min(S): Gibt das Element in S mit dem kleinsten Schlissel zurtick.
Max(S): Gibt das Element in S mit dem gréfiten Schlissel zurtick.

Prec(S,z): Gibt das Element in S mit dem nach = nichstkleineren
Schliissel zuriick (bzw. nil, falls das Minimum ist).

Succ(S,z): Gibt das Element in S mit dem nach x néchstgroBeren
Schliissel zuriick (bzw. nil, falls © das Maximum ist).

2.4.1 Verkettete Listen

Die Elemente einer verketteten Liste sind in linearer Reihenfolge an-
geordnet. Das erste Element der Liste L ist head(L). Jedes Element
z ,kennt“ seinen Nachfolger next(z). Wenn jedes Element x auch

18

2.4 Datenstrukturen fiir dynamische Mengen

seinen Vorgénger prev(z) kennt, dann spricht man von einer doppelt
verketteten Liste.

Die Prozedur L-Insert(L,z) fiigt ein Element x in eine verkettete
Liste L ein.
Prozedur L-Insert(L,z)

I next(z) := head(L)
> head(L) ==

Die Prozedur DL-Insert(L,x) fiigt ein Element x in eine doppelt
verkettete Liste L ein.
Prozedur DL-Insert(L,z)

I next(z) := head(L)
> if head(L) # nil then
1

prev(head(L)) := =z
head(L) :== =z
5 prev(z) :=nil

Die Prozedur DL-Remove(L,x) entfernt wieder ein Element z aus
einer doppelt verketteten Liste L.

Prozedur DL-Remove(L,x)
i if x # head(L) then

2 next(prev(z)) := next(z)
3 else
!

head(L) := next(z)
if next(z) # nil then
6 prev(next(z)) := prev(zx)

Die Prozedur DL-Search(L, k) sucht ein Element z mit dem Schliissel
k in der Liste L.

Prozedur DL-Search(L,k)

2 Suchen und Sortieren

Iz :=head(L)

> while z # nil and key(z) # k do
3 x := next(x)

| return(z)

Es ist leicht zu sehen, dass DL-Insert und DL-Remove konstante
Zeit O(1) benotigen, wiahrend DL-Search eine lineare (in der Lénge
der Liste) Laufzeit hat.

Bemerkung 23.

e Wird DL-Remove nur der Schliissel iibergeben, dann wdre die
Laufzeit linear, da wir erst mit DL-Search das entsprechende
Element suchen miissen.

e Fiir einfach verkettete Listen ist der Aufwand von Remove eben-
falls linear, da wir keinen direkten Zugriff auf den Vorginger
haben.

e Die Operationen Max, Min, Prec und Succ lassen sich ebenfalls
mit linearer Laufzeit berechnen (siche Ubungen,).

e Da sich MergeSort fir Listen als “in place”- Verfahren imple-
mentieren lisst (siche Ubungen), kénnen Listen in konstantem
Platz und Zeit O(nlogn) sortiert werden.

2.4.2 Binare Suchbaume

Ein Binarbaum B kann wie folgt durch eine Zeigerstruktur repréasen-
tiert werden. Jeder Knoten = in B hat folgende drei Zeiger:

o left(z) zeigt auf das linke Kind,
e right(z) zeigt auf das rechte Kind und
e parent(xz) zeigt auf den Elternknoten.

Fir die Wurzel w = root(B) ist parent(w) = nil und falls ei-
nem Knoten z eines seiner Kinder fehlt, so ist der entsprechende

19

2.4 Datenstrukturen fiir dynamische Mengen

Zeiger ebenfalls nil. Auf diese Art lassen sich beispielsweise Heaps
fiir unbeschrénkt viele Datensétze implementieren.

Definition 24. Ein bindrer Baum B ist ein bindrer Suchbaum, falls
fur jeden Knoten x in B folgende Figenschaften erfillt sind:

e [ir jeden Knoten y im linken Teilbaum von x gilt key(y) <
key(z) und

o fir jeden Knoten y im rechten Teilbaum von x gilt key(y) >
key(x).

Folgende Prozedur ST-Search(B, k) sucht ein Element x mit dem
Schliissel k& im bindren Suchbaum (engl. search tree) B.

Prozedur ST-Search(B,k)

I x:=root(B)
> while z # nil A key(z) # k do
3 if k < key(xz) then

| x:= left(z)
5 else

6 x:= right(x)
7 return(x)

Die Prozedur ST-Insert(B,z) fiigt ein neues Element z in B ein,
indem sie den nil-Zeiger ,sucht“, der eigentlich auf den Knoten z
zeigen miusste.

Prozedur ST-Insert(B,z)

1 if root(B) =nil then
2 root(B) := z
3 parent(z) :=nil
1 else

5 x = root(B)

6 repeat

7 Yi=x

2 Suchen und Sortieren

8 if key(z) < key(z) then
9 x = left(z)

10 else

11 x = right(z)

12 until z =nil

13 if key(z) < key(y) then
14 left(y) =z

15 else

16 right(y) := z

17 parent(z) =y

Satz 25. Die Prozeduren ST-Search und ST-Insert laufen auf ei-
nem bindren Suchbaum der Hohe h in Zeit O(h).

Bemerkung 26. Auch die Operationen Min, Max, Succ, Prec und
Remove lassen sich auf einem bindren Suchbaum der Hohe h in Zeit
O(h) implementieren (siehe Ubungen,).

Die Laufzeiten der Operationen fiir bindre Suchbaume hangen von
der Tiefe der Knoten im Suchbaum ab. Suchbaume koénnen zu Listen
entarten. Dieser Fall tritt z.B. ein, falls die Datensétze in sortier-
ter Reihenfolge eingefiigt werden. Daher haben die Operationen im
schlechtesten Fall eine lineare Laufzeit.

Fiir die Analyse des Durchschnittsfalls gehen wir davon aus, dass
die Einfiigesequenz eine zufallige Permutation von n verschiedenen
Zahlen ist. Dann lasst sich zeigen, dass der resultierende Suchbaum
eine erwartete Tiefe von O(logn) hat (siehe Ubungen). Somit ist die
erwartete Laufzeit der Operationen nur O(logn).

2.4.3 Balancierte Suchbiaume

Um die Tiefe des Suchbaums klein zu halten, kann er wihrend der
Einfiige- und Loschoperationen auch aktiv ausbalanciert werden. Hier-
fiir gibt es eine ganze Reihe von Techniken. Die drei bekanntesten

20

2.4 Datenstrukturen fiir dynamische Mengen

sind Rot-Schwarz-Baume, Splay-Baume und die AVL-Baume, mit
denen wir uns im Folgenden etwas naher befassen mochten.

Definition 27. Fin AVL-Baum T ist ein bindrer Suchbaum, der
hohenbalanciert ist, d.h. fiir jeden Knoten x von T' unterscheiden sich
die Héhen des linken und rechten Teilbaumes von x hochstens um

eins (die Hiohe eines nicht existierenden Teilbaumes setzen wir mit
—1 an).

Lemma 28. Die Héhe eines AVL-Baumes mit n Knoten ist O(logn).

Beweis. Sei M(h) die minimale Blattzahl eines AVL-Baumes der
Hohe A. Dann gilt

1, h =0 oder 1,

Mih) = {M(h SO+ M(h—-2), h>2.

M (h) ist also die (h+ 1)-te Fibonacci-Zahl Fy 1. Wir zeigen durch In-
duktion iiber h, dass Fj; > ¢~ fiir h > 0 ist, wobei ¢ = (14+/5)/2
der goldene Schnitt ist. Der Induktionsanfang (h = 0 oder 1) ist
klar, da Fy = [} = 1 = ¢° > ¢! ist. Unter der Induktionsannahme
Fyi1 > ¢! fir B < h — 1 folgt wegen ¢* = ¢ + 1

F=F+E > 2+ ¢" 2 =¢"3(p+1)=¢" L.
Daher hat ein AVL-Baum der Hohe h mindestens
b= M(h) = Fuy > ¢

Blitter. Da ein Bindrbaum mit n Knoten héchstens b < (n +1)/2
Blatter hat, folgt

h <1+logy(b) <logy(n+1) = O(logyn).

