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Abstract. We present COLUMBA, an integrated database of protein annotations. 
COLUMBA is centered around proteins whose structure has been resolved and 
adds as much annotations as possible to those proteins, describing their proper-
ties such as function, sequence, classification, textual description, participation 
in pathways, etc. Annotations are extracted from seven (soon eleven) external 
data sources. In this paper we describe the motivation for building COLUMBA, its 
integrational architecture and the software tools we developed for the integrated 
data sources and keeping COLUMBA up-to-date. We put special focus on two as-
pects: First, COLUMBA does not try to remove redundancies and overlaps in data 
sources, but views each data source as a proper dimension describing a protein. 
We explain the advantages of this approach compared to a tighter semantic in-
tegration as pursued in many other projects. Second, we highlight our current 
investigations regarding the quality of data in COLUMBA by identification of hot 
spots of poor data quality. 

1 Introduction 

In life science research, there is an overwhelming amount of data in public and com-
mercial databases available for data analysis and knowledge discovery. The time and 
cost effective usage of these data is hampered by two main problems: (i) the distribu-
tion of relevant data over many heterogeneous data sources and (ii) the quantity of 
errors and omissions within these sources. The first problem is solved by data integra-
tion approaches, while the second problem is tackled by means of data cleansing. 

COLUMBA is a database of integrated protein annotations. Therefore, it has to cope 
with both types of problems. First, the sources currently integrated into COLUMBA are 
spread world-wide, are hosted on a variety of different platforms, and each has its 



own proper schema or format, semantically and syntactically distinct from all others. 
Second, the sources suffer from incompleteness and sometimes store redundant re-
sults, which need to be identified and inconsistencies need to be removed. Within this 
paper, we explain our specific solutions to both problems. 

Data integration in general is complicated by technical, syntactical, and semantic 
heterogeneity of the sources, our inability to define a global, all-embracing schema 
for the domain due to incomplete domain knowledge and the pure complexity of the 
problem, frequent changes to source data and source schemas, and the effort neces-
sary for integrating additional data sources. Data integration systems aim at providing 
unified access to a set of heterogeneous data sources based on an integrated view of 
the data sources. For COLUMBA we choose a multidimensional integration approach, 
where the data are materialized in a local relational database and the global schema is 
built of linked component schemas for each of the sources, closely following their 
proper concepts. The schema is centered on protein structures, taken from the central 
repository, the Protein Data Bank (PDB) [1]. Apart from the PDB, COLUMBA cur-
rently integrates six different data sources, describing various aspects of proteins and 
protein structures. 

We call our approach “multidimensional“ because it treats each data source as an 
essentially independent dimension, describing proteins. Keeping the schema close to 
the concepts of the sources and connecting them by relations has the advantage of 
(i) presenting all data to the biological user in terms of well-known concepts, which 
would get blurred by semantic integration, (ii) relieving us of the necessity for seman-
tic integration, (iii) enabling the re-usage of existing parser software for the sources, 
(iv) effortless addition and removal of sources due to modular design of the schema, 
(v) simplifying the reconstruction of the origin of each piece of information (data 
provenance) resulting in higher user confidence and an ease of the update process in 
case of source changes, and (vi) a simple and intuitive query model (and resulting 
web-interface) following a ‘query refinement’ paradigm resembling common manual 
procedures of the biological domain expert.  

Many data sources in the biomedical domain are renowned for containing data of 
sometimes poor quality [2][3]. This is due to the experimental nature of the field, the 
quickly changing knowledge landscape, the high redundancies in experiments per-
formed often leading to contradicting results, and the difficulties in properly describ-
ing the results of an experiment in a domain as complex as molecular biology. Fur-
thermore, it was often observed that data quality problems multiply when data of low 
quality are integrated and re-used for annotation [4]. 

In COLUMBA, we pay special attention to the aspect of measuring data quality and 
detecting hot-spots of poor quality. We approach the problem by analyzing contra-
dicting values in the case of duplicate protein entries. In COLUMBA, such duplicates do 
not appear at the data sources, which are considered independent, but in the core data, 
i.e. the PDB entries, itself. Currently there are three instantiations of the PDB, which 
are derived from each other, but with different procedures for data completion and 
correction applied. For COLUMBA we face the problem of having to choose the best 
origin for each single attribute value. 

