Algorithms and Data Structures

Self-Organizing Lists

UIf Leser

Assumptions for Searching

e Until now, we implicitly assumed that every element of our
list is searched with the same probability, i.e., with the
same frequency

e Accordingly, we treated all elements equal and tried to
reduce the worst-case runtime for all elements

e We may sort the list by properties of its elements, but we
never considered properties of their usage

e This setting sometimes is inadequate

Ulf Leser: Algorithms and Data Structures p

Searches on the Web [Germany, 2010, Google Zeitgeist]

Schnellst wachsende Suchbegriffe

1. wem 2010

2. chatroulette

3. ipad

4. dsds 2010

3. immobilienscout24
6. iphone 4

7. facebook

g. zalando

9. google street view

10, studi vz

Beliebte Produkte

1. ipod

2. handy

3. =schuhe

4. fernzeher
4. iphone

6. notebook
7o i

g, ipad

Ulf Leser: Algorithms and Data Structures

Die haufigsten Suchbegriffe

1. facebaook
2. youtube
3. berlin

4. ebay

5. google

6. wetter
7ot

5. gmx

9. you

10, test

heist gesuchte Machrichten

1. bayern

2. menowin frohlich
3. jorg kachelmann
4. stuttgart 21

4. iphone

6. fc bayern

7. aschewaolke

5. daniela katzenberger

Meist gesuchte Personen

1.

10.

lena meyer-landrut
jorg kachelmann
daniela katzenberger
justin hieber

shakira

katy perry

david guetta

miley cyrus

rikanna

megan fox

Eeliebte Bildersuchen

ipad

lena meyer-landrut
latiz=a riguelme
mehrzad marashi
menaowin frahlich
vampire diaries
frizuren 2010

kesha

2016 [Google Zeitgeist]

Suchbegriffe Schlagzeilen Promis national

1 EM 2016 1 Brexit 1 Mico Rosberg

2 Pokemon Go 2 Deonald Trump 2 Sarah Lombardi

3 iPhone 7 3 us-Wahl 3 Helena First

4 Brexit 4 AfD 4 Vanessa Mai

5 Olympia 5 Brissel 5 Jan Bshmermann

=== Mehr e

=== Mehr

Promis international Abschiede Fragen: Warum ...?

1 Donald Trump 1 Tamme Hanken 1 Warum ist Prince gestorben?

2 Melania Trump 2 David Bowie 2 Warum haben Katzen Angst vor G...
3 Terence Hill 3 Roger Cicero 3 Warum ist Italien Gruppensieger?
4 Brigitte Nielsen 4 Prince 4 Warum Hamsterkaufe?

5 Antoine Griezmann 5 Bud Spencer 5 Warum Brexit?

=ee Mehr =+= Mehr ==+ Mehr

Ulf Leser: Algorithms and Data Structures

2018 [Google Trends]

Allgemeine Suchbegriffe

1T WM

2 Daniel Kiblbock
3 Jens Bichner

4 Avicii

5 Medaillenspiegel

Personlichkeiten

1 Daniel Kiiblbéck

2 Meghan Markle

3 Jan Ullrich

4 Hans-Georg Maallen
5 DemiLovato
Was-Fragen

1 Eichenprozessions-
spinner was tun?

2 Washilft gegen
Wespen?

3 Wassind
Permanenzen?

4 Was ist mit Daniel
Kiblb&ck?

5 Was bedeutet Rs?
UIf Leser: Algorithmg

Schlagzeilen

1 Mondfinsternis
2 Eurolira

3 Hochzeit Harry
Meghan

4 Chemnitz

5 Hambacher Forst

Serien

1 Babylon Berlin

2 BadBanks

3 Tannbach

4 Haus des Geldes
5 Altered Carbon

Wo-Fragen

1 Wo ist der Mond?
Wo ist die 1SS?

oW N

Wo lduft heute
Fussball?

5 Wo spielt Neymar?

Wo liegt Uruguay?

