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Abstract

We show that, for k constant, k-tree isomorphism can be decided in logarithmic space by giving an
O(k logn) space canonical labeling algorithm. The algorithm computes a unique tree decomposition, uses
colors to fully encode the structure of the original graph in the decomposition tree and invokes Lindell’s tree
canonization algorithm. As a consequence, the isomorphism, the automorphism, as well as the canonization
problem for k-trees are all complete for deterministic logspace. Completeness for logspace holds even for
simple structural properties of k-trees. We also show that a variant of our canonical labeling algorithm runs
in time O((k+1)!n), where n is the number of vertices, yielding the fastest known FPT algorithm for k-tree
isomorphism.
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1. Introduction

Two graphs G and H are called isomorphic if there is a bijective mapping φ between the vertices of G
and the vertices of H that preserves the adjacency relation, i.e., φ relates edges to edges and non-edges to
non-edges. Graph Isomorphism (GI) is the problem of deciding whether two given graphs are isomorphic.
The problem has received considerable attention since it is one of the few natural problems in NP that are
neither known to be NP-complete nor known to be solvable in polynomial time.

It is known that GI is contained in coAM [17, 31] and in SPP [7], providing strong evidence that GI is
not NP-complete. On the other hand, the strongest known hardness result due to Torán [33] says that GI
is hard for the class DET (cf. [10]). DET is a subclass of NC2 (even of TC1) and contains NL as well as all
logspace counting classes [3, 9].

For some restricted graph classes, the known upper and lower complexity bounds for the isomorphism
problem match. For example, a linear time algorithm for tree isomorphism was already known in 1974 to
Aho, Hopcroft and Ullman [1]. In 1991, an NC algorithm was developed by Miller and Reif [27], and one year
later, Lindell [26] obtained an L upper bound. On the other hand, in [20] it is shown that tree isomorphism
is L-hard (provided that the trees are given in pointer notation). In [6], Lindell’s logspace upper bound
has been extended to the class of partial 2-trees, a class of planar graphs also known as generalized series-
parallel graphs. Recently, it has been shown that even the isomorphism problem for all planar graphs is in
logspace [12] (in fact, excluding one of K5 or K3,3 as minor is sufficient [13]). Much of the recent progress
on logspace algorithms for graphs has only become possible through Reingold’s result that connectivity in
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undirected graphs can be decided in deterministic logspace [29]. Our result does not depend on this, yielding
a comparatively simple algorithm.

In this article we show that the isomorphism problem for k-trees is in logspace for each fixed k ∈ N+,
matching the lower bound. This combines two conference papers that improved the previously known upper
bound of TC1 [18] first to StUL [5] and then to L [23]. In fact, we prove the formally stronger result that
a canonical labeling for a given k-tree is computable in logspace. Recall that the canonization problem for
graphs is to produce a canonical form canon(G) for a given graph G such that canon(G) is isomorphic to G
and canon(G1) = canon(G2) for any pair of isomorphic graphs G1 and G2. Clearly, graph isomorphism
reduces to graph canonization. A canonical labeling for G is any isomorphism between G and canon(G). It
is not hard to see that even the search version of GI (i.e., computing an isomorphism between two given
graphs in case it exists) as well as the automorphism group problem (i.e., computing a generating set of the
automorphism group of a given graph) are both logspace reducible to the canonical labeling problem.

The parallel complexity of k-tree isomorphism has been previously investigated by Del Greco, Sekharan,
and Sridhar [14] who introduced the concept of the kernel of a k-tree in order to restrict the search for an
isomorphism between two given k-trees. We show that the kernel of a k-tree can be computed in logspace
and exploit this fact to restrict the search for a canonical labeling of a given k-tree G. To be more precise,
we first transform G into an undirected tree T (G) whose nodes are formed by all (k + 1)-cliques and some
k-cliques of G. Then we compute the center node of T (G) which coincides with the kernel of G and try all
labelings of the kernel vertices. In order to extend such a labeling to the other vertices of G in a canonical
way, we color the nodes of the tree T (G) to encode additional structural information about G. (Note that
this differs from valid colorings using few colors.) Finally, we apply a variant of Lindell’s algorithm [26] to
compute a canonical labeling for the colored T (G) and derive a canonical labeling for the k-tree G.

Fig. 1 shows the known inclusions between the mentioned complexity classes, where GI is the class of all
problems that can be reduced to graph isomorphism in polynomial time.