With this paper we want to share our experiences gained in building an integrated 
database in the life science domain and highlight the benefits and difficulties of the 
multidimensional integration approach. Further, we report on preliminary results in 



identifying and quantifying quality problems in complex domains such as life science. 
The structure of the paper is as follows. In the next section we give an overview of the 
biological background and motivation for an integrated database of protein structure 
annotation. In Section 3 we briefly describe the characteristics and formats of the data 
sources integrated into COLUMBA. Section 4 describes the multidimensional data inte-
gration architecture. In Section 5 we describe the design of the database schema and 
integration pipeline used to populate and update the database. We also outline the 
possibilities for initial data cleansing during this process. In Section 6 we describe the 
web-interface for building and executing queries to the database. Section 7 discusses 
related work. We conclude in Section 8. 

2 Biological Background 

Researchers on protein structures are often interested in sets of proteins, sharing cer-
tain properties such as sub-folds, protein function, source organism, or pathways. 
Being able to generate such sets quickly has at least two major applications. First, 
researchers may select such a set to perform some special analysis only on the struc-
tures within this set, trying to find set-specific properties. Second, researchers have 
defined groups of proteins and try to correlate these groups according to the properties 
of the protein structures contained. 

Sets of structures are mainly required for the prediction of the docking of small 
molecules, protein folding and protein-protein interactions, and analyzing functional 
relationships. All three require data from comparative studies, also carried out on 
specific datasets. Depending on the kind of study and interest of the research group a 
spectrum of very different questions arise. Examples are: 

- Get all structures having the TIM-barrel fold with a resolution better than 2.0 Å. 
- Get all structures of antibodies of the IgG class. 
- Get all structures of enzymes in the fatty acid degradation pathway. 
- Get all structures from saccharomyces cerevisiae (yeast) with less than 90% se-

quence similarity to a human protein. 

These questions have in common that they result in a list of protein structures. The 
second kind of analysis, e.g., looking for a new structural motif, requires such a list as 
input, which is then further characterized. The criteria used for characterizing them 
are similar as in the above examples, because some biases in the source data have to 
be omitted. 

We give one more elaborate example for the types of queries we pursue with 
COLUMBA. Proteins act together in pathways. For pathways, there are specialized 
databases such as KEGG [5]. However, the question is whether all pathways known 
today are equally well represented in terms of structures of the participating proteins. 
To get an impression of both, the numbers and the heterogeneity in the database, the 
coverage of metabolic pathways by structures was analyzed, using the integrated data 
in COLUMBA from the PDB and KEGG. A great mixture of coverage can be observed 
among pathways, some highly covered while others have no structure assigned to 
them at all (Table 1). 



Table 1. Coverage of metabolic pathways with structures in PDB. Each pathway - a group of 
connected biochemical reactions - consists of several enzymes. For each enzyme, zero to many 
protein structures are available. If no structure for an enzyme exists, this is mainly due to ex-
perimental reasons. We analyzed to what extent pathways are already resolved by structures. 
This kind of query is available as a predefined button in the COLUMBA web interface 

Pathway Enzymes Structures Enzymes with 1+ structures 
Carbon fixation 23 323 87% 
Fatty acid biosynthesis II 7 32 57% 
Val/Leu/Ile biosynthesis 15 38 53% 
Citrate cycle (TCA cycle) 23 157 52% 
Peptidoglycan biosynthesis 16 35 50% 
Alkaloid biosynthesis I 34 96 15% 
Ubiquinone biosynthesis 10 0 0% 

3 Data Sources 

COLUMBA currently integrates data from seven data sources: The Protein Data Bank 
(PDB), the Structural Classification of Proteins (SCOP) [6], the Kyoto Encyclopedia 
of Genes and Genomes (KEGG), the Dictionary of Protein Secondary Structure 
(DSSP) [7], the Enzyme Nomenclature Database (ENZYME) [8], the Dictionary of 
Interfaces in Proteins (DIP) [9], and the Protein Topology Graph Library (PTGL). 
Four more data sources are already physically integrated, but not yet released into the 
public version of COLUMBA, i.e., protein classification from the Hierarchic Classifica-
tion of Protein Domain Structures (CATH) [10], functional annotation integrated from 
SWISS-PROT [11], the NCBI taxonomy database of organisms [12], and the Gene-
Ontology (GO) [13]. 

