
Fast and Practical Indexing and Querying of Very Large
Graphs

Silke Trißl
Humboldt-Universität zu Berlin

Unter den Linden 6
D-10099 Berlin, Germany

trissl@informatik.hu-berlin.de

Ulf Leser
Humboldt-Universität zu Berlin

Unter den Linden 6
D-10099 Berlin, Germany

leser@informatik.hu-berlin.de

ABSTRACTMany appli
ations work with graph-stru
tured data. Asgraphs grow in size, indexing be
omes essential to ensuresu�
ient query performan
e. We present the GRIPP in-dex stru
ture (GRaph Indexing based on Pre- and Postordernumbering) for answering rea
hability queries in graphs.GRIPP requires only linear time and spa
e. Using GRIPP,we
an answer rea
hability queries on graphs with 5 millionnodes on average in less than 5 millise
onds, whi
h is un-rivaled by previous methods. We evaluate the performan
eand s
alability of our approa
h on real and syntheti
 randomand s
ale-free graphs and
ompare our approa
h to existingindexing s
hemes. GRIPP is implemented as stored pro
e-dure inside a relational database management system and
an therefore very easily be integrated into existing graph-oriented appli
ations.
Categories and Subject DescriptorsH.2.8 [Database management℄: Database Appli
ations�graph indexing and querying
General TermsPerforman
e.
KeywordsGraph indexing, Rea
hability queries, Databases
1. INTRODUCTIONManaging, analyzing, and querying graph-like data is im-portant in many areas su
h as geographi
 information sys-tems [14℄, web site analysis [12℄, and querying XML do
u-ments with XPointers [22℄. In addition, the semanti
 webbuilds on RDF, a graph-based data model, and on graph-based query languages su
h as RQL [19℄ or SparQL1. Thus,1http://www.w3.org/TR/rdf-sparql-query
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

querying graphs will likely be
ome even more importantin the near future. In our own resear
h we mostly workwith data from the Life S
ien
e domain. The importan
e ofgraphs in this area is also in
reasing rapidly. It is now
om-monly a
knowledged that further progress in understand-ing the
omplex me
hanisms inside a living
ell
an only bea
hieved if the interplay of many
omponents, organized innetworks, is understood [5℄. Nodes in these networks aremole
ules, rea
tions, or physi
al intera
tions. These nodesmay be annotated with a vast amount of additional datastored in various databases. Edges represent intera
tions,su
h as the enzymati

onversion of mole
ules, the regula-tion of gene expressions, or the physi
al intera
tion of pro-teins. Large networks, e.g., metaboli
 [18℄ or protein-proteinintera
tion networks [23℄, are built from single intera
tions.In [16℄ van Helden and
olleagues identi�ed several impor-tant queries on biologi
al networks. For instan
e, the ques-tion "�nd all genes whose expressions is dire
tly or indire
tlyin�uen
ed by a given mole
ule"
an be mapped to a rea
h-ability query in a dire
ted graph of genes and regulationevents.The size of the graphs or networks under
onsideration
an be very large. Typi
al biologi
al networks are
urrentlyin the range of tens of thousands of nodes. This num-ber in
reases dramati
ally as a
tivity in measuring intera
-tions moves from ba
teria to higher organisms, su
h as hu-mans [4℄, whi
h are believed to
ontain more than 300,000di�erent proteins. Already today, networks of biomedi
alentities (genes, diseases, drugs, et
.) extra
ted from publi-
ation databases
ontain more than 10 million edges2.One important type of queries in graphs are rea
habilityqueries. Given two nodes v and w in a graph, we want toverify whether there exists a path from v to w. There aretwo obvious approa
hes to answer su
h queries. First, one
an re
ursively traverse the graph at query time, startingfrom v and performing a depth-�rst or breadth-�rst sear
huntil w is rea
hed or no more edges remain [9℄. Given agraph G with n nodes and m edges this method requires
O(m) lookups. No index is needed, but performan
e is badeven on small graphs. Se
ond, one
an pre-
ompute thetransitive
losure (TC) of the graph. Using the TC as indexrea
hability queries
an be answered by a single lookup. Buton the downside, the
omputation of the TC is O(n3) andits size O(n2) [9℄. This renders its
omputation and storageinfeasible for large graphs (see also Se
tion 7).Table 1 shows the worst
ase
omplexity of several ap-proa
hes to redu
e
omputation
ost or storage spa
e (see2See http://www.pubgene.org.