As the k-tree isomorphism problem, for unbounded k, is graph isomorphism complete [21], it makes
sense to study the fixed parameter tractability of this problem. A problem is called fixed parameter tractable
(FPT) with respect to some parameter k, if it is solved by an algorithm in time f(k)nO(1), where f(k) can
be an arbitrary function not depending on the input size n. We show that our k-tree canonization algorithm
can also be implemented in O((k + 1)! n) time, yielding the fastest known FPT isomorphism algorithm for
this class. Previously, Klawe et al. gave an FPT isomorphism algorithm for general chordal graphs with
maximum clique size k+1, which runs in O((k+1)!2n3) time [21]. Nagoya improved this to O((k+1)!n3) [28].
Toda gave an isomorphism algorithm that is FPT in the maximum size s of simplicial components, using
O((s! n)O(1)) time [32]. While the exact running time of this algorithm is hard to analyze, the parameter s
can be smaller than k + 1 by a factor of up to Θ(n) (and is never larger). We remark that the kernel of a
k-tree is always a simplicial component, implying that k ≤ s ≤ k + 1 for all k-trees. Relatedly, Yamazaki
et al. showed how to check isomorphism for graphs of rooted tree distance width k in time O(k!2k2n2) [36].
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Figure 1: Known inclusions between the mentioned complexity classes
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This graph class contains non-chordal graphs and is incomparable to k-trees, but like k-trees it is a subclass
of treewidth k graphs.

In Section 3, we describe our algorithm and prove its correctness; in Sections 4 and 5 we give implemen-
tations in logspace and FPT, respectively. In Section 6, we show that several simple structural properties
of k-trees that can be computed using our tree representation are also hard for logspace.

2. Preliminaries

As usual, L is the class of all languages decidable by Turing machines with read-only input tape and an
O(logN) bound on the space used on the working tapes, where N is the input size. FL is the class of all
functions computable by Turing machines that additionally have a write-only output tape. Note that FL is
closed under composition: To compute f(g(x)) for f, g ∈ FL, simulate the Turing machine for f and keep
track of the position of its input head. Every time this simulation needs a character from f ’s input tape,
simulate the Turing machine for g on input x until it outputs the required character. Note also that g can
first output a copy of its input x, so we can assume that f has access to both x and g(x). This construction
can be iterated a constant number of times, still preserving the logarithmic space bound. We will utilize
this closure property by employing pre- and post-processing steps to describe our logspace algorithms.

Given a graph G, we use V (G) and E(G) to denote its vertex and edge sets, respectively. We define the
following notations for subgraphs of G. For M ⊆ V (G), G[M ] denotes the subgraph of G induced by M
and we use G−M as a shorthand for G[V (G) \M ].

Given a graph G and two vertices u, v ∈ V (G), the distance dG(u, v) is the length of the shortest
path from u to v. The eccentricity of a vertex u ∈ V (G) is the longest distance to another vertex, i.e.,
eccG(u) = max{dG(u, v) | v ∈ V (G)}. The center of G consists of all vertices with minimal eccentricity.

Given two graphs G and H, an isomorphism from G to H is a bijection φ : V (G)→ V (H) with {u, v} ∈
E(G) ⇔ {φ(u), φ(v)} ∈ E(H). On colored graphs, an isomorphism must additionally preserve colors.
G and H are called isomorphic, in symbols G ∼= H, if there is an isomorphism from G to H. Given a graph
class G, a function f defined on G computes an invariant for G if

∀G,H ∈ G : G ∼= H ⇒ f(G) = f(H) .

If the reverse implication also holds, f is a complete invariant for G. If additionally f(G) ∼= G for all G ∈ G,
f computes canonical forms for G. Given a function f that computes canonical forms, an isomorphism ψG
from G to its canonical form f(G) is called a canonical labeling.

The isomorphisms from a graph G to itself are called automorphisms; they form a group which we denote
by Aut(G). An automorphism is called non-trivial if it is not the identity. The graph automorphism problem
(GA) is to decide if a graph has a non-trivial automorphism. A graph without non-trivial automorphisms
is called rigid.

Fix any k ∈ N+. The class of k-trees was introduced in [4] and is inductively defined as follows. Any
k-clique is a k-tree. Further, given a k-tree G and a k-clique M in G, one can construct another k-tree by
adding a new vertex v and connecting v to every vertex in M . The initial k-clique is called base of G, and
the k-clique M the new vertex v is connected to is called support of v. Note that each k-clique of a k-tree G
can be used as base for constructing G – but once the base is fixed, the support of each vertex is uniquely
determined. Fig. 2 shows a 2-tree.

An interesting special case of k-trees are k-paths, where the support Mi of any new vertex vi (except the
first vertex added to G) must either contain the vertex vi−1 added in the previous step or be equal to the
support Mi−1 of vi−1. Removing the vertex 8 from the graph G in Fig. 2 results in a 2-path.

Let G be a graph. A tree T is a tree decomposition of G, if each node M ∈ V (T ) is a subset M ⊆ V (G)
such that (a) for every edge {u, v} ∈ E(G), there is a node M ∈ V (T ) with {u, v} ⊆ M , and (b) for
every vertex v ∈ V (G), the nodes containing v induce a non-empty subtree of T . The width of T is one
less than the cardinality of the largest node in V (T ). A graph has treewidth k if it admits a width k tree
decomposition, but none of width k − 1. It is well known that a graph has treewidth at most k if and only
if it is a partial k-tree, i.e., a subgraph of a k-tree (see e.g. [22]).
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Figure 2: A 2-tree G and its tree representation T (G)

3. Canonizing k-trees

In this section, we describe our algorithm for k-tree canonization, starting with an overview.