Additional data sources, which we are planning to integrate soon, are the non-
redundant lists of structures from PISCES [14], protein families from SYSTERS [15], 
and biochemical pathway charts from Boehringer-Mannheim [16]. 

The Protein structure database PDB is often referred to as a worst case scenario of 
biological data representation. We will illustrate five typical problems occurring with 
the PDB and other biological databases as well: (i) Starting in the 1980’s as a reposi-
tory of a few ASCII files of x-ray protein structures, the PDB has grown to the size of 
more than 22000 structures by late 2003. However, the file format originally inspired 
from punch cards has changed only once in those 20 years and is very difficult to 
parse. (ii) It contains structures not only of proteins, but also DNA, peptide fragments 
and large biological complexes. (iii) The structures have been resolved with several 
experimental methods, e.g., NMR ensembles and very low resolution electron mi-
croscopy images. The quality of the results therefore varies greatly. (iv) The data are 
highly redundant; there are more than 800 structures of the protein Lysozyme, but only 
one of Photosystem I. (v) The annotation is mostly incomplete, erroneous, and full of 
typographical errors. Controlled vocabularies are not applied in the database until 
today (but sometimes in submission tools). Thus, one has to pick relevant information 
very carefully from a data pool with a certain level of noise. 



The data sources are available in various formats. The predominant format are flat 
files, e.g., for PDB, SCOP, CATH, and ENZYME, which are parsed to create load 
files for the target relational database management system. Boehringer and KEGG 
were parsed from web sites using our own parsers. Several other sources are available 
as database dump files, e.g., SWISS-PROT, GeneOntology, and NCBI data [17]. 
SWISS-PROT data are also provided as flat files and database load files. There exist 
public parsers for PDB, SCOP, ENZYME, and SWISS-PROT. The remaining data 
sources in flat file format follow a predominantly simple file format making imple-
mentation of the parser fairly simple. DSSP is a special case, because it is a program 
to compute the secondary structure for protein sequences from the PDB entries. PDB 
is also available in different formats and database versions. In Section 5.3 we shall 
give more information how PDB is parsed and transformed to form the basis of 
COLUMBA. 

We integrate everything within a relational database. At time of writing the 
COLUMBA database contains annotation for 22453 protein structures, containing a total 
of 45037 polypeptide chains, 25920 biological compounds and 217015 small molecu-
lar groups. Of these entries, 89% have been annotated by at least one type of data 
source (sequence, function or fold), 36% by all three. 

4 Multidimensional Data Integration 

Defining a global schema covering semantically and structurally heterogeneous data 
sources poses a major challenge for the design of any data integration system. The 
approach most commonly described in literature is schema integration. Schema inte-
gration is defined as the activity of integrating the schema of existing data sources 
into a global schema by unifying the representation of semantically similar informa-
tion that is represented in a heterogeneous way across the individual sources [18]. 
This involves the identification of semantically equivalent attributes or concepts 
within the different sources and the definition of a strategy for merging them into a 
resulting schema, covering all the aspects of the contributing sources. Recently, a 
number of tools have been proposed which can aid the user in this task by analyzing 
names and relationships of schema elements [19][20]. 

Within COLUMBA we use a different approach, which we call multidimensional 
data integration. The name is inspired from data warehouse design. In data warehous-
ing, facts, e.g., sales, are described by dimensions, such as store, product, or customer 
[21]. The resulting schema is called star or snowflake schema in correspondence with 
the visual appearance. In analogy we center our schema on protein structures and 
describe them by dimensions such as function, description, classification, or se-
quence. Furthermore, we strictly follow the design paradigm that each data source is 
mapped into one dimension. Data from different sources are never mixed with each 
other.  