Abschiede

1 Jens Blchner

2 Avicii

3 Mac Miller

4 Stephen Hawking

5 Stanlee

Sportevents

1T WM

2 Medaillenspiegel

3 Olympia

4 Deutschland
Schweden

5 Handball EM

Wie-Fragen

1 Wie oft war
Frankreich
Weltmeister?

2 Wie muss
Deutschland spielen
um weiter zu
kommen?

3 Wie heifltt der Sohn

von Kate und
William?

Changing Frequencies [Google Zeitgeist]

darnit!

Aufsteiger - Suchbegriffe Aufsteiger — Personen

win chatroul- . deds mmoboen- phone B
2010 atte pad 2010 — B facebook zalando
FEE

Diezes Gadget weitergehen: ‘ n

UIf Leser: Algorithms and Data Structures 6

Changing Word Usage [Google n'gram viewer]

B cool |l lEssig
0.0001800%:
0.0001 600%:
0.0001 400%:
0.0001 200%:
0.0001000%:
0.0000800%:
0.0000600%:
0.0000400%:

0.0000200%,

000000005 ! L

“TED0 1820 1840 1B60 | BEO 1800 1820 1840 1860 1880 2000

UIf Leser: Algorithms and Data Structures 7

Zipf-Distribution

e Many events are not equally but Zipf-distributed

— Let f be the frequency of an event and r its rank in the list of all
events sorted by frequency

— Zipf's law: f ~ Kk/r for some constant k
e Examples 16000

— Search terms on the web 14000
12000
— Purchased goods 10000
— Words in a text 8000
— Sizes of cities 6000
. . 4000
— Opened files in a OS
2000
B 0 | | | _
) 0] >

Ulf Leser: Algorithms and Data Structures 8

Changing the Scenario

e Assume we have a list L of values
e L is searched very often
o But: Elements in L are searched with different frequencies

e How can we organize L such that a series of searches
following this frequency distribution is as fast as possible?

e (Can we organize L such that searches are fast even when
the frequencies of searches change arbitrarily?

e Let L organize itself depending on its usage

Ulf Leser: Algorithms and Data Structures 9

Content of this Lecture

e Self-Organizing Lists
— Fixed frequencies
— Dynamic frequencies

e QOrganization Strategies

Ulf Leser: Algorithms and Data Structures 10

Simple Case: Fixed Frequencies

e For simplicity, we assume L has n=|L| different elements

e Let p; be the relative (and fixed) frequency at which the i'th
element is searched (1<i<n)

e Example: Assume p; is distributed with p,=1/(1+i)?*c
— Assume n=25
— ¢: normalization factor to ensure >p;=1
— Yields something like 41%, 18%, 10%, 6%, 4%, 3%, 2%, 1%, ...
— Equal distribution would be 4%, 4%, 4%, 4%,

Ulf Leser: Algorithms and Data Structures 11

Analysis

e What are the expected costs for a series of searches
following the frequency distribution?

e Option 1: Assume L is sorted by a key and we search L
with log(n) comparisons upon each search
— Independent of p,'s; that’s how we did it so far
— Expected cost for 100 searches: 100*log(n) ~ 500

e Option 2: Assume L is sorted by p, and we search L linearly
upon each search

— In 41% of cases: 1 access; in 18% 2 accesses; in 10% 3; ...
— For 100 searches: 1*41+2*18+3*10+4*6+5*4+6*3+ ... ~ 380

Ulf Leser: Algorithms and Data Structures 12

Other Distributions

o If p=1/(1+i)3*c, we need only ~200 accesses for the
frequency-sorted list, but still ~500 for the value-sorted list
— Access frequencies: 62, 18, 7, 4, ...

e If p=1/n, we have 1336 versus ~500 accesses
— Equal distribution, access frequencies: 4, 4, 4, 4, ...

e Summary
— Sorting the list by ,popularity™ may make sense

— Gain (or loss) in efficiency can be computed in advance if
frequency of accesses are known (and do not change)