Algorithm 3.1. Given a graph G, perform the following steps.
1. Compute an auxiliary graph T (G) (see Definition 3.2) and check that G is indeed a k-tree. In this case,
T (G) will be called the tree representation of G.

2. Compute the kernel K of G, which is a set of k or (k+1) vertices that induce a clique (see Definition 3.5).
3. For each labeling of the kernel, i.e., for each bijection π : K → {1, . . . , ‖K‖}, perform the following steps:
(a) Compute T (G, π), which is a rooted and colored version of the tree representation T (G) (see Defini-

tion 3.6).
(b) Compute a canonical labeling ψT (G,π) of T (G, π).

4. Choose a labeling π1 of the kernel such that ψT (G,π1)(T (G, π1)) becomes minimal.
5. Derive from ψT (G,π1) a canonical labeling ψG of G (see Eq. (1) in the proof of Lemma 3.8).

The remainder of this section describes this algorithm in more detail and proves that the result is indeed
a canonical representation. Section 4 shows how to implement it in logspace, while Section 5 gives an FPT
implementation.

We now define the tree representation T (G) for k-trees G. Following the definition, we prove that T (G)
is a tree decomposition of G. We choose this particular tree decomposition because it can be computed
efficiently and G ∼= H implies T (G) ∼= T (H).

Definition 3.2. For a graph G, define T (G) by

V (T (G)) =
{
M ⊆ V (G)

∣∣∣∣M is a (k + 1)-clique in G or M is a k-clique in G
that is not contained in exactly one (k + 1)-clique

}
E(T (G)) =

{
{M1,M2} ⊆ V (T (G))

∣∣M1 (M2
}
.

We first give a characterization of k-trees in terms of T (G).

Lemma 3.3. G is a k-tree if and only if T (G) is a tree decomposition of G.

Proof. To prove the “only if” part, let G be a k-tree, let {v1, . . . , vk} be the base k-clique, and let vk+1, . . . , vn
be the sequence in which the remaining vertices ofG were added. We write Gi for G[{v1, . . . , vi}]. T (Gk) con-
sists of a single k-clique node and T (Gk+1) consists of a single (k+1)-clique node, so they are tree decompo-
sitions of Gk and Gk+1, respectively. For i > k + 1, let Pi be the support of vi, which is a k-clique in Gi−1.
By inductive hypothesis, T (Gi−1) is a tree representation of Gi−1. If Pi is not a node in T (Gi−1), it is
contained in a unique (k + 1)-clique node of that tree, and can be added as its neighbor. After that, the
(k + 1)-clique node Mi = Pi ∪ {vi} can be added as neighbor of Pi. This results in T (Gi) and can easily be
seen to be a tree decomposition of Gi.

For the “if” part, let G be a graph such that T (G) is a tree decomposition of G. If T (G) consists of a
single (k + 1)-clique node, then G consists only of this clique and thus is a k-tree. Otherwise let M be any
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k-clique node in T (G) and use it as base of G. All vertices u ∈ V (G) \M can be added iteratively: Let Mu

be the (k+ 1)-clique that contains u and is closest to M . Then the first k-clique on the path from Mu to M
in T (G) can be used as support for u.

We now observe some structural properties of T (G). Note that T (G) has O(n) vertices, so computations
involving T (G) can be implemented efficiently.

Lemma 3.4. For any k-tree G, the center of T (G) is a single node.

Proof. Suppose not. Then the center consists of two adjacent nodes, one a k-clique and one a (k+ 1)-clique.
This leads to a contradiction because k-clique nodes have odd eccentricity while that of (k+ 1)-clique nodes
is even: k-cliques and (k+ 1)-cliques alternate on every path, and all leaves are (k+ 1)-clique nodes (unless
T (G) consists of a single k-clique, which is the unique center in that case).

Definition 3.5. The clique corresponding to the center node of T (G) is called kernel of G and de-
noted ker(G).

Note that ker(G) can be either a k-clique or a (k + 1)-clique, depending on the structure of G. The
concept of the kernel of a k-tree was introduced in [14]. The definition there is slightly different but the
equivalence can be easily verified.

In what follows, we consider the kernel K of G to be the root of T (G). This allows us to identify each
(k + 1)-clique M ∈ V (T (G)) \ {K} with the unique vertex v ∈ M that is not present in the k-clique M ′
that lies next to M on the path from K to M in T (G). For later use, we denote this vertex by v(M) and
for each v ∈ V (G) \K, we use Mv to denote the unique (k+ 1)-clique M ∈ V (T (G)) \ {K} with v(M) = v.
For v ∈ K, we set Mv = K.

It is clear that the tree representation T (G) might not provide complete structural information about G
since it is possible that for an added vertex u, only one of the k edges between u and its support in G can
be recovered from T (G). Fig. 3 shows a 2-tree G′ that is not isomorphic to G from Fig. 2, but has a tree
representation T (G′) isomorphic to T (G). To add the missing information, we give individual colors to the
kernel vertices and color the nodes of T (G) as well.