The two main characteristics of our multidimensional data integration approach are 
(more details are given below): 

- We leave the data in a schema closely following the concepts and design of the 
source schema. 



- We model COLUMBA as a multidimensional schema, where the integrated single 
sources take the role of (often complex and hierarchically structured) dimensions 
to form a snowflake-like schema centered on the PDB entry. 

4.1 System Architecture 

The integration process as shown in Fig. 1 is divided into horizontal and vertical inte-
gration flow. In the first step for each of the sources a horizontal integration module 
performs the transformation of the original data into an initial relational representation 
(initial schema). The complexity of this step depends on the data source. The rela-
tional representation filled in this step is completely independent from the final 
COLUMBA schema. 
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Fig. 1. Multidimensional data integration architecture showing the horizontal integration mod-
ules for each of the sources transforming the data from local schema to initial schema and 
target schema and the vertical integration module integrating the data within the global schema 

In the second step, we define a mapping from the initial relational schema into the 
COLUMBA target schema. Again, this step is performed for each source, i.e., both map-
pings and the target schema are source-specific. The target schema can differ from the 
initial schema for many reasons. First, only data relevant for COLUMBA are taken into 
the target schema. Second, the target schema is modeled such that typical queries can 
be computed with sufficient performance, e.g., it is often more or less normalized than 
the initial schema. Third, during the mapping, sometimes also records (and not only 
tables) are filtered because they describe data items outside the scope of COLUMBA.  

In the third step, vertical integration is performed by connecting the data in the tar-
get schemas to each other and to the PDB core by filling the linkage tables. This can 



be done either by using cross-link information from the sources or by performing 
computations built on knowledge of biological rules. In Section 5 we give a more 
detailed overview about the actual integration process of COLUMBA. 

Having sources within the relational model enables us to define other global sche-
mas as composition of the different sources, depending on the application require-
ments. We view COLUMBA as only one of the possible target applications. 

4.2 Advantages of Multidimensional Data Integration 

Multidimensional data integration has advantages regarding system maintenance and 
development, data provenance, keeping the data up-to-date, and usability. In the 
following sub-sections we give a detailed overview of the advantages within each of 
the mentioned areas. 

Please note that not performing semantic integration of data sources also has a 
drawback. For instance, functional annotation of proteins in COLUMBA can be found 
both in SWISS-PROT description lines as well as in GO annotations. However, we 
strongly believe that integrating such data is counter-productive. Biologists heavily 
depend on the credibility of a source and the specific process-of-generation for judg-
ing data from databases. Therefore, our users have a clear separation between func-
tional annotation in SWISS-PROT (developed and maintained in human language by 
a human expert) and functional annotation in GO (also maintained by humans, but in 
the form of IDs referencing external keywords). Integrating such information would 
not only be a tremendous and extremely expensive task, but would also blur this vital 
difference and thus leave users with less confidence to the system. 

4.2.1 System Maintenance and Development 
Focusing on individual data sources and the distinction between horizontal and verti-
cal integration flows results in a modular system, benefiting extensibility and software 
development. Adding additional sources or removing existing ones is easy because in 
case of additions we extend the global schema by including the target schema of the 
new source as an additional dimension and in case of removal just delete the target 
schema and the linking tables from the global schema. The modular design also re-
duces the effort necessary for reacting on changes in the schemas of individual 
sources. Here again, we only take the individual source into account, define mappings 
and linkages for them, while the rest of the schema and database remains untouched. 

The strong focus on individual data sources also has an advantage in creating the 
system software for loading and updating the database because in many cases we are 
able to apply existing software for parsing and loading (see Section 3). Specifying and 
implementing software parsers is also much simpler if we do not have to take into 
account any semantic mappings and global constraints. This accelerates the software 
development part and keeps the resulting system maintainable and well structured. 

4.2.2 Data Provenance and Currency 
Integrating the data in primarily separate parts for each source facilitates the determi-
nation of data provenance, i.e., reconstructing for each piece of information the source 



and data item it originates. We store information about data provenance and the data 
integration process as meta-data within separated tables in the global schema. This 
includes the original data source, the release number, and the programs used to extract 
or calculate the attribute values for each entry. 