Se
tion 2.1 for details). Chen et al. [6℄ (Labeling+SSPI)only index a spanning tree and store additional edges ina separate index stru
ture,
alled SSPI. The entire indexrequires O(n+m) spa
e, but parts must be traversed re
ur-sively at query time. The Dual Labeling approa
h by Wanget al. [26℄
an be queried in
onstant time. They also �rst
ompute a spanning tree and build a
ondensed transitive
losure over the remaining t edges. Index generation requires
O(n + m + t3) time and its size is O(n + t2). This is a

ept-able for sparse, tree-like graphs (with t ≪ n), but for densergraphs (t > 2n) the method also requires an prohibitivelylarge amount of spa
e. S
henkel et al. [22℄ proposed HOPI,a method to
ompute the 2-Hop-Cover, whi
h requires only
O(nm1/2) spa
e, but as the TC O(n3) time to
ompute theindex.Table 1: Worst
ase
omplexities of di�erent indexand query strategies to answer rea
hability queries.Query time Index time Index sizeRe
ursive O(n + m) - -Labeling+SSPI O(m− n) O(n + m) O(n + m)GRIPP O(m− n) O(n + m) O(n + m)Dual Labeling O(1) O(n + m + t3) O(n + t2)HOPI O(m1/2) O(n3) O(nm1/2)TC O(1) O(n3) O(n2)In this paper we present the GRIPP index (GRaph Index-ing based on Pre- and Postorder numbering) for indexingvery large graphs. Its basi
 idea is an adaptation of the pre-and postorder numbering s
heme � so far only applied totrees [10℄ and dire
ted, a
y
li
 graphs (DAGs) [1, 24℄ � to(
y
li
, possibly unrooted) graphs. The GRIPP index
anbe
omputed in O(n + m) time and requires only O(n + m)spa
e. Therefore, GRIPP
an be used to index graphs farbeyond the s
ope of the TC or Dual Labeling. Answer-ing rea
hability queries with GRIPP requires in worst
ase
O(m − n) time (see Table 1), whi
h is the same as for La-beling+SSPI. However, we will show that with GRIPP thea
tual time to answer a rea
hability query is almost
on-stant over di�erent sizes, shapes, and densities of graphs.We will support this
laim both experimentally and analyt-i
ally. GRIPP indexes graphs
ontaining 50,000 nodes and100,000 edges in ∼ 120 se
 and answers rea
hability querieson su
h graphs in ∼ 3.5 ms using ∼ 2 queries. Even for thelargest graphs tested,
onsisting of 5 million nodes and 10million edges, the query time in
reases only marginally.GRIPP is designed as a persistent index stored in a rela-tional database management system (RDBMS). All opera-tions for indexing and querying are implemented as storedpro
edures, thus fully leveraging the main memory manage-ment
apabilities of an RDBMS. Therefore, GRIPP has noparti
ular requirements regarding the size of available mainmemory. Integrating our method into an existing, RDBMS-based appli
ation only requires the installation of storedpro
edures. After the index is
reated using a simple SQLfun
tion, appli
ations use another SQL fun
tion to answerrea
hability queries. We therefore believe that GRIPP is ahighly pra
ti
al, non-intrusive method.Our paper is organized as follows. In the next se
tion wedes
ribe our model and dis
uss related work. In Se
tion 3we present the GRIPP index stru
ture itself. In Se
tion 4we show how to evaluate rea
hability queries using GRIPPand propose pruning strategies. The e�e
tiveness of GRIPP