Definition 3.6. Let G be a k-tree with kernel K. For each vertex v of G, we denote by

lG(v) =
⌊
dT (G)(K,Mv)/2

⌋
the level of v in G (dividing by 2 has the effect of ignoring k-clique nodes for the distance). A bijection
π : K → {1, . . . , k′} is called labeling of the kernel K. For each such labeling, let T (G, π) denote the colored
directed tree obtained from T (G) by choosing K as the root and coloring each node M ∈ V (T (G)) by the
set c(M) = {c(v) | v ∈M}, where

c(v) =
{
π(v) if v ∈ ker(G),
lG(v) + k′ otherwise.

G’:

1

23

45

6 7

89

T (G′):

1
21

3 2

3
1 2

1 4
1 4

3
5 1

6
1 4

7
1 4

5
35

9 3

2
4

4
2 8

Figure 3: A 2-tree G′ and its tree representation T (G′). G′ is not isomorphic to G from Fig. 2 as it has no node of degree 7,
yet T (G′) ∼= T (G).
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The definition of the colored tree T (G, π) is similar to that of T (G,B, θ) in [5]. The main advantage of
our construction lies in the fact that T (G, π) can be directly constructed from G in logspace, whereas the
tree representation used in [5] (which in turn is related to the decomposition defined in [21]) is defined as the
reachable subgraph of a graph (known as mangrove) derived from G. This allows us to decide reachability
in the tree T (G, π) in logspace, an essential step to achieve our logspace upper bound in Section 4.

We now show that the colored tree representations of isomorphic k-trees are also isomorphic, provided
that the kernels are labeled accordingly.

Lemma 3.7. Let φ be an isomorphism between two k-trees G and H, and let K be the kernel of G. Then
φ, viewed as a mapping from V (T (G)) to V (T (H)), is an isomorphism between T (G, π1) and T (H,π2),
provided that π1(u) = π2(φ(u)) for all u ∈ K.

Proof. It can be easily checked that any isomorphism between G and H is also an isomorphism between
T (G) and T (H) that maps the kernel K of G to the kernel of H. In order to show that the color of a
node M ∈ V (T (G, π1)) coincides with the color of φ(M) ∈ V (T (H,π2)), we prove the stronger claim that
c(v) = c(φ(v)) for all v ∈ V (G). For v ∈ K, we have c(φ(v)) = π2(φ(v)) = π1(v) = c(v) by assumption.
Further, since φ must preserve the level of the vertices, it follows for v ∈ V (G) \K that

c(φ(v)) = lH(φ(v)) + ‖K‖ = lG(v) + ‖K‖ = c(v) .

This completes the proof of the lemma.

Conversely, the next lemma shows that the isomorphism type of T (G, π) contains complete information
about G, proving that the algorithm outlined at the beginning of this section indeed computes a canonical
labeling for G.

Lemma 3.8. Let G be a k-tree with kernel K and let π be a labeling of the kernel K. Then from any colored
directed tree T that is isomorphic to T (G, π), an isomorphic copy G′ of G can be reconstructed. Further, an
isomorphism between G and G′ can be constructed from any given isomorphism between T (G, π) and T .

Proof. For a given colored directed tree T , construct G′ as follows. Let V (G′) = {1, . . . , n}, where n is k plus
the number of (k + 1)-clique nodes in T (we call t ∈ V (T ) an l-clique node, if l = ‖c(t)‖). Note that G has
indeed n vertices due to the one-to-one correspondence between the vertices v ∈ V (G) \K and the (k + 1)-
clique nodes Mv ∈ T (G, π) \ {K}. Let r be the root node of T , and let k′ = ‖c(r)‖. Next, make {1, . . . , k′}
a clique in G′. Let v be the bijection between the non-root (k + 1)-clique nodes of T and the remaining
vertices {k′ + 1, . . . , n} of G′ with v(t) < v(t′) ⇔ t < t′, where the latter is the natural order given by the
node names. For each such (k + 1)-clique node t with color c(t) = {c1, . . . , ck+1}, add the following edges
to E(G′): For each ci ≤ k′ add an edge {ci, v(t)} and for each ci > k′ with ci < cmax = max{ci | ci ∈ c(t)}
add an edge {v(t), v(t′)}, where t′ is the (ci − k′)th node on the path from r to t. This completes the
construction of G′.

Now let φ be an isomorphism from T (G, π) to T . Construct an isomorphism φ′ from G to G′ as follows:

φ′(v) =
{
π(v) v ∈ K
v(φ(Mv)) v /∈ K

(1)

By induction on the level of v in G, it can be proved that this is indeed an isomorphism.

It remains to show that the canonical labelings of any two isomorphic k-trees G and H map these graphs
to the same canon ψG(G) = ψH(H).