Der konstante Faktor in O(log, n) ist hierbei @ ~ 1,44, []

2 Suchen und Sortieren

Fiir die Aufrechterhaltung der AVL-Eigenschaft eines AVL-Baums
T benoétigen wir folgende Information iiber jeden Knoten x. Seien Ay
und A, die Hohen des linken und des rechten Teilbaums von z. Dann
heifit die Hohendifferenz

bal(z) = hy — h,

die Balance von x in T. T ist also genau dann ein AVL-Baum, wenn
jeder Knoten x in T" die Hohendifferenz 0, 1 oder —1 hat. Im Folgenden
bezeichne T'(z) den Teilbaum von T mit der Wurzel x.

Wir fligen einen neuen Knoten z in einen AVL-Baum 7" &hnlich wie
die Prozedur ST-Insert fir bindre Suchbdume ein. D.h. wir ,suchen*
den Schliissel k = key(z) in T bis wir einen Knoten y mit k£ < key(y)
und left(y) = nil bzw. k£ > key(y) und right(y) = nil erreichen
und fiigen z an dieser Stelle als Kind von y ein. Da z ein Blatt ist,
erhélt z den Wert bal(z) = 0. Das Einfligen von z kann nur fiir
Knoten auf dem Pfad von z zur Wurzel von T eine Anderung der
Hohendifferenz bewirken. Daher gentigt es, diesen Suchpfad zurtickzu-
gehen und dabei fiir jeden besuchten Knoten die AVL-Eigenschaft zu
testen und notigenfalls wiederherzustellen.

Wir untersuchen zuerst, ob y die AVL-Eigenschaft verletzt.

1. Falls der Wert von bal(y) gleich —1 1 0
oder 1 ist, hatte T'(y) schon vor dem Y Y
Einfiigen von z di(e)Hé')he 1. Daher 2/ \2 # 2/ \2
gentigt es, bal(y) = 0 zu setzen.

2. Falls bal(y) = 0 ist, wurde z an | 1
ein Blatt gehangt, d.h. die Hohe von Y v
T(y) ist um 1 gewachsen. Zunéchst 2/ \2
setzen wir bal(y) auf den Wert 1
oder —1,
je nachdem ob z linkes oder rechtes Kind von y ist. Dann wird
die rekursive Prozedur AVL-Check-Insertion(y) aufgerufen,
die tiberpriift, ob weitere Korrekturen notig sind.

21

2.4 Datenstrukturen fiir dynamische Mengen

Prozedur AVL-Insert(B,z)

i if root(B)=nil then
2 root(B) := z
3 parent(z) :=nil
! bal(z):=0
5 else
6 x := root(B)
7 repeat
8 yi=2x
9 if key(z) < key(z) then
10 x = left(x)
11 else
12 x:= right(x)
13 until (z = nil)
14 if key(z) < key(y) then
15 left(y) =z
16 else
17 right(y) := =
18 parent(z) =y
19 bal(z) :=0
0 if bal(y) € {—1,1} then
1 bal(y) :=0
else
if z = left(y) then
bal(y) =1
else
bal(y) := —1
AVL-Check-Insertion(y)

[\~ [\~ [\~} [N} DN [\ [\~
) t >~ w [\

Do
BN (@)}

Als néchstes beschreiben wir die Prozedur AVL-Check-Insertion(y).
Dabei setzen wir voraus, dass bei jedem Aufruf folgende Bedingung
erfiillt ist:

Der Wert von bal(y) wurde von 0 auf +1 aktualisiert, d.h.

2 Suchen und Sortieren

die Hohe von T'(y) ist um 1 gewachsen.

Falls y die Wurzel von T ist, ist nichts weiter zu tun. Andernfalls
nehmen wir an, dass y linkes Kind von p = parent(y) ist (der Fall
y = right(p) ist analog).

-1 0
1 @ | @
1. Im Fall bal(p) = —1 geniigt y y

es, bal(p) = 0 zu setzen. & z —> & z
2. Im Fall bal(p) = 0 setzen

wir bal(p) = 1 und rufen Z A K K
AVL-Check-Insertion(p)
auf.

3. Im Fall bal(p) = 1 miissen
wir T umstrukturieren, da z E K I
die aktuelle Hohendifferenz K
von p gleich 2 ist.

3a. Im Fall bal(y) = 1 sei T der linke und 75 der rechte
Teilbaum von y. Weiter sei 73 der rechte Teilbaum von p
und h sei die Hoéhe von T'(y). Dann gilt fir die Héhen h;
der Teilbdume T;:

hlzh—lundhgzhg,:h—Q.

Wir fithren nun eine so genannte Rechts- Rotation aus,
2

1 p
-

£k > R
T 1T2T3

d.h. p wird rechtes Kind von y und erhalt 75 als linken
und T3 als rechten Teilbaum (d.h. bal(p) erhédlt den Wert
0) und 77 bleibt linker Teilbaum von y (d.h. bal(y) erhélt

22

3b.

2.4 Datenstrukturen fiir dynamische Mengen

ebenfalls den Wert 0). Dann hat der rotierte Teilbaum
wieder die gleiche Hohe wie vor dem Einfiigen von z. Daher
ist nichts weiter zu tun.

Im Fall bal(y) = —1 sei T} der linke 2
Teilbaum von y und 7, der rechte _yl/ AN
Teilbaum von p. Weiter seien 75 und e \i A
T3 der linke und rechte Teilbaum von A 4 K

x = right(y). Die Hohe von T'(y) A
bezeichnen wir wieder mit h. Dann T T
ist hy = he—bal(x), wobei bal(z) = 0

nur im Fall A = 1 méglich ist (d.h. # = z und alle Teilbéu-
me T3, Ty, T3 und T} sind leer). Weiter gilt

hi=hs=h—-2und h —3 < hg,hs < h—2.

Daher gentigt es, eine Doppel-Rotation (genauer: eine Links-

Rechts-Rotation) auszufiihren,

2
0

) i
K o - K K £ K
d.h. y wird linkes und p wird rechtes Kind von x, y erhalt
T7 als linken und 75 als rechten Teilbaum und p erhélt T;

als linken und 7T} als rechten Teilbaum. Die neuen Balance-
Werte von p, y und z sind

bal(p) = {—1, bal(z) =1, bal(y) :{1, bal(z) = —1,

0, sonst, 0, sonst

und bal(xz) = 0. Der rotierte Teilbaum hat die gleiche
Hohe wie der urspriingliche Teilbaum an dieser Stelle und
daher ist nichts weiter zu tun.

2 Suchen und Sortieren

In Pseudocode lésst sich die Prozedur AVL-Check-Insertion dem-
nach wie folgt implementieren.

Prozedur AVL-Check-Insertion(B,y)

1 p:= parent(y)

2 if p=nil then return
3 if y = left(p) then

1 if bal(p) = —1 then

5 bal(p) :=0

¢ else if bal(p) =0 then

7 bal(p) =1

8 AVL-Check-Insertion(B,p)

o else // bal(p)=1

10 if bal(y) =1 then

11 RightRotate(B,y)

12 else // bal(y) = —1

13 LeftRightRotate(B,y)
11 else // y=right(p)

15 if bal(p) =1 then

16 bal(p) :==0
17 else if bal(p) =0 then
18 bal(p) := —1

19 AVL-Check-Insertion(B,p)
20 else // bal(p) = —1

21 if bal(y) = —1 then

22 LeftRotate(B,y)

23 else // bal(y) =1

24 RightLeftRotate(B,y)

Wir geben exemplarisch auch noch die Prozedur RightRotate in
Pseudocode an. Die tibrigen Rotationsprozeduren lassen sich ganz
dhnlich implementieren (siche Ubungen).

23

2.4 Datenstrukturen fiir dynamische Mengen

Prozedur RightRotate(B,y)

I p:=parent(y)
> Ty :=left(y); Tz :=right(y); T3 := right(p)

A~

5 if p’ =nil then
6 root(B) =y

7 else if left(p’) =p then
8 left(p) =y

9 else // right(p') =P

10 right(p’) ==y

11 parent(y) :=

pl

12 // setze p als rechtes Kind von y
13 right(y) :=p

14 parent(p) :=
15 // setze T, als linken Teilbaum von p
16 left(p) =15

Y

17 if Ty #nil then parent(T3) :=p
15 bal(y) :=0; bal(p):=0 // aktualisiere die Balancen

// setze y an die Wurzel des Teilbaums
T(p) p' = parent(p)

Folgende Tabelle fasst die worst-case Komplexititen der betrachteten
Datenstrukturen fiir dynamische Mengen zusammen.