Detailed information about the data source of origin for an entry has advantages in 
case of error identification and source updates. If we identify a specific source entry 
to be erroneous we can correct it or simply exclude it from our database. In case of 
changes to source data we can identify those entries, which have to be updated or 
deleted within our database. 

The mainly autonomous global schema design eases the update process in general 
because we upload the new release of a data source and are able to separately generate 
a new target sub-database, which is then connected to the existing data. Otherwise, 
there would be the necessity to merge the data from the new release with the existing 
and unchanged data from additional sources to generate a new version of the data-
base. 

4.2.3 Usability 
In keeping data from the individual sources identifiable within the global schema the 
users can easily formulate the query on well known concepts. Schema integration 
over domains with a high degree of semantic heterogeneity like the life science or 
genome data domain result in an integrated schema which is rather complex (when 
using schema integration), making the schema difficult to understand. The resulting 
schema often differs heavily from the original schema, making it hard for the domain 
expert, used to the original sources, their concepts and terminology, to find their way 
around. 

The multidimensional data integration approach also allows for a very intuitive 
query model. Queries are designed as refinements or filters over properties of proteins 
as derived from the different data sources. We expand on this aspect in Section 6. 

5 Integration Process and Schema Design 

5.1 COLUMBA Schema Design 

The resulting schema (Fig. 2) is organized around PDB entries. They are surrounded 
by information from the additional sources, listed in Section 3, defining certain prop-
erties of the structures, contained within the entry. Each of the sources can be viewed 
as a dimension in the multidimensional model.  

We want to stress again the importance of not merging data sources, although this 
might yield data redundancies within the integrated system. In many cases, meaning-
ful schema integration is not possible because of the different concepts used for repre-
senting semantically equivalent information. For example SCOP and CATH, two 
databases storing classifications about evolutionary and structurally related proteins, 
use different classification hierarchies and methods resulting in different hierarchies 



despite many sub-trees of the classification being congruent. These differences would 
inevitably result in conflicts when both data sources should be integrated to one target 
table. No matter how these conflicts would be solved, the result would be unrecogniz-
able for at least one of the data sources. Thus, we decided to avoid this problem by 
storing both hierarchies separately and leave it to the query system and/or the end user 
to decide, which of the sources is to be used. 
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Fig. 2. Entity-Relationship model of COLUMBA. Data in the tables PDB_ENTRY, COM-
POUND, CHAIN and HETERO originate from the PDB database, all others from the annota-
tion data sources 

5.2 COLUMBA Production Workflow 

The production workflow (Fig. 3) of COLUMBA, like the schema, is also centered on 
PDB entries. Each of theses entries contains information about atom coordinates, 
macromolecules, their sequence, publications etc. PDB entries are downloaded in the 
mmCIF format and parsed into a relational schema using the OpenMMS toolkit [22] 
(Fig. 3.1). This schema is then mapped to a simpler representation (Fig. 3.2). 

The annotation pipeline generates connections between PDB entries and objects 
from the other data sources (Fig. 3.3 / 3.4). Conceptually, each data source is repre-
sented by a software module, which implements a fixed interface. After having trans-
formed a new PDB entry into the COLUMBA representation the workflow manager 
triggers each module by giving them the opportunity to detect and store annotations. 
Each data source module contains a list of data sources it requires. The workflow 



manager resolves these dependencies and finds a sequence of handling the modules. 
To include a new data source, only the tables and the module itself have to be written, 
and the module name added to a configuration file. 

The modules vary according to the nature of the data source. For instance, the 
DSSP module calls the DSSP program and computes the secondary structure for each 
chain, whereas the SCOP module only takes the PDB and chain identifiers and 
matches them with classification files. The entire COLUMBA global schema contains 
32 tables and is implemented on PostgreSQL 7.4. 