Lemma 3.9. Suppose G and H are isomorphic k-trees. Let ψG and ψH be the labelings computed by the
algorithm outlined at the beginning of this section. Then ψG(G) = ψH(H).
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Proof. Let π1, π2 be two kernel labelings that give rise to the lexicographically smallest trees ψT (G,π1)(T (G, π1))
and ψT (H,π2)(T (H,π2)), respectively. Since by Lemma 3.7 for any tree T (G, π1) that can be derived from G
via some labeling π1 there is an isomorphic tree T (H,π2) that can be derived from H via some label-
ing π2 (and vice versa), it follows that ψT (G,π1)(T (G, π1)) and ψT (H,π2)(T (H,π2)) are equal, implying that
canon(G) = canon(H).

We note that our algorithm can be extended to colored k-trees as follows. Let ζ : V (G) → C be a
vertex coloring of G. Modify the coloring of T (G, π) (cf. Definition 3.6) by replacing c(v) with the pair
c′(v) = (c(v), ζ(v)).

4. Logspace implementation

In this section, we prove that Algorithm 3.1 can be implemented in logspace. We start with the first
step.

Lemma 4.1. Given a graph G, the auxiliary graph T (G) can be computed in O(k logn) space. Also, it can
be checked if G is a k-tree within the same space bound.

Proof. To compute T (G), first iterate over all subsets M of V (G) of size k + 1 and output M as a node if
M is a (k + 1)-clique in G. Likewise, find all k-cliques M , and count the vertices v ∈ V (G) \M for which
M ∪ {v} is a (k+ 1)-clique. If there is not exactly one such v, then output M as a node, with edges to each
such M ∪ {v}. These steps require (k + 2) logn space.

To check if G is a k-tree, it suffices by Lemma 3.3 to check if T (G) is a tree decomposition of G. So
we test if T (G) is a tree. We also test if, for each vertex v ∈ V (G), the subgraph of T (G) induced by
{M ∈ V (T (G)) | v ∈M} is a tree. In Fact 4.2 we will show how trees can be recognized in logspace. Finally,
we check that all edges {u, v} ∈ E(G) are contained in some M ∈ V (T (G)), which is clearly possible in
logspace.

Fact 4.2. Given a graph G = (V,E) and a node r ∈ V , in O(logn) space it can be checked if G is a tree
and if so, all edges of G can be directed away from r.

Proof. Let G′ be a directed copy of G where each edge {u, v} is replaced by the two arcs (u, v) and (v, u).
In a pre-processing step, try the following to compute an Euler tour of G′ (cf. [2, p. 123]): Define a circular
order on the neighborhood of each node using the natural order on nodes (given by their names). Start the
Euler tour with the lexicographically least arc leaving w0 = r. When reaching some node wi from wi−1,
choose wi+1 as the successor of wi−1 in the circular order on the neighborhood of wi. This way, only the
two previous nodes have to be remembered. Stop when the arc (w0, w1) would be traversed again. If G is
a tree, then this results in an Euler tour of G′ with the following property: For all nodes v and consecutive
occurrences wi and wj of v in this tour, it holds that wi+1 = wj−1. If G contains cycles, this condition will
be violated, and if G is not connected, the computed tour will not reach all nodes. This can be checked in
O(logn) space.

To give all edges of G an orientation directed away from r, replace each edge {u, v} with the arc (u, v)
if the latter precedes (v, u) in the above Euler tour of G′.

To show that step 2 of the algorithm can be implemented in logspace, we recall some basic facts concerning
undirected trees.

Fact 4.3. Given an undirected tree T and two nodes u, v ∈ V (T ), the distance dT (u, v) can be computed in
O(logn) space.

Proof. Compute an oriented copy of T with root u using the algorithm of Fact 4.2. Then the unique path
from v to u can be found by always choosing the unique incoming edge as next step. Only the current node
and the number of steps have to be remembered. Upon reaching u, output the number of steps taken.

Fact 4.4. The center of an undirected tree T can be computed in O(logn) space.
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Proof. We first show that the eccentricity eccT (u) of each node u ∈ V (T ) is computable in logspace. This
can be done by iterating over all v ∈ V (T ), each time calculating dT (u, v) (this can be done in logspace by
Fact 4.3). Only the maximum distance has to be remembered, the result being eccT (u).

Observe now that the maximum eccentricity eccmax of all nodes u ∈ V (T ) is computable in logspace by
iterating over all u ∈ V (T ). Then compute again the eccentricity of all nodes u, this time outputting u if
eccT (u) = eccmax.

We now turn to step 3 of the algorithm.

Lemma 4.5. For a k-tree G and a labeling π of the kernel K of G, T (G, π) can be computed in O(k logn) space.

Proof. T (G) can be computed within this space bound by Lemma 4.1, the kernel of G by Fact 4.4, and a copy
of T (G) rooted at the kernel by Fact 4.2. It remains to compute the color c(M) of each node M ∈ V (T (G)).

For each v ∈ M calculate c(v) by examining the unique path from M to K in T (G) (the path can be
found by following the unique incoming edge at each node). Store the length ` of the path and the position pv
where v was last found (this can be done in parallel for all v ∈ M). If pv = ` (i.e., v ∈ K), then add the
number c(v) = π(v) to the color c(M) of M . If pv < `, add the number c(v) = `− pv + ‖K‖ to c(M). The
latter is correct, because by Lemma 3.3 the nodes containing v form a subtree of T (G) and thus the node
that is closest to K and contains v is on the path from K to M .