Search [Min/Max |Prec/Succ| Insert | Remove
Heap O(n) O(1) O(n) O(logn) | O(logn)
Liste (einfach) || O(n) O(n) O(n) O(1) O(n)
Liste (doppelt) || O(n) O(n) O(n) O(1) O(1)
Suchbaum O(n) O(n) O(n) O(n) O(n)
AVL-Baum O(logn) | O(logn) | O(logn) |O(logn)|O(logn)

3 Graphalgorithmen

3.1 Grundlegende Begriffe

Definition 29. Ein (ungerichteter) Graph ist ein Paar G = (V, E),
wobet

V' - eine endliche Menge von Knoten/Ecken und
E - die Menge der Kanten ist.
Hierbei gilt
EC (‘2/) :{{u,v}§V|u;&v}.
Seiv € V ein Knoten.
a) Die Nachbarschaft von v ist Ng(v) = {u € V | {u,v} € E}.
b) Der Grad von v ist degs(v) = || Na(v)]|-

¢) Der Minimalgrad von G ist 6(G) = min,ey degs(v) und der
Maximalgrad von G ist A(G) = max,ey degq(v).

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach
N(v), deg(v), § usw.

Beispiel 30.

e Der vollstdndige Graph (V, E) auf n Knoten, d.h. ||V| =n und
E = (‘2/), wird mit K, und der leere Graph (V,0) auf n Knoten

wird mit E,, bezeichnet.
P

Kl.'. KQ.'._. KgA K4.'

e Der vollstandige bipartite Graph (A, B, E) auf a+b Knoten, d.h.
ANB =10, ||Al| =a, ||B]| =bund E = {{u,v} | ue€ A,v € B}

wird mit K, bezeichnet.

Kio: < Km:z Kys: g Kss: %

e Der Pfad der Lange n — 1 wird mit P, bezeichnet.

Kqq:
1,1

Py: o—e Py o—e—e Py: e—e—o—e Py: o—e—e—o—e

e Der Kreis der Lange n wird mit C,, bezeichnet.

Co A C Cy: O Cy: O

Definition 31. Sei G = (V, E) ein Graph.
a) Eine Knotenmenge U C V' heifit stabil, wenn es keine Kante

von G mit beiden Endpunkten in U gibt, d.h. es gilt EN (g) = 0.
Die Stabilitatszahl ist

a(G) = max{||U|| | U ist stabile Menge in G}.

b) Eine Knotenmenge U C'V heifit Clique, wenn jede Kante mit
beiden Endpunkten in U in E ist, d.h. es gilt (g) C E. Die
Cliquenzahl ist

w(G) = max{||U|| | U st Clique in G}.

c) Eine Abbildung f: V — N heifft Farbung von G, wenn
f(u) # f(v) fir alle {u,v} € E gilt. G heif$t k-farbbar, falls
eine Farbung f: V — {1,...,k} existiert. Die chromatische
Zahl ist

X(G) = min{k € N | G ist k-farbbar}.
d) Ein Graph heifit bipartit, wenn x(G) < 2 ist.

24

3 Graphalgorithmen

e) Ein Graph G' = (V', E') heifit Sub-/Teil-/Untergraph von G,
falls V! CV und E' C E ist. Ein Subgraph G' = (V' E') heifit
(durch V') induziert, falls E' = EN (‘gl> ist. Hierfir schreiben
wir auch H = G[V'].

f) Ein Weg ist eine Folge von (nicht notwendig verschiedenen)
Knoten vy, ...,v; mit {v;,v;1} € E fiiri =0,...,£ —1. Die
Léange des Weges ist die Anzahl der Kanten, also £. Im Fall { =0
heifst der Weg trivial. Ein Weg vy, ..., ve heifst auch vo-v,-Weg.

g) Ein Graph G = (V, E) heifst zusammenhéngend, falls es fiir
alle Paare {u,v} € (g) einen u-v-Weg gibt.

h) Ein Zyklus ist ein u-v-Weg der Linge £ > 2 mit u = v.

i) Ein Weg heifst einfach oder Pfad, falls alle durchlaufenen Kno-
ten verschieden sind.

j) Ein Kreis ist ein Zyklus vo, vy ..., ve_1,v9 der Linge £ > 3, fir
den vg, vy, ...,v_1 paarweise verschieden sind.

k) Ein Graph G = (V, E) heifit kreisfrei, azyklisch oder Wald, falls
er keinen Kreis enthalt.

) Ein Baum ist ein zusammenhdingender Wald.

m) Jeder Knoten uw € V- vom Grad deg(u) <1 heifst Blatt und die
ibrigen Knoten (vom Grad > 2) heiffen innere Knoten.

Es ist leicht zu sehen, dass die Relation
Z ={(u,v) € Vx V| esgibt in G einen u-v-Weg}

eine Aquivalenzrelation ist. Die durch die Aquivalenzklassen von Z in-
duzierten Teilgraphen heiflen die Zusammenhangskomponenten (engl.
connected components) von G.

Definition 32. Fin gerichteter Graph oder Digraph ist ein Paar
G = (V,E), wobei

V' - eine endliche Menge von Knoten/Ecken und

25

3.1 Grundlegende Begrifte

E - die Menge der Kanten ist.
Hierber gilt

EQVXV:{(U,UHU,UGV},

wobei E auch Schlingen (u,u) enthalten kann. Seiv € V' ein Knoten.

a) Die Nachfolgermenge von v ist N*(v) = {u € V| (v,u) € E}.

b) Die Vorgangermenge von v ist N~ (v) = {u € V | (u,v) € E}.

¢) Die Nachbarmenge von v ist N(v) = N*(v) U N~ (v).

d) Der Ausgangsgrad von v ist deg” (v) = ||[N*(v)|| und der Ein-
gangsgrad von v ist deg” (v) = ||[N~(v)||. Der Grad von v ist
deg(v) = deg™ (v) + deg™ (v).

e) Ein gerichteter vo-v,-Weg ist eine Folge von Knoten vy, ..., vy
mit (v, vi11) € E firi=0,....0—1.

f) Ein gerichteter Zyklus ist ein gerichteter u-v-Weg der Linge
>1 mitu=nv.

g) Ein gerichteter Weg heifst einfach oder gerichteter Pfad, falls
alle durchlaufenen Knoten verschieden sind.

h) Ein gerichteter Kreis ist ein gerichteter Zyklus vo, vy . .., ve_1, o
der Linge € > 1, fir den vy, vy, ...,v_1 paarweise verschieden
sind.

i) FEin Digraph G = (V, E) heifit kreisfrei oder azyklisch, wenn er
keinen gerichteten Kreis hat.

j) Ein Digraph G = (V, E) heifit schwach zusammenhéngend,
wenn es fir jedes Paar {u,v} € (‘2/) einen gerichteten u-v-Pfad
oder einen gerichteten v-u-Pfad gibt.

k) G = (V, E) heifst stark zusammenhangend, wenn es fir jedes

Paar {u,v} € (‘2/) sowohl einen gerichteten u-v-Pfad als auch
einen gerichteten v-u-Pfad gibt.

3 Graphalgorithmen

3.2 Datenstrukturen fiir Graphen
Sei G = (V, E) ein Graph bzw. Digraph und sei V = {vy,...,v,}.
Dann ist die (n x n)-Matrix A = (a;;) mit den Eintragen

{Ui, Uj} € E

sonst

(UZ‘,U]‘) € E
0, sonst

die Adjazenzmatriz von G. Fiir ungerichtete Graphen ist die Adja-
zenzmatrix symmetrisch mit a; =0 firz=1,...,n.

Bei der Adjazenzlisten-Darstellung wird fir jeden Knoten v; eine Liste
mit seinen Nachbarn verwaltet. Im gerichteten Fall verwaltet man
entweder nur die Liste der Nachfolger oder zusétzlich eine weitere
fiir die Vorgéanger. Falls die Anzahl der Knoten gleichbleibt, organi-
siert man die Adjazenzlisten in einem Feld, d.h. das Feldelement mit
Index i verweist auf die Adjazenzliste von Knoten v;. Falls sich die
Anzahl der Knoten dynamisch éndert, so werden die Adjazenzlisten
typischerweise ebenfalls in einer doppelt verketteten Liste verwaltet.