Ulf Leser: Algorithms and Data Structures 13

Content of this Lecture

e Self-Organizing Lists
— Fixed frequencies
— Dynamic frequencies

e QOrganization Strategies

Ulf Leser: Algorithms and Data Structures 14

Self-Organizing Lists

e More interesting scenario
— Access frequencies are not known in advance

— Access frequencies change over time

e Implication: It is not optimal to log searches for some time, then
compute popularity, then re-sort list

e Our model of self-organization
— After each access, we may change the order in the list

— Searching the (currently) i'th element of the list costs i operations
e I.e., Lisimplemented as linked list
e Using arrays doesn’t help — we don’t know where the searched value is

e This scenario is called a self-organizing linear list (SOL)

Ulf Leser: Algorithms and Data Structures 15

Application: Caching

e Often, applications need to read more data from disk than
there is main memory
— Especially if there are more than one app running

e Reading from disk is ~10.000 times slower than memory

e (Caching: OS keeps those data blocks in memory for which
it expects that they will be reused (in the near future)

e There is not enough space to keep all ever used blocks

e Thus, when loading new blocks, the OS has to evict blocks
from the cache — which ones?
— Those that probably will not be reused in the near feature

Ulf Leser: Algorithms and Data Structures 16

Caching and SOLs

e OS keeps a SOL S with all block IDs sorted by popularity
e The top-k blocks of the list are cached
 When loading a new block b, the OS ...

— evicts the k'th block in S from memory
— loads b into the free space
— re-organizes S to reflect the change in popularity of b

e Prominent strategies in caching
— Most recently used: Popularity is the time stamp of the last usage
— Most frequently used: Popularity is the number of access until now

e See course on Operating Systems (or/and Databases)

Ulf Leser: Algorithms and Data Structures 17

Content of this Lecture

e Self-Organizing Linear Lists
e QOrganization Strategies

Ulf Leser: Algorithms and Data Structures 18

Organization Strategies

e Many proposals in the literature
e Many are very application specific

e Three general strategies are popular
— MF, move-to-front:
After searching an element e, move e to the front of L
e This is "most recently used” in OS terms

— T, transpose:
After searching an element e, swap e with its predecessor in L

— FC, frequency count:
Keep an access frequency counter for every element in L and keep
L sorted by this counter. After searching e, increase counter of e
and move e “up” to keep sorted’ness

e This is "most frequently used” in OS terms

Ulf Leser: Algorithms and Data Structures 19

Visual

/\

v

Ulf Leser: Algorithms and Data Structures 20

Properties

e Move-to-Front, MF
— If a rare element is accessed, it “jams” the list head for some time
— Bursts of frequent same-element accesses are well supported
— No problem with changes in popularity over time (trends)

e Transpose, T
— Problems with fast changing trends — slow adaptation

— Frequently accessing same-elements well supported
o After some swing-in time

e Frequency Count, FC
— Requires O(n) additional space

— Re-sorting requires WC O(log(n)) time (binsearch in L[1...e])
e Rather O(1) in practice — local moves

— Slow adaptation to changing trends — old counts dominate list head

Ulf Leser: Algorithms and Data Structures 21

Examples

e For each strategy, we can find sequences of accesses that
are very well supported and others that are not

o Example: L={1,2,...7}, n=7; assume two workloads
- 5:{1,2,..7, 1,2,..7, 1,2,... 7} (ten times)
-S:{1,1,1,1,1,1,1,1,1,1, 2,2,2,... ... 6, 7,7,7,7,7,7,7,7,7,7}
— Each workload performs 70 searches, each element is accessed 10
times with the same relative frequency 1/7
e Assume an arbitrary static order of L
— There are seven different costs 1, ... 7
— Each cost is incurrent 10 times i
— Average cost per search for S, and for S,: 0% *[

ilo*ij=4

i=1

Ulf Leser: Algorithms and Data Structures

22

S.;:{1,2,..7, 1.7, 1,...7}
MF: Average Cost Sy {1yers 2 06,7, .}

Almost worst case

e MF/S,
— In the first subsequence, we require i ops for the i'th access
— L then looks like 7,6,5,4,3,2,1
— We need 7 ops per element for all following subsequence