Note also that the color sets can be sorted in logspace to give them a unique string representation.
To compute a canonical labeling of T (G, π), we observe the following generalization of Lindell’s logspace

tree canonization algorithm [26], which allows vertex colors and computes not only a canonical form, but a
canonical labeling.

Lemma 4.6. Given a colored directed tree T , a canonical labeling of T can be computed in O(logn) space.

Proof. We first sketch Lindell’s algorithm and describe the necessary modifications afterwards. Given a
rooted tree and an order on the children of each node, this tree can be traversed in logspace: When visiting
a node v for the first time, go to its first child, if it has one. If v has no children or if v is visited for the
second time, proceed with its next sibling, if it has one. Otherwise, return to its parent. Note that it is only
necessary to store the current node and whether we arrived there from its last child.

Lindell’s algorithm canonizes a rooted tree by traversing it using a tree isomorphism order : Two siblings
s and t are ordered s < t if the subtree S rooted at s has fewer nodes than the subtree T rooted at t, or (for
equally large subtrees) if s has fewer children than t, or (for the same number of children) if S has a smaller
canon than T . Lindell shows how to implement the recursion in the latter case without a stack to achieve
the overall logspace bound; see [26] for details.

Colors can be handled by refining the tree isomorphism order with the additional condition color(s) <
color(t) (for efficiency, give it the highest priority). The canonical labeling can be computed by using a
counter i initialized to 0; whenever a node v is visited for the first time in the traversal using the tree
isomorphism order, increment i and print “v 7→ i”.

Now we are ready to prove our main result.

Theorem 4.7. Given a k-tree G, a canonical labeling ψG of G can be computed in O(k logn) space.

Proof. The correctness of Algorithm 3.1 was shown in Lemma 3.9. Earlier in this section we showed logspace
algorithms to compute T (G) (Lemma 4.1), ker(G) (Fact 4.4), and T (G, π) (Lemma 4.5). To enumerate all
labelings π of the kernel, only k′ log k′ bits are required. A canonical labeling of T (G, π) can be computed
in logspace by Lemma 4.6. It remains to observe that the canonical labeling ψG for G can be derived as in
Eq. (1), which is easily possible in logspace.

Theorem 4.7 immediately yields the following corollaries.

Corollary 4.8. For any fixed k, k-tree (and k-path) isomorphism is L-complete.
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We delay the hardness part to Proposition 6.3.
Note that fixing k is essential, as the isomorphism problem for the class of all k-trees, k unbounded, is

isomorphism complete [21] and hence unlikely to be decidable in polynomial time.
Furthermore, there is a standard Turing reduction of the automorphism group problem (i.e., computing

a generating set of the automorphism group of a given graph) to the search version of GI for colored graphs;
a similar reduction exists for counting the number of automorphisms (cf. [19, 24]). It is not hard to see that
these reductions can be performed in logspace.
Corollary 4.9. For any fixed k, a generating set of the automorphism group of a given k-tree can be
computed in logspace, and hence also a canonical labeling coset for a given k-tree.
Corollary 4.10. For any fixed k, the number of automorphisms of a given k-tree can be computed in
logspace.
Corollary 4.11. For any fixed k, the k-tree (and k-path) automorphism problem (i.e., deciding whether a
given k-tree has a non-trivial automorphism) is L-complete.

We postpone the proof of the hardness to Proposition 6.2.

5. Fixed parameter tractability

In this section, we give a time efficient implementation of the algorithm presented in Section 3.
Theorem 5.1. Given a k-tree G, a canonical labeling ψG for G can be computed in O((k + 1)! n) time.
Proof. First note that k can easily be obtained from the input graph, as all inclusion-maximal cliques have
size k+ 1. The tree representation T (G) of the input graph G can be computed in linear time by iteratively
removing simplicial vertices [30]. In this process it can also be checked that G is indeed a k-tree. Additionally,
for each of the k′! ≤ (k + 1)! labelings π of the kernel, the colored tree T (G, π) can be constructed in linear
time by first finding the center of T (G), computing all distances from the center to the other tree nodes
using breadth first search and finally outputting the color sets. Finally, a canonical labeling for the colored
tree T (G, π) can be computed in linear time [1, p. 84].

6. Complete problems for logspace

In this section we prove some completeness results for logspace that are related to our algorithm. The
hardness is under DLOGTIME-uniform AC0-reductions. We first recall that Ord is L-complete, where Ord
is the problem of deciding for a directed path P and two vertices s, t ∈ V (P ) if there is a path from s
to t [16].

In Fact 4.4 we have seen that the center of an undirected tree can be computed in logspace. We now
show that the decision variant is hard for L even when restricted to paths.
Theorem 6.1. Given an undirected path P and a vertex c ∈ V (P ), it is L-complete to decide if c belongs
to the center of P . This remains true if P is restricted to be a path of odd length.