Beispiel 33.

Betrachte den gerichteten Graphen G = (V, E)
mit V. = {1,2,3,4} und E = {(2,3),
(2,4), (3,1), (3,4), (4,4)}. Dieser hat folgende

Adjazenzmatriz- und Adjazenzlisten-Darstellung:

O 2
OO

123 4 —
110 0 0 0 1]

200 0 1 1 2_——’
3[100 1 3| {1[4~{4]]
410 0 0 1 NEnE)

Folgende Tabelle gibt den Aufwand der wichtigsten elementaren Opera-
tionen auf Graphen in Abhangigkeit von der benutzten Datenstruktur
an. Hierbei nehmen wir an, dass sich die Knotenmenge V' nicht andert.

26

3.2 Datenstrukturen fiir Graphen

Adjazenzmatrix Adjazenzlisten
einfach ‘ clever | einfach ‘ clever
Speicherbedarf | O(n?) | O(n?) | O(n+m) | O(n+m)
Initialisieren | O(n?) | O(1) O(n) O(1)
Kante einfiigen || O(1) | O(1) o) O(1)
Kante entfernen || O(1) | O(1) O(n) O(1)
Test auf Kante || O(1) | O(1) O(n) O(n)

Bemerkung 34.

o Der Aufwand fiir die Initialisierung des leeren Graphen in der
Adjazenzmatrizdarstellung lasst sich auf O(1) dricken, indem
man mithilfe eines zusdtzlichen Feldes B die Ghiltigkeit der
Matrizeintrige verwaltet (siehe Ubungen).

o Die Verbesserung beim Loschen einer Kante in der Adjazenzlis-
tendarstellung erhdlt man, indem man die Adjazenzlisten doppelt
verkettet und im ungerichteten Fall die beiden Vorkommen jeder
Kante in den Adjazenzlisten der beiden Endknoten gegenseitig
verlinkt (sieche Ubungen,).

e Bei der Adjazenzlistendarstellung konnen die Knoten auch in
einer doppelt verketteten Liste organisiert werden. In diesem
Fall kénnen dann auch Knoten in konstanter Zeit hinzugefigt
und in Zeit O(n) wieder entfernt werden (unter Beibehaltung
der tibrigen Speicher- und Laufzeitschranken).

3.3 Keller und Warteschlange

Fiir das Durchsuchen eines Graphen ist es vorteilhaft, die bereits
besuchten (aber noch nicht abgearbeiteten) Knoten in einer Menge B
zu speichern. Damit die Suche effizient ist, sollte die Datenstruktur
fir B folgende Operationen effizient implementieren.

3 Graphalgorithmen

Init(B): Initialisiert B als leere Menge.
Empty(B): Testet B auf Leerheit.
Insert(B,u): Fugtuin B ein.
Element(B): Gibt ein Element aus B zurtck.
Remove(B): Gibt ebenfalls Element(B) zuriick und

entfernt es aus B.

Andere Operationen wie z.B. Remove(B, u) werden nicht benotigt.

Die gewiinschten Operationen lassen sich leicht durch einen Keller
(auch Stapel genannt) (engl. stack) oder eine Warteschlange (engl.
queue) implementieren. Falls maximal n Datensétze gespeichert wer-
den miissen, kann ein Feld zur Speicherung der Elemente benutzt
werden. Andernfalls kénnen sie auch in einer einfach verketteten Liste
gespeichert werden.

Stack S — Last-In-First-Out

Top(S): Gibt das oberste Element von S zuriick.
Push(S,z): Fiigt = als oberstes Element zum Keller hinzu.
Pop(S): Gibt das oberste Element von S zurtick und ent-

fernt es.

Queue) — Last-In-Last-Out

Enqueue(Q@,z): Figt x am Ende der Schlange hinzu.
Head(Q):

Dequeue(Q):

Gibt das erste Element von @) zurtick.

Gibt das erste Element von @) zuriick und ent-
fernt es.

Die Kelleroperationen lassen sich wie folgt auf einem Feld S[1...n]
implementieren. Die Variable size(S) enthilt die Anzahl der im
Keller gespeicherten Elemente.

27

3.3 Keller und Warteschlange

Prozedur StackInit(9)

1 size(S):=0

Prozedur StackEmpty(S)

| return(size(S) =0)

Prozedur Top(S)

if size(S) >0 then
return(S[size(5)])
else
return(nil)

[\] [l

= W

Prozedur Push(S,z)

1 if size(S) <n then

2 size(S):=size(S)+1
3 Slsize(S)] ==
4

else
return(nil)

Prozedur Pop(S5)
if size(S) >0 then

]

2 size(S) :=size(S5) -1
3 return(S[size(S) + 1])
1 else

5 return(nil)

Es folgen die Warteschlangenoperationen fiir die Speicherung in einem
Feld Q[1...n]. Die Elemente werden der Reihe nach am Ende der
Schlange @ (zyklisch) eingefiigt und am Anfang entnommen. Die
Variable head(Q) enthélt den Index des ersten Elements der Schlan-
ge und tail(Q)) den Index des hinter dem letzten Element von
befindlichen Eintrags.

3 Graphalgorithmen

Prozedur QueueInit(Q)

1 head(Q) :=1
> tail(@) =1
3 size(Q):=0

Prozedur QueueEmpty(Q)

I return(size(Q) =0)

Prozedur Head(Q)

1 if QueueEmpty(Q) then
2 return(nil)

3 else
]

return@[head(Q)]

Prozedur Enqueue(Q,z)

if size(Q) =n then

2 return(nil)

3 size(Q):=size(Q)+1
1 Qtail(Q)] ===z

5 if tail(Q) =n then

6 tail(Q) =1

7 else

8 tail(Q) ;= tail(Q) + 1

Prozedur Dequeue(Q)

if QueueEmpty(Q) then
return(nil)

size(Q) :=size(Q)—1

z := Q[head(Q)]

5 if head(Q)) =n then

6 head(Q) :=1

N

28

3.4 Durchsuchen von Graphen

7 else
8 head(Q) := head(Q) + 1
9 return(z)

Satz 35. Sdamtliche Operationen fiir einen Keller S und eine Warte-
schlange Q) sind in konstanter Zeit O(1) ausfihrbar.

Bemerkung 36. Mit Hilfe von einfach verketteten Listen sind Keller
und Warteschlangen auch fiir eine unbeschrinkte Anzahl von Daten-
sdatzen mit denselben Laufzeitbeschrinkungen implementierbar.

Die fiir das Durchsuchen von Graphen benoétigte Datenstruktur B
lasst sich nun mittels Keller bzw. Schlange wie folgt realisieren.

’ Operation H Keller S ‘ Schlange @ ‘
Init(B) StackInit(S) | QueuelInit(Q)
Empty(B) StackEmpty(S) | QueueEmpty(Q)
Insert(B,u) || Push(S,u) Enqueue(Q, u)
Element(B) || Top(95) Head(Q)
Remove(B) Pop(.S5) Dequeue(Q)

3.4 Durchsuchen von Graphen

Wir geben nun fiir die Suche in einem Graphen bzw. Digraphen
G = (V, E) einen Algorithmus GraphSearch mit folgenden Eigen-
schaften an:
GraphSearch benutzt eine Prozedur Explore, um alle Knoten
und Kanten von GG zu besuchen.
Explore(w) findet Pfade zu allen von w aus erreichbaren Knoten.
Hierzu speichert Explore(w) fiir jeden tiber eine Kante {u, v} bzw.
(u,v) neu entdeckten Knoten v # w den Knoten u in parent(v).

Wir nennen die bei der Entdeckung eines neuen Knotens v durch-
laufenen Kanten (parent(v),v) parent-Kanten.