 

Fig. 3. Production workflow describing data fluxes and content relations: 1.) Load PDB data to 
OpenMMS database. 2.) Map OpenMMS schema to a simpler model. 3.) Add annotation from 
multiple sources of data. 4.) Add data to application-specific schemas. 5.) Have everything in 
one database. 6.) Query the data 

5.3 Data Cleansing  

The existence of errors and omissions in genome databases is a well known fact. The 
process of finding and resolving data quality problems in databases is generally called 
data cleansing [23]. We roughly differentiate between syntax and semantic errors. 
Syntax errors are mainly domain or format violations in data entries and values as 
well as misspellings. Syntactic cleansing operations like format and domain transfor-
mation, standardization, normalization, and dictionary lookup can be performed 
within the individual parsers or by separated cleansing modules for each of the 



sources. Currently, we are only checking for entry and value format violations and 
correct them by skipping the respective entry or value. 

Semantic errors impact the accuracy of data regarding the real-world facts they are 
to represent. This type of errors is difficult to detect and eliminate. The direction we 
are currently following for semantic data cleansing utilizes redundant information. 
Exploiting redundancies for data cleansing is possible in cases where there exist over-
lapping versions of the same data source with slightly differing content. The differ-
ences might be due to manual data cleansing, data transformations, or data enhance-
ment. The PDB database is available in three different versions and formats: (i) the 
original PDB data available in flat file format, (ii) data in macromolecular Crystallo-
graphic Information File format (mmCIF) from the PDB uniformity project at the 
University of California San Diego (UCSD) aiming at removing inconsistencies in 
PDB data [24], and (iii) the macromolecular structure relational database (E-MSD), a 
comprehensive cleansing project at the European Bioinformatics Institute (EBI) to 
ensure data uniformity and create a single access point for protein and nucleic acid 
structures and related information, available as Oracle dump files [25]. 

We currently utilize the parser for PDB flat-files to create an instance of our PDB 
target schema and the OpenMMS Toolkit, containing software for parsing and load-
ing mmCIF files into a relational database. This toolkit uses a complex schema con-
sisting of approximately 140 tables. We generated a set of schema mapping rules, 
which transform the data from the OpenMMS schema into a simpler target schema 
comprising only 6 tables. Thereby, we are able to create two overlapping instances for 
our PDB target schema. By comparing these instances and highlighting and evaluat-
ing the differences, using domain knowledge we are able to identify the reliable parts 
within both of the instances to select them for integration into a resulting third in-
stance of the PDB target schema. 

Identification of corresponding records within the two instances is easily done via 
the unique PDB identifier forming a matching record pair. We analyze these matching 
pairs for mismatches in their attribute values. The percentage of mismatches within 
the attributes varies widely (Table 2). Attributes having close to 100% mismatches 
often result from different formats or NULL values within one of the instances. Fur-
ther investigating the mismatch causing values within each of the attributes reveals 
additional information about the causes for the mismatch. 

For instance, comparison and evaluation enabled us to identify 32 records having a 
deposition year of 1900 in the mmCIF files where the original PDB flat files state the 
year 2000 for entry deposition. In an other case the structure method for over 2000 of 
the records resulting from parsing the PDB flat files was unknown while the mmCIF 
files stated X-ray diffraction as the structure method used. 

We are also investigating mismatch dependencies between attribute pairs (Ai, Aj) 
where a mismatch in attribute Ai always causes additional mismatches in attribute Aj 
within the same matching record pair. Identification of these dependencies gives us a 
hint of the cause of the problem and hence of possible resolution strategies. 

We are planning on extending this comparison approach to include E-MSD, giving 
us three overlapping instances at hand and also on extending the search for patterns of 
differences within the instances to gain a resulting integrated instance of even higher 
accuracy for PDB data. 



Table 2. Showing for each of the attributes in table PDB_ENTRY the probability P(Ai) for 
mismatches within matching pairs and the number of different values for each attribute in each 
of the compared instances PDB-Parsed (resulting from PDB flat files) and MMS (resulting 
from OpenMMS mapping) 

Attribute P(Ai) PDB-Parsed MMS 
NAME 0.999 2,299 19,736 
YEAR_PDB_DEPOSITION 0.004 33 34 
DEPOSITION_DATE 0.006 3,755 3,949 
RELEASE_DATE 0.572 1,320 1,184 
STRUCTURE_METHOD 0.183 135 96 
RESOLUTION 0.451 289 356 
R_VALUE 0.999 1 851 
R_FREE 0.999 1 1,492 
REFINEMENT_PROGRAM 1 1 485 