We call this problem PathCenter. This theorem implies that the following problem is L-hard: Given a
k-tree (or k-path) G and a vertex c ∈ V (G), decide whether c belongs to the kernel of G. The reduction for
this is (P, c) 7→ (Ek(P ), c), where Ek transforms a path P (resp. tree T ) into a k-path Ek(P ) (resp. a k-tree
Ek(T )) by adding a (k − 1)-clique M and connecting M to all nodes in V (P ) (resp. V (T )) (cf. Fig. 4).

Proof. We reduce from Ord using (P, s, t) 7→ (P ′, n) as reduction, where
V (P ′) = V (P ) ∪

{
i′
∣∣ i ∈ V (P )

}
∪ {s′′}

E(P ′) =
{
{i, j}

∣∣ (i, j) ∈ E(P ) ∧ j 6= t
}
∪
{
{n, n′}

}
∪
{
{i′, j′}

∣∣ (i, j) ∈ E(P ) ∧ j /∈ {s, t}
}

∪
{
{i′, s′′}

∣∣ (i, s) ∈ E(P )
}
∪
{
{s′′, s′}

}
∪
{
{i, t′}

∣∣ (i, t) ∈ E(P )
}
∪
{
{i′, t}

∣∣ (i, t) ∈ E(P )
}

9



T

u1 u2 uk−1· · ·

Figure 4: The transformation Ek(T )

and n is the vertex without successor in P . P ′ is the undirected path that consists of two copies of P that
are twisted before t, connected at their ends and have the second copy of s duplicated (cf. Fig. 5). If s
precedes t in P (left side), then n is the center of P ′, but if t precedes s then n′ is the center of P ′ (right
side).

Using the hardness of PathCenter, we now prove the hardness of the automorphism and isomorphism
problems for k-paths.

Proposition 6.2. For any fixed k, the automorphism problem for k-paths (and thereby k-trees) is L-hard.

Proof. We reduce from PathCenter using the function (P, c) 7→ P ′ where the neighbors of c are n1 and n2,
and where

V (P ′) = V (P ) ∪ {c1, c2}
E(P ′) =

{
{u, v}

∣∣ 1 ≤ dP (u, v) ≤ k for u, v ∈ V (P )
}

∪
{
{u, ci}

∣∣ 0 ≤ dP−{ni}(u, c) < k for u ∈ V (P ), i ∈ {1, 2}
}

We assume that c has distance more than k to both ends, as otherwise the problem is trivial. It is easy to
see that P ′ is a k-path: The first k vertices on the path are the base. As the following vertices are added,
the support is always a set of k consecutive nodes on the path, with the additional vertices ci being added
after c enters the support and before c leaves the support, respectively. It is obvious that P ′ − {c1, c2} has
the non-trivial automorphism that maps the ith vertex on the path to the (n − i)th one, but is otherwise
rigid. This automorphism can be extended to all of P ′ by exchanging c1 and c2 if and only if c is the center
of P .

Proposition 6.3. For any fixed k, the isomorphism problem for k-paths (and thereby k-trees) is L-hard.

Proof. Again we reduce from PathCenter. Modifying the previous construction, we reduce (P, c) 7→
(P1, P2) where the neighbors of c are n1 and n2, the ends of P are v1 and v2, and where

V (Pj) = V (P ) ∪ {c1, c2, e}
E(Pj) =

{
{u, v}

∣∣ 1 ≤ dP (u, v) ≤ k for u, v ∈ V (P )
}

∪
{
{u, ci}

∣∣ 0 ≤ dP−{ni}(u, c) < k for u ∈ V (P ), i ∈ {1, 2}
}

∪
{
{u, e}

∣∣ 0 ≤ dP (u, vj) < k for u ∈ V (P )
}

s t n

7→

s

t′ n′

s′′
s′

t n

t s n

7→

t′

s′′
s′ n′

t s n

Figure 5: The reduction of Ord to PathCenter
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We assume that c has distance more than k+ 1 to both ends. If c is the center of P , the function that maps
the ith vertex of P to the (n − i)th, exchanges c1 and c2 and maps e1, e2 to themselves is an isomorphism
from P1 to P2. Conversely, if there is such an isomorphism then the ei force the original path vertices to be
mirrored and the ci ensure that c is the center.

Finally, we examine two problems related to the structure of k-trees. LetG be a graph. A vertex v ∈ V (G)
is called simplicial in G, if its neighborhood induces a clique. A bijective mapping σ : {1, . . . , ‖V (G)‖} →
V (G) of the vertices of G is called perfect elimination order (PEO), if for all i, σ(i) is simplicial in G −
{σ(1), . . . , σ(i− 1)}. Note that a graph can have several perfect elimination orders. It is well known that a
graph has a PEO if and only if it is chordal. As k-trees are a subclass of chordal graphs, each k-tree has a
PEO.