3 Graphalgorithmen

Algorithmus GraphSearch(V, E)

1 for all veV, ee E do
2 visited(v) := false

3 parent(v) :=nil

4 visited(e) := false

5 for all weV do

6 if visited(w) = false then Explore(w)

Prozedur Explore(w)

I visited(w) := true

> Init(B)

3 Insert(B,w)

+ while —Empty(B) do

5 u := Element(B)

6 if 3 e={u,v} bzw. e = (u,v) € E: visited(e) = false

then
7 visited(e) := true
8 if visited(v) = false then

9 visited(v) := true
10 parent(v) :==u

11 Insert(B,v

12 else

13 Remove(B)

3.4.1 Suchwalder

Definition 37. Sei G = (V, E) ein Digraph.

e Fin Knoten w € V heifst Wurzel von G, falls alle Knotenv € V
von w aus erreichbar sind (d.h. es gibt einen gerichteten w-v-
Weg in G).

29

3.4 Durchsuchen von Graphen

G heifit gerichteter Wald, wenn G kreisfrei ist und jeder Knoten

v € V' Fingangsgrad deg™ (v) < 1 hat.

e Ein Knoten u € V vom Ausgangsgrad deg™’(u) = 0 heifst Blatt.

o Fin Knoten u € V heifst Nachfahre von v, falls in G ein gerich-
teter v-u-Weg existiert. In diesem Fuall ist v ein Vorfahre von u.
Gilt zudem u # v, so sprechen wir auch von echten Nach- bzw.
Vorfahren.

o [in gerichteter Wald, der eine Wurzel hat, heiffit gerichteter

Baum.

In einem gerichteten Baum liegen die Kantenrichtungen durch die
Wahl der Wurzel bereits eindeutig fest. Daher kann bei bekannter
Wurzel auf die Angabe der Kantenrichtungen auch verzichtet werden.
Man spricht dann von einem Wurzelbaum.

Betrachte den durch SearchGraph(V, E) erzeugten Digraphen W =
(V': Eparent) mit

Eparent = {(pa rent(v),v) | v € V und parent(v) # nil}.

Da parent(v) vor v markiert wird, ist klar, dass W kreisfrei ist. Zu-
dem hat jeder Knoten v hochstens einen Vorgéanger parent(v). Dies
zeigt, dass W tatsdchlich ein gerichteter Wald ist. W heif3t Such-
wald von G und die Kanten (parent(v),v) von W werden auch als
Baumkanten bezeichnet.

W hangt zum einen davon ab, wie die Datenstruktur B implementiert
ist (z.B. als Keller oder als Warteschlange). Zum anderen hangt W
aber auch von der Reihenfolge der Knoten in den Adjazenzlisten ab.

3.4.2 Klassifikation der Kanten eines (Di-)Graphen

Die Kanten eines Graphen G = (V, F) werden durch den Suchwald
W = (V, Eparent) in vier Klassen eingeteilt. Dabei erhalt jede Kante
die Richtung, in der sie bei ihrem ersten Besuch durchlaufen wird.

3 Graphalgorithmen

Neben den Baumkanten (parent(v),v) € Eparent gibt es noch
Riickwarts-, Vorwdrts- und Querkanten. Rickwdrtskanten (u,v) ver-
binden einen Knoten u mit einem Knoten v, der auf dem parent-Pfad
P(u) von u liegt. Liegt dagegen u auf P(v), so wird (u,v) als Vor-
wdrtskante bezeichnet. Alle iibrigen Kanten heilen Querkanten. Diese
verbinden zwei Knoten, von denen keiner auf dem parent-Pfad des
anderen liegt.

Die Klassifikation der Kanten eines Digraphen G erfolgt analog, wobei
die Richtungen jedoch bereits durch G vorgegeben sind (dabei werden
Schlingen der Kategorie der Vorwéartskanten zugeordnet).

Beispiel 38. Bei Aufruf mit dem @ @
Startknoten a generiert die Prozedur @ ' @
Explore nebenstehenden Suchwald. 0 e
bes. bes. bes. bes.
Menge B | Knoten | Kante | Typ B Knoten | Kante | Typ
{a} a | (a,b) {doe,f}| d |(de)| V
{a, b} a |(a,f) {de.f}| d | f)] Q
{a,b, [} a - - {d,e, f} d - -
{b, f} b (b,d) {e. f} e (e,d) | R
{ba da f} b - - {67 f} € - -
{d, f} d | (dc) {/} fo1(fe)] Q
{C7 d7 f} c <C7 6) {f} f - -
{C7 d7 €, f} c - - @

Bei einem Graphen

durchlauft
Explore die Knoten und Kanten 0 e
in der gleichen Reihenfolge wie bei dem @ ‘ e

30

3.4 Durchsuchen von Graphen

Digraphen, der fiir jede ungerichtete 0 e
Kante {u,v} die beiden gerichteten
Kanten (u,v) und (v, u) enthélt. @ @

] Menge B ‘Knoten ‘ Kante\ ‘ ’ B ‘Knoten ‘ Kante\ ‘
{a} a {a,e} {c,d,e, f} c {c, f}1Q
{a,e} a {a, [} {c,d,e, [} c - -
{a,e, [} a - - {d,e, [} d {d,b} | -
{e, f} e |{ea}|-|| {de [} d |{d,c}|-
{e, f} e {e, c} {d,e, [} d {d,e} | R
{c,e, [} c {c, b} {d,e, [} d - -
{b,c,e, f} b {b,c} | - {e, f} e {e,d} | -
{b,c,e, f} b {b,d} {e, f} e - -
{b.e,dye, fH] b - |- {f} f [{fa}| -
{c.d.e, f} ¢ [{ed}H|V {/} fooH{fier |-
{Cv d7 evf} ¢ {676} - {f} f B B

<

Satz 39. Fulls der (un)gerichtete Graph G in Adjazenzlisten-
Darstellung gegeben ist, durchlduft GraphSearch alle Knoten und
Kanten von G in Zeit O(n+m).

Beweis. Offensichtlich wird jeder Knoten u genau einmal zu B hin-
zugefiigt. Dies geschieht zu dem Zeitpunkt, wenn u zum ersten Mal
,besucht* und das Feld visited fiir u auf true gesetzt wird. Aufler-
dem werden in Zeile 6 von Explore alle von u ausgehenden Kanten
durchlaufen, bevor v wieder aus B entfernt wird. Folglich werden
tatsédchlich alle Knoten und Kanten von G besucht.

Wir bestimmen nun die Laufzeit des Algorithmus GraphSearch. In-
nerhalb von Explore wird die while-Schleife fiir jeden Knoten u genau

3 Graphalgorithmen

(deg(u) + 1)-mal bzw. (deg™ (u) + 1)-mal durchlaufen:

e cinmal fiir jeden Nachbarn v von u und

e dann noch einmal, um u aus B zu entfernen.

Insgesamt sind das n+ 2m im ungerichteten bzw. n+m Durchlaufe im
gerichteten Fall. Bei Verwendung von Adjazenzlisten kann die néchste
von einem Knoten v aus noch nicht besuchte Kante e in konstanter
Zeit ermittelt werden, falls man fiir jeden Knoten v einen Zeiger auf
(den Endpunkt von) e in der Adjazenzliste von v vorsieht. Die Ge-
samtlaufzeit des Algorithmus GraphSearch betragt somit O(n + m).

|

Als néchstes zeigen wir, dass Explore(w) zu allen von w aus erreich-
baren Knoten v einen (gerichteten) w-v-Pfad liefert. Dieser lésst sich
mittels parent wie folgt zuriickverfolgen. Sei

v, 1 =0,
U; =

parent(u;_1), >0 und u;_ 1 # nil
und sei ¢ = min{i > 0 | w;4; = nil}. Dann ist v, = w und
p = (ug,...,up) ein w-v-Pfad. Wir nennen P den parent-Pfad von v
und bezeichnen ihn mit P(v).

Satz 40. Falls beim Aufruf von Explore alle Knoten und Kanten als
unbesucht markiert sind, berechnet Explore(w) zu allen erreichbaren
Knoten v einen (gerichteten) w-v-Pfad P(v).

Beweis. Wir zeigen zuerst, dass Explore(w) alle von w aus erreich-
baren Knoten besucht. Hierzu fiihren wir Induktion tiber die Lange ¢
eines kiirzesten w-v-Weges.

¢ = 0: In diesem Fall ist v = w und w wird in Zeile 1 besucht.