— Together
Zl+7*9* ‘
10*n
e MF/S,

— First subsequence requires 10=1+9 ops
— Second requires 249 Almost best case

— Third requires 3+9
— Together 1 \ [L Q% g%
10*n (,le ‘

Ulf Leser: Algorithms and Data Structures 23

FC: Average Cost Sy {1yers 2 06,7, .}

e FC/S; (all counters are initialized with 0)

— First subsequence costs >i and doesn’t change order
e Assuming stable sorting; now all counters are 1

— Same for all other subsequences

S

— Together i |
e [Ignoring the constant re-sorting costs] 0% *10°* i =4
¢ FC/S, =

— First subsequence costs 10 and no change in order

— Second subsequence costs 20 and no change in order
— Same for all other subsequences

— Together I (< oni) s
e [Ignoring the constant re-sorting costs] 10* 1 Z_;, L=

Ulf Leser: Algorithms and Data Structures 24

T: Average Cost Syl 26,7, .}

e T/ S,
— First subsequence costs i = 28
— Order now is 2,3,4,5,6,7,1 — next subseq costs 7+1+2+...5+7 = 29
— Order now is 3,4,5,6,2,7,1 — next subseq costs 7+... = 30

Access ----- 7 1 Costs
1 3 4 5 6 2 1 7 7
2 3 4 5 2 6 1 7 5
3 3 4 5 2 6 1 7 1
4 4 3 5 2 6 1 7 2
5 4 5 3 2 6 1 7 3
6 4 5 3 6 2 1 7 5
7 4 5 3 6 2 7 1 7

Ulf Leser: Algorithms and Data Structures 25

Worst Case Complexity

e Lemma
The worst case complexity of MF and T for searching a
workload W in a SOL L is O(/W/*/L])
e Proof
— A workload W consists of |W| requests
— A request consists of a search and a move

— Since a search may access any element, it is in O(|L|) in worst case
— Moves in Mfand in T are in O(1)
— ged.

e Note: FC is worse (re-sorting)

Ulf Leser: Algorithms and Data Structures 26

Optimal Strategies

e "Optimality” of a strategy depends on the sequence of
accesses

e Conventional analysis assumes worst-case for every single
access, which is O(n) for every search in every strategy

e Qverly pessimistic: Accesses (by self-organization)
influence (decrease!) the cost of subsequent accesses

e Using a clever trick, we can derive estimates about the
relative costs for different strategies over any sequence

e This trick is called amortized analysis
e This will take some time (next lecture)

Ulf Leser: Algorithms and Data Structures 27

Exemplary Questions

e Consider a list L{1,2,3,4,5} and the following workload
S={1,3,33,5,5,5,5,5}. Analyze the cost of answering S
using the MF, the T, and the FC strategy

e Consider a list L, |L|=n, of n different elements and a
workload S which accesses element i with relative
frequency p,=1/(1+i)?*c. Which of our three strategies is
optimal for S?

e OS often use the least-recently used strategy for managing
a cache. Is LRU equivalent to our MF, T, or FC strategy?

Ulf Leser: Algorithms and Data Structures 28

	Foliennummer 1
	Assumptions for Searching
	Searches on the Web [Germany, 2010, Google Zeitgeist]
	2016 [Google Zeitgeist]
	2018 [Google Trends]
	Changing Frequencies [Google Zeitgeist]
	Changing Word Usage [Google n‘gram viewer]
	Zipf-Distribution
	Changing the Scenario
	Content of this Lecture
	Simple Case: Fixed Frequencies
	Analysis
	Other Distributions
	Content of this Lecture
	Self-Organizing Lists
	Application: Caching
	Caching and SOLs
	Content of this Lecture
	Organization Strategies
	Visual
	Properties
	Examples
	MF: Average Cost
	FC: Average Cost
	T: Average Cost
	Worst Case Complexity
	Optimal Strategies
	Exemplary Questions