A related problem is the fast reordering problem (FRP) which is defined in [14] as a preprocessing step
for parallel algorithms. It consists of finding a partition R0, . . . , R` of V (G), such that R` is a clique and
each Ri, i < `, is a maximal independent set of simplicial vertices of G −

⋃
0≤j<iRj . For general chordal

graphs there can be several such sequences, but for k-trees this sequence is unique and the remaining clique
R` is the kernel. In [14] it was shown that if the input graphs are restricted to k-trees, the FRP can be
solved in NC. We improve this and show logspace completeness for both problems:

Theorem 6.4. For k-trees (k fixed), it is logspace complete to find a perfect elimination order and to solve
the fast reordering problem.

Proof. We first solve the fast reordering problem in logspace. Let G be a k-tree. We compute the
level lG(v) for each v ∈ V (G) (cf. Definition 3.6). By Lemma 4.5, this can be done in logspace. Let
lmax = max{lG(v) | v ∈ V (G)}. Output Ri := {v ∈ V (G) | lG(v) = lmax − i} for i = 0, . . . , lmax . It follows
from the structure of T (G) that R0, . . . , Rlmax is a solution for FRP.

Next, we note that a perfect elimination order can be efficiently computed when a solution R0, . . . , R`
to the FRP is known (i.e., finding a PEO reduces to solving the FRP): Take the members of the Ri in
ascending order, first those from R0, then those from R1 and so on up to R`. By the definition of FRP, it
follows that the result is a PEO, no matter which order is chosen within each Ri.

Finally we show that finding a perfect elimination order is hard for logspace even for paths. The result
for k-trees (and k-paths) can be obtained using the construction of Ek given above. We solve an Ord
instance (P, s, t) in DLOGTIME-uniform AC0 with a single oracle gate for computing a PEO of the path P ′
given by

V (P ′) = V (P ) ∪
{
i′
∣∣ i ∈ V (P ) \ {n}

}
E(P ′) =

{
{i, j}

∣∣ (i, j) ∈ E(P )
}

∪
{
{i′, j′}

∣∣ (i, j) ∈ E(P ), j 6= n
}
∪
{
{i′, n}

∣∣ (i, n) ∈ E(P )
}

where n is the vertex in P without successor. We claim that for any PEO σ of P ′ (where pi is a shorthand
for the position σ−1(i) of a vertex in σ):

(P, s, t) ∈ Ord⇔ ps ≤ pt ≤ pn ∨ ps′ ≤ pt′ ≤ pn

s t n

7→

s t

n

t′s′

t s n

7→

t s

n

s′t′

Figure 6: The reduction of Ord to finding a PEO
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If (P, s, t) /∈ Ord, then s is between t and n, and s′ is between t′ and n in P ′ (right side in Fig. 6). Thus
σ cannot satisfy both ps ≤ pt and ps′ ≤ pt′ . If (P, s, t) ∈ Ord (left side of Fig. 6), n does not become
simplicial until at least one copy of P is completely removed. Similarly, if the first copy is completely
removed before n, t does not become simplicial before s is removed; and if the second copy is completely
removed before n, t′ does not become simplicial before s′ is removed.

7. Conclusions

We proved that the isomorphism and automorphism problems for k-trees are complete for logspace, and
that canonical labelings of k-trees can be computed in logspace. Further, we described an O((k+1)!n) time
implementation of our canonical labeling algorithm, yielding the fastest known fixed parameter tractable
isomorphism algorithm for k-trees.

Our motivation for studying the isomorphism of k-trees stems from the fact that graphs of treewidth at
most k coincide with partial k-trees, i. e. subgraphs of k-trees. Finding space efficient and parallel algorithms
for this class is an active research area. We hope that our result can be generalized from k-trees to partial
k-trees in the future. Das, Torán and Wagner already used some of our techniques to put isomorphism of
tree distance width k graphs in L [11], a subclass of treewidth k graphs that is incomparable to k-trees. They
also reduce isomorphism of decomposed bounded treewidth graphs to isomorphism of bounded tree distance
width graphs, obtaining an LogCFL algorithm for isomorphism of bounded treewidth graphs [11] (previously,
a TC1 algorithm for this problem was given in [18]). The remaining obstacle to put this problem in L is
thus the computation of compatible tree decompositions in logspace, compatible meaning that if two partial
k-trees are isomorphic then there should be an isomorphism that maps one decomposition to the other.
Elberfeld, Jakoby and Tantau showed how to compute a tree decomposition in logspace [15] (previously,
LogCFL was known [35]), using and improving the mangrove technique we employed in our intermediate
StUL result for k-tree isomorphism [5]. However, the constructed tree decomposition strongly depends on
the names of the vertices, and computing compatible tree decompositions in logspace seems to require new
ideas. Building upon techniques of [15], Wagner proved that partial k-trees can be canonized in AC1 [34]
(previously, a TC2 algorithm was known [25]). It remains an intriguing open problem if this can be improved
to logspace.

Our logspace algorithm for k-tree isomorphism takes O(k logn) space. Can this be improved to O(f(k)+
logn)? It can be argued that this is the right notion for “fixed parameter logspace”, as it directly implies
an O(f(k)nO(1)) time bound.

Bodlaender shows that isomorphism of partial k-trees can be decided in O(nk+4.5) time [8]. Is this
problem fixed parameter tractable?
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