{~s (+1: Sei v ein Knoten mit Abstand [+ 1 von w. Dann hat ein
Nachbarknoten u € N(v) den Abstand ¢ von w. Folglich wird u

31

3.4 Durchsuchen von Graphen

nach IV besucht. Da u erst dann aus B entfernt wird, wenn alle
seine Nachbarn (bzw. Nachfolger) besucht wurden, wird auch v
besucht.

Es bleibt zu zeigen, dass parent einen Pfad P(v) von w zu jedem
besuchten Knoten v liefert. Hierzu fithren wir Induktion tiber die
Anzahl £ der vor v besuchten Knoten.

k = 0: In diesem Fall ist v = w. Da parent(w) = nil ist, liefert
parent einen w-v-Pfad (der Lénge 0).

k—1~ k: Sei v = parent(v). Da u vor v besucht wird, liefert
parent nach IV einen w-u-Pfad P(u). Wegen u = parent(v)
ist © der Entdecker von v und daher mit v durch eine Kante
verbunden. Somit liefert parent auch fiir v einen w-v-Pfad

P(v). u

3.4.3 Spannbidume und Spannwalder

In diesem Abschnitt zeigen wir, dass der Algorithmus GraphSearch
fiir jede Zusammenhangskomponente eines (ungerichteten) Graphen
GG einen Spannbaum berechnet.

Definition 41. Sei G = (V, E) ein Graph und H = (U, F') ein Un-
tergraph.
e H heifit spannend, falls U =V ist.

e H ist ein spannender Baum (oder Spannbaum) von G, falls
U=V und H ein Baum ist.

e H ist ein spannender Wald (oder Spannwald) von G, falls
U=V und H ein Wald ist.

Es ist leicht zu sehen, dass fiir G genau dann ein Spannbaum existiert,
wenn GG zusammenhédngend ist. Allgemeiner gilt, dass die Spannbéu-
me fiir die Zusammenhangskomponenten von G einen Spannwald

3 Graphalgorithmen

bilden. Dieser ist bzgl. der Subgraph-Relation maximal, da er in kei-

nem grofleren Spannwald enthalten ist. Ignorieren wir die Richtungen

der Kanten im Suchwald W, so ist der resultierende Wald W' ein

maximaler Spannwald fir G.

Da Explore(w) alle von w aus erreichbaren Knoten findet, spannt

jeder Baum des (ungerichteten) Suchwaldes W’ = (V, Ej, ent) mit
E/

parent

= {{parent(v),v} | v €V und parent(v) # nil}
eine Zusammenhangskomponente von G.

Korollar 42. Sei G ein (ungerichteter) Graph.

e Der Algorithmus GraphSearch(V, E) berechnet in Linearzeit
einen Spannwald W', dessen Bdiume die Zusammenhangskom-
ponenten von G spannen.

e Fulls G zusammenhdngend ist, ist W' ein Spannbaum fir G.

3.4.4 Berechnung der Zusammenhangskomponenten

Folgende Variante von GraphSearch bestimmt die Zusammenhangs-
komponenten eines (ungerichteten) Eingabegraphen G.

Algorithmus CC(V, E)

1 k=0

2> for all veV, ec E do
3 cc(v):=0

4 cc(e) :==0

5 for all weV do

if cc(w) =0 then

7 k:=k+1
ComputeCC(k,w)

0o

Prozedur ComputeCC(k,w)

32

3.4 Durchsuchen von Graphen

1 cc(w) =k

> Init(B)

3 Insert(B,w)

. while —Empty(B) do

5 u := Element(B)

6 if 3 e={u,v} € E:cc(e) =0 then

7 ccle) .=k

8 if cc(v) =0 then
9 cc(v) =k

10 Insert(B,v)

11 else

12 Remove(B)

Korollar 43. Der Algorithmus CC(V, E) bestimmt fir einen Graphen
G = (V, E) in Linearzeit O(n + m) samtliche Zusammenhangskom-
ponenten Gy, = (Vi, Ey) von G, wobei Vi, = {v € V | cc(v) = k} und
Er={ec E|cc(e) =k} ist.

3.4.5 Breiten- und Tiefensuche

Wie wir gesehen haben, findet Explore(w) sowohl in Graphen als
auch in Digraphen alle von w aus erreichbaren Knoten. Als néchstes
zeigen wir, dass Explore(w) zu allen von w aus erreichbaren Knoten
sogar einen kiirzesten Weg findet, falls wir die Datenstruktur B als
Warteschlange () implementieren.

Die Benutzung einer Warteschlange () zur Speicherung der bereits
entdeckten, aber noch nicht abgearbeiteten Knoten bewirkt, dass
zuerst alle Nachbarknoten wq, ..., u; des aktuellen Knotens u besucht
werden, bevor ein anderer Knoten aktueller Knoten wird. Da die
Suche also zuerst in die Breite geht, spricht man von einer Breitensu-
che (kurz BF'S, engl. breadth first search). Den hierbei berechneten
Suchwald bezeichnen wir als Breitensuchwald.

3 Graphalgorithmen

Bei Benutzung eines Kellers wird dagegen u; aktueller Knoten, bevor
die iibrigen Nachbarknoten von u besucht werden. Daher fiihrt die
Benutzung eines Kellers zu einer Tiefensuche (kurz DES, engl. depth
first search). Der berechnete Suchwald heifit dann Tiefensuchwald.

Die Breitensuche eignet sich eher fiir Distanzprobleme wie z.B. das
Finden

o kiirzester Wege in Graphen und Digraphen,

e lingster Wege in Biaumen (siehe Ubungen) oder

e kiirzester Wege in Distanzgraphen (Dijkstra-Algorithmus).
Dagegen liefert die Tiefensuche interessante Strukturinformationen
wie z.B.

e die zweifachen Zusammenhangskomponenten in Graphen,

e die starken Zusammenhangskomponenten in Digraphen oder

e cine topologische Sortierung bei azyklischen Digraphen (s. Ubun-

gen).

Wir betrachten zuerst den Breitensuchalgorithmus.

Algorithmus BFS(V, E)

1 for all veV, e E do
2 visited(v) := false
3
1

parent(v) :=nil
visited(e) := false
5 for all weV do
6 if visited(w) = false then BFS-Explore(w)

Prozedur BFS-Explore(w)

I visited(w) := true

> QueueInit(Q)

3 Enqueue(Q,w)

i while —QueueEmpty(Q) do

3.4 Durchsuchen von Graphen

5 u := Head(Q)
6 if 3 e={u,v} bzw. e=(u,v) € E:visited(e) = false

then
7 visited(e) := true
8 if visited(v) = false then

9 visited(v) := true
10 parent(v) :==u

11 Enqueue(Q,v)

12 else

13 Dequeue(Q)

benstehenden Breitensuchwald.

Beispiel 44. BFS-Explore generiert @ e
bei Aufruf mit dem Startknoten a ne- @ " '

bes. bes. bes. bes.
Schlange @ | Knoten | Kante | Typ || @ Knoten | Kante | Typ
—a— a (a,b) c,e,d c (c,e) | Q
a,b a (a, f) c e, d c (e, f) | Q
a,b, f a - - c,ed c - -
b, f b (b, c) e,d e (e,c) | Q
b, f,c b - - e,d e (e,d) | Q
f.c f (f,e) e d e (e,f) | R
f,ce f - - e, d e - -
c,e c (¢,d) d d - -

<

Satz 45. Sei G ein Graph oder Digraph und sei w Wurzel des von
BFS-Explore(w) berechneten Suchbaumes T. Dann liefert parent
fiir jeden Knoten v in T einen kiirzesten w-v-Weg P(v).

33

3 Graphalgorithmen

Beweis. Wir fithren Induktion tiber die kiirzeste Weglange ¢ von w
nach v in G.

¢ =0: Dann ist v = w und parent liefert einen Weg der Léange 0.

{~ 0+ 1: Sei v ein Knoten, der den Abstand ¢ + 1 von w in G hat.
Dann existiert ein Knoten v € N~ (v) (bzw. v € N(v)) mit
Abstand ¢ von w in G hat. Nach IV liefert also parent einen
w-u-Weg P(u) der Lange ¢. Da u erst aus @ entfernt wird,
nachdem alle Nachfolger von u entdeckt sind, wird v von u oder
einem bereits zuvor in @) eingefiigten Knoten z entdeckt. Da
() als Schlange organisiert ist, ist P(u) nicht kiirzer als P(z).
Daher folgt in beiden Fallen, dass P(v) die Lénge ¢ + 1 hat. =

Wir werden spéater noch eine Modifikation der Breitensuche kennen ler-
nen, die kiirzeste Wege in Graphen mit nichtnegativen Kantenléngen
findet (Algorithmus von Dijkstra).