6 Web Interface 

For accessing COLUMBA a web interface is available at www.columba-db.de. This web 
interface uses a "query refinement" paradigm to return a subset of the PDB entries. A 
query is defined by entering restriction conditions on the data source specific annota-
tions (Fig. 4). The user can combine several queries acting as filters to obtain the 
desired subset of PDB entries. The interface supports interactive and exploratory 
usage by straightforward adding, deleting, restricting or easing of conditions. For 
example, the whole set of PDB entries first can be filtered by searching for a name, 
then a constraint on the resolution of the structures is applied, and finally redundant 
sequences are excluded. The user is supported by a preview, which constantly shows 
the number of PDB entries and chains in the result set. 

The result set gives basic information to each of the entries returned. This set is 
available as a formatted HTML table or text file. The user can see the full scope of 
COLUMBA on a single PDB entry, where all the information from the different data 
sources is shown. 

7 Related Work 

There are many efforts providing data on proteins via the Internet, and most of them 
use relational databases. Like the data sources listed above most of them focus on one 
special aspect of proteins, thus being an interesting object for integration. Often, they 
also contain hyperlinks to related databases, following the paradigm of link integra-
tion [26]. 

The PDBSUM [27] service is an excellent example for this approach: It contains a 
quick summary page for each PDB entry, plus dozens of links. The PDBSUM exam-
ple is an auxiliary source for gathering information on few structures with known 
PDB codes, but it is not intended as a query and cross-comparison system. 



The Jena Image library [28] provides data on protein structures and some external 
data sources (NDB, SWISS-PROT) in the form of large ASCII dump files. This ap-
proach has an intuitive charm for computer scientists, because parsing does not re-
quire much more than to split a string by tabs, but biologists will be deterred. Know-
ing this, the Jena team has designed a query interface, allowing full text search on all 
entries. 

 

Fig. 4. The COLUMBA Query Interface for specifying restrictions on attributes within the PDB 
target schema 

Finally, there are several integrated databases of protein sequence and genome an-
notation (e.g. EXPASY [29]). They have been present for years, resulting in mature 
and reliable web interfaces and tools, which are very frequently used by lab biolo-
gists. Although they all contain references to PDB structures, they do neither cover 
the full spectrum of structure-specific data sources nor the level of detail contained in 
COLUMBA. The reason for this is obvious: The protein sequence databases are more 
than ten times larger than the PDB, shifting the focus from the mentioned databases to 
other fields. 



In [30] a data warehouse approach to microarray data is described and also the in-
tegration of gene function and gene products is reported. However, no particular inte-
gration method is described, which makes a comparison impossible. 

The various approaches for schema integration have already been mentioned and 
advantages and drawbacks discussed. Regarding schema design [31] suggests concep-
tual models for different types of Life Science data. However, these models are not 
designed for data integration and no model is proposed for protein structures. 

Existing approaches for data cleansing are surveyed in [32]. These approaches cur-
rently focus predominantly on syntactical data cleansing while the aspect of semantic 
data cleansing remains unattended to a great extent. At the moment semantic data 
cleansing is mostly done using integrity constraint checking for error detection while 
error correction is often left up to the user. Exploiting overlapping information 
sources for data cleansing has not been regarded so far. 

8 Conclusion 

We presented COLUMBA, a database of protein annotations, which currently integrates 
data from seven data sources including PDB. We described COLUMBA’s general archi-
tecture, sketched the advantages of the multidimensional approach to data integration 
implemented in COLUMBA, and discussed first results on data quality estimations we 
investigate. COLUMBA is freely available on the web for non-commercial and aca-
demic usage. Commercial users must obey all license restrictions of each individual 
data source integrated into COLUMBA. The database is already used intensively in 
several projects within the Berlin Center for Genome-based Bioinformatics (BCB), 
such as for the study of DNA-binding proteins within the department for biochemistry 
of the Charité and for the selection of candidate structures for the evaluation of paral-
lel threading algorithms at the Conrad-Zuse Center. 
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