3.4 Durchsuchen von Graphen

if 3 e={u,v} bzw. e= (u,v) € E:visited(e) = false
then
visited(e) := true
if visited(v) = false then
visited(v) := true
parent(v) :=u
Push(S,v)
else
Pop(S)

Beispiel 46. Bei Aufruf mit dem @ e

Startknoten a generiert die Prozedur
DFS-Explore nebenstehenden Tiefen-

suchwald. 0 e

Als néchstes betrachten wir den Tiefensuchalgorithmus.

Algorithmus DFS(V, E)

1
9
3
1
5

6

for all veV, e€ E do

visited(v) := false
parent(v) :=nil
visited(e) := false

for all weV do

if visited(w) = false then DFS-Explore(w)

Prozedur DFS-Explore(w)

bes. bes. bes. bes.
Keller S | Knoten | Kante | Typ S Knoten | Kante | Typ
a- a (a,b) a,b,c c (¢, f)
a,b b (b, c) a,b,c, f f (f,e) | Q
a,b,c c (¢,d) a,b,c, f f - -
a,b,c,d d - - a,b,c c - -
a,b,c c (c,e) a,b b - -
a,b,c,e e (e,e) | R |]a a (a, f)| V
a,b,c,e e (e,d) | Q ||la a - -
a,b,c, e e - -

Die Tiefensuche auf nebenstehendem

I visited(w) := true
> StackInit(S)
3 Push(S,w)

1 while —StackEmpty(S) do
5 u := Head(S)

34

tion der Kanten (wobei wir annehmen,

Graphen fithrt auf folgende Klassifika- e e
o PC

3 Graphalgorithmen

dass die Nachbarknoten in den Ad-
jazenzlisten alphabetisch angeordnet
sind):

(H)—c)
(@] (@)
()

’ Keller S ‘Kante‘TypH Keller S ‘Kante‘Typ‘

a— {a, b} a,b,ce,d,e, f1{f,c}| R
a,b {bya}| - a,b,c,d,e, f|1{f,e}| -
a,b {b,c} a,b,c,d,e, f| - -
a,b,c {c,b} | - a,b,c,d, e - -
a,b,c {c,d} a,b,c,d - -
a,b,c,d {d,c} | - a,b,c {c,e} | -
a,b,c d {d,e} a,b,c {e, f}| -
a,b,c,d,e | {e,ct| R ||a,b,c - -
a,b,c,d,e |{e,d}| - a,b - -
a,b,c,d,e | {e, [} a {a, f}| -
a,b,e,d,e, f1{f,a}| R ||a - -

N

Die Tiefensuche lésst sich auch rekursiv implementieren. Dies hat den
Vorteil, dass kein (expliziter) Keller bendtigt wird.

Prozedur DFS-Explore-rec(w)

1 visited(w) := true

> while
3 e={u,v} bzw. e = (u,v) € F : visited(e) = false
do

3 visited(e) := true

1 if visited(v) = false then

5 parent(v) := w

6 DFS-Explore-rec(v)

35

3.4 Durchsuchen von Graphen

Da DFS-Explore-rec(w) zu parent(w) zuriickspringt, kann auch
das Feld parent(w) als Keller fungieren. Daher lésst sich die Prozedur
auch nicht-rekursiv ohne zusatzlichen Keller implementieren, indem
die Riickspriinge explizit innerhalb einer Schleife ausgefiithrt werden
(siehe Ubungen).

Bei der Tiefensuche lasst sich der Typ jeder Kante algorithmisch leicht
bestimmen, wenn wir noch folgende Zusatzinformationen speichern.

e Ein neu entdeckter Knoten wird bei seinem ersten Besuch grau
gefarbt. Sobald er abgearbeitet ist, also bei seinem letzten Be-
such, wird er schwarz. Zu Beginn sind alle Knoten weif3.

e Zudem merken wir uns die Reihenfolge, in der die Knoten ent-
deckt werden, in einem Feld k.
Dann lasst sich der Typ jeder Kante e = (u,v) bei ihrem ersten
Besuch wie folgt bestimmen:
farbe(v) = weif,
Vorwirtskante: farbe(v) # weifl und k(v) > k(u),
Riickwirtskante: farbe(v) = grau und k(v) < k(u),
Querkante: farbe(v) = schwarz und k(v) < k(u).

Nun lésst sich der Typ jeder Kante e = (u,v) bei ihrem Besuch in
Zeile 6 anhand der Werte von farbe(v) und k(v) wie folgt bestimmen:
Baumkante: farbe(v) = weif,
Vorwirtskante: farbe(v) # weifl und k(v) > k(u),
Riickwértskante: farbe(v) = grau und k(v) < k(u),
Querkante: farbe(v) = schwarz und k(v) < k(u).

Die folgende Variante von DFS berechnet diese Informationen.

Algorithmus DFS(V, E)

1 k=0

> for all veV, e€ E do
3 farbe(v) := weill

4 visited(e) := false

3 Graphalgorithmen

5 for all weV do

6 if farbe(u) =weiR then DFS-Explore(u)

Prozedur DFS-Explore(u)

1 farbe(u) :=grau
> ki=k+1

5 k(u) =k
4

while 3 e = (u,v) € F : visited(e) = false do

5 visited(e) := true

6 if farbe(v) =weiR then
7 DFS-Explore(v)

s farbe(u) := schwarz

Beispiel 47. Bei Aufruf mit dem
Startknoten a werden die Knoten im
nebenstehenden Digraphen wvon der
Prozedur DFS-Explore wie folgt ge-
farbt (die Knoten sind mit ihren k-
Werten markiert).

6 5
’Keller ‘Farbe ‘Kante ‘ Typ‘ ’ Keller |Farbe ‘Kante ‘ Typ‘
a a: grau (a,b) a,b,c, e |e:schwarz - -
a,b b: grau (b, c) a,b,c |- (¢, f)
a,b,c |c:grau (c,d) a,b,c, f|f:grau (f,e) | Q
a,b,c,d|d: grau - - a,b,c, f| f:schwarz| - -
d: schwarz a,b,c | c:schwarz - -
a,b,c |- (c,e) a,b b: schwarz - -
a,b,c,el|e:grau (e,c) | R ||a - (a, f)| V
a,b,c,e|- (e,d) | Q ||a a:schwarz | - -

36

3.4 Durchsuchen von Graphen

Bei der Tiefensuche in ungerichteten Graphen kénnen weder Quer-
noch Vorwéartskanten auftreten. Da v beim ersten Besuch einer sol-
chen Kante (u,v) nicht weif ist und alle grauen Knoten auf dem
parent-Pfad P(u) liegen, miisste v namlich bereits schwarz sein. Dies
ist aber nicht méglich, da die Kante {u,v} in v-u-Richtung noch
gar nicht durchlaufen wurde. Folglich sind alle Kanten, die nicht zu
einem neuen Knoten fithren, Riickwértskanten. Das Fehlen von Quer-
und Vorwértskanten spielt bei manchen Anwendungen eine wichtige
Rolle, etwa bei der Zerlegung eines Graphen G in seine zweifachen
Zusammenhangskomponenten.

3.4.6 Starke Zusammenhangskomponenten

Sei G = (V, E) ein Digraph. Dann ist leicht zu sehen, dass die Relation
S ={(u,v) € VxV]es gibt in G einen u-v-Weg und einen v-u-Weg}

eine Aquivalenzrelation ist. Fiir (u,v) € S schreiben wir auch kurz
U~ .

Definition 48. Die durch die Aquivalenzklassen Uy, ..., U, von S
induzierten Teilgraphen G[Uil, ..., G[Uy| heiffen die starken Zusam-
menhangskomponenten (engl. strongly connected components) von

G.

Satz 49. Sei G = (V, E) ein Digraph mit den starken Zusammen-
hangskomponenten G[U1|, ..., G[Ug]. Dann ist der Digraph (C, D) mit
C={l,....k} und

D=A{(i,j)|1<i#j<kANTFueU,vel;: (uv) e E}
azyklisch.

Beweis. Da der Digraph (C, D) schlingenfrei ist, miisste ein Zyklus
mindestens zwei verschiedene Knoten ¢ # j enthalten. Dann wéren

3 Graphalgorithmen

aber alle Knoten in den beiden Komponenten G[U;] und G[U,] gegen-
seitig erreichbar, d.h. alle Knoten in U; U U; miissten in derselben
Komponente liegen (Widerspruch). |

Sei G = (V, E) ein Digraph mit zugehorigem Tiefensuchwald W
und starken Zusammenhangskomponenten G[U],. .., G[Ug]. Den im
Suchwald W durch alle Nachfahren von v induzierten Baum mit der
Wurzel v bezeichnen wir mit 7'(v).

Fir i =1,... k sei s; der erste bei der Tiefensuche innerhalb von
U; besuchte Knoten. Wir bezeichnen s; als den Startknoten von Uj.
Dann bilden die Knoten sq, ..., s, ein Repriasentantensystem fir die
Aquivalenzklassen Uy, . .., U,.

Sei V; die Menge aller Knoten in 7'(s;), die fiir keinen echten Nach-
fahren s; von s; in T'(s;) enthalten sind. Es ist klar, dass die Mengen
Vi, ..., Vi eine Partition von V bilden. Wir behaupten, dass die Men-
gen V; in U; enthalten sind und somit U; =V} ist.

Angenommen, ein Knoten u € V; ware nicht in U;, sondern in U; fir
ein j # ¢ enthalten. Da s; erst schwarz wird, nachdem alle von s; aus
erreichbaren Knoten besucht wurden, enthélt 7'(s;) alle Knoten in U;
und somit auch u. Wegen u € V; kénnte dann 7'(s;) kein Unterbaum
von T'(s;) sein. Da u in T'(s;) und T'(s;) liegt, misste s; also ein
Vorfahre von s; sein. Wegen u ~ s; impliziert dies jedoch v ~ s;. 4
Die Mengen Uj; lassen sich also leicht bestimmen, falls wir die Start-
knoten s; wiahrend der Tiefensuche identifizieren konnen. Hierzu be-
trachten wir die Funktion

low(u) = min{k(v) | v € P(u) und es gibt einen u-v-Weg in G'}.

Da der zu u gehorige Startknoten s; ~ u von u aus erreichbar ist und
auf dem parent-Pfad P(u) von u liegt, ist Low(u) < k(s;) < k(u). Da
es zudem keinen u-v-Weg zu einem Knoten v auf P(u) mit k(v) < Kk(s;)
geben kann (sonst wére v Startknoten von U;), ist low(u) = K(s;).
Folglich ist

low(u) = min{k(s;) | s; € P(u) und es gibt einen u-s;-Weg in G}

37

3.4 Durchsuchen von Graphen

und nur fiir die Startknoten nehmen low und k den gleichen Wert
an. Um die Knoten s; bei der Tiefensuche effizient als Startknoten
identifizieren zu konnen, berechnen wir die Funktion

L(u) = min{k(v) |v =uV I € T(u),v € T(s;) : (u',v) € E},

wobei s; der eindeutig bestimmte Startknoten mit u ~ s; ist.

Dann gilt Tow(u) < 1(u) < k(u), wobei 1(u) = k(u) mit low(u) =
k(u) (also mit u = s;) gleichbedeutend ist. Ist ndmlich u # s;, so
liegt s; nicht in 7T'(u) und daher muss jeder u-s;-Weg mittels einer
(Ruckwérts- oder Quer-) Kante (v/,v) mit v € T'(s;) — T'(u) aus T'(u)
herausfithren. Da jedoch alle von u aus erreichbaren Knoten, deren k-
Wert grofier als der von u ist, in 7'(u) enthalten sind, muss k(v) < k(u)
sein.

Der folgende Algorithmus SCC berechnet fiir jeden Knoten u den
Wert 1(u) und gibt der Reihe nach die Mengen U; aus. Dass SCC
bis zum letzten Besuch eines Knotens u tatséachlich den Wert 1(u)
korrekt berechnet, lasst sich leicht induktiv tiber die Anzahl der zuvor
abgearbeiteten Knoten zeigen. SCC speichert alle entdeckten Knoten,
die noch keiner Menge U; zugeordnet werden konnten, in einem Keller
S. Das Feld onStack speichert die Information, welche Knoten sich
aktuell in S befinden.

Besitzt ein Knoten u bei seinem letzten Besuch den Wert 1(u) = k(u),
so wird die Prozedur Output-SCC(u) aufgerufen. Output-SCC(u)
leert den Keller S bis einschliefilich « und gibt diese Knoten als neu
entdeckte Menge U; aus.

Algorithmus SCC(V, E)

1 k:=0

> StackInit(S)
3 for all veV, ec F do
! visited(e) := false
5 k(v) :==0

3 Graphalgorithmen 3.4 Durchsuchen von Graphen

6 onStack(v) := false S Knoten‘ k-Wert ‘ [-Wert ‘ Kante ‘ output‘
7 fOI: all weV do a a a—1]a—1] (ab) i}
8 if k(u) =0 then Compute-SCC(u) a.b b b2 | b2 (b o))
a,b, c c c—3|c— 3| (cd) -
Prozedur Compute-SCC(u) a.b.c.d d dodldesal - d
1oki=k+1 a,b,c c - c— 3| (ce) -
2 K(u) =k a,b,c,e e e—5le—5|(ed) -
1 ;Ej?h:(g Z) a,b,c,e e - - e -
’ 7b7 » & 6 6) -
5 while 3 e= (u,v) € E:visited(e) = false do Z b 2 Z jz }C d |T> }C : 3 (f_c) i
6 visited(e) := true ’b’ ’ ’f 3
7 if k(v) =0 then % b’ © & €) € 5))
8 Compute-SCC(v) a,bce fl ¢ D - | frec
9 L(u) := min{l(u), L(v)} a,b b } b—2| - b
10 else if onStack(v) = true then a a - a— 1] (a,[) -
11 L(u) := min{l(u), k(v)} a a - - - a
12 if 1(u) = k(u) then
13 Output-SCC(u) <

Prozedur Output-SCC(u)

1 write(Neue Komponente:)
2 repeat

3 v := Pop(S)

1 onStack(v) := false

5 write(v)

6 until(v = u)

Beispiel 50. Rufen wir SCC mit dem
Startknoten a fiir nebenstehenden Di-

graphen auf, so werden die folgenden Q/ @
starken Zusammenhangskomponenten 0 e
berechnet (die Startknoten der Kompo-

nenten sind schwarz markiert).

38

	1 Einleitung
	2 Suchen und Sortieren
	2.1 Suchen von Mustern in Texten
	2.1.1 String-Matching mit endlichen Automaten
	2.1.2 Der Knuth-Morris-Pratt-Algorithmus

	2.2 Durchsuchen von Zahlenfolgen
	2.3 Sortieralgorithmen
	2.3.1 Sortieren durch Einfügen
	2.3.2 Sortieren durch Mischen
	2.3.3 Lösen von Rekursionsgleichungen
	2.3.4 Eine untere Schranke für das Sortierproblem
	2.3.5 QuickSort
	2.3.6 HeapSort
	2.3.7 BucketSort
	2.3.8 CountingSort
	2.3.9 RadixSort
	2.3.10 Vergleich der Sortierverfahren

	2.4 Datenstrukturen für dynamische Mengen
	2.4.1 Verkettete Listen
	2.4.2 Binäre Suchbäume
	2.4.3 Balancierte Suchbäume

	3 Graphalgorithmen
	3.1 Grundlegende Begriffe
	3.2 Datenstrukturen für Graphen
	3.3 Keller und Warteschlange
	3.4 Durchsuchen von Graphen
	3.4.1 Suchwälder
	3.4.2 Klassifikation der Kanten eines (Di-)Graphen
	3.4.3 Spannbäume und Spannwälder
	3.4.4 Berechnung der Zusammenhangskomponenten
	3.4.5 Breiten- und Tiefensuche
	3.4.6 Starke Zusammenhangskomponenten