depends on the order in whi
h the graph is traversed duringindex
reation, whi
h is dis
ussed in Se
tion 5. In Se
tion6 we des
ribe several heuristi
s for an e�
ient implementa-tion of GRIPP. In Se
tion 7 we give experimental results forsyntheti
 random, syntheti
 s
ale-free, and real biologi
alnetworks, with graph sizes ranging from 1,000 to 5,000,000nodes and di�erent graph densities. Se
tion 8
on
ludes thepaper.
2. BACKGROUND AND RELATED WORKWe adopt notation from Cormen et al. [9℄. A graph G =
(V, E) is a
olle
tion of nodes V and edges E. We only
onsider
onne
ted graphs with labeled nodes and dire
ted,unlabeled edges. The graph has n nodes and m edges, thesize of a graph is |G| = n + m. The degree of a node is thenumber of in
oming and outgoing edges of the node. Thedensity of a graph is the ratio between n and m. Given agraph G, a path p is a sequen
e of nodes that are
onne
tedby dire
ted edges.We assume that graphs are stored as a
olle
tion of nodesand edges in an RDBMS. The information on nodes in
ludesa unique identi�er. Edges are stored as binary relationshipbetween two nodes, i.e., as adja
en
y list.We analyze the problem of answering rea
hability querieson graphs. Let G = (V, E) be a graph and let v, w ∈ Vbe two nodes of G. w is rea
hable from v, i� there exists apath from v to w. Given two nodes v and w, the fun
tion
reach(v , w) returns true if w is rea
hable from v, and falseotherwise.Two nodes v, w ∈ G are in the same strongly
onne
ted
omponent if reach(v , w) = reach(w , v) = true, otherwisenot. Collapsing every strongly
onne
ted
omponent into arepresentative node results in the
omponent graph, whi
hforms a dire
ted a
y
li
 graph (DAG).
2.1 Related WorkThe simplest way to answer rea
hability questions on gra-phs is to traverse the graph at query time using depth- orbreadth-�rst sear
h [9℄. SQL:2003 provides standard syn-tax to express re
ursive queries and some database man-agement systems have implemented that standard. But inmost RDBMS re
ursive queries
annot be expressed by SQLqueries, but must be implemented using stored pro
edures(see Se
tion 7 for their performan
e).Another option is to pre-
ompute the transitive
losure(TC). The TC of a graph is the set of node pairs (v, w) forwhi
h a path from v to w exists. E�
ient algorithms for
omputing the TC in relational databases have been devel-oped [2, 21℄. But the size of the TC is O(n2) and its
om-putation time O(n3), whi
h makes it inappli
able to largegraphs. For instan
e,
omputing the transitive
losure withthe method des
ribed in [21℄ on a graph of 50,000 nodes and100,000 edges did not �nish within 24 hours (see Se
tion 7for details).To redu
e storage spa
e, Cohen and
olleagues [8℄ devel-oped the 2-Hop-Cover, whi
h requires O(nm1/2) spa
e and
an answer rea
hability queries with only two lookups. How-ever, the problem of
omputing the optimal 2-Hop-Coveris NP-hard and requires the TC to be
omputed �rst [8℄.S
henkel et al. [22℄ proposed graph partitioning as a methodto get away from the ne
essary pre-
omputation of the en-tire TC, thus redu
ing storage requirements for the index
reation pro
ess. This approa
h,
alled HOPI, works very

well for forests with few
onne
tions between the di�erentsub-trees. But for denser graphs, su
h as the metaboli
 net-work of KEGG, the partitioning is not e�e
tive as the sizeof the 2-Hop-Cover is only two times smaller than the tran-sitive
losure itself (R. S
henkel, personal
ommuni
ation,May 2006). Cheng et al. [7℄ proposed a
omplex, geometrybased method that does not require the
omputation of theTC to
ompute the 2-Hop-Cover. In their approa
h they�rst identify strongly
onne
ted
omponents and then la-bel ea
h
omponent. Based on these labels they generate area
hability map that is used to
ompute the 2-Hop-Cover.In
ontrast to Cohen et al. they use an approximation fordetermining the densest subgraph, whi
h is required during
reation of the 2-Hop-Cover. This approximation redu
esthe
omputation time, but might in
rease the index size.But for their tested graphs the storage spa
e is only slightlylarger than
ompared to other approa
hes. However, theirapproa
h for
omputing the index is main memory based,whi
h limits its s
alability towards very large graphs.
2.1.1 Interval-Based ApproachesA di�erent indexing strategy is to label nodes using thepre- and postorder numbering s
heme. This indexing s
hemewas originally des
ribed for tree stru
tured data [10℄. In thepre- and postorder numbering s
heme ea
h node in the treere
eives a pre- and postorder value. Both values are assigneda

ording to the order in whi
h the nodes are visited duringa depth-�rst traversal of the tree. The preorder value vpre isassigned as soon as node v is en
ountered during the traver-sal. The postorder value vpost is assigned after all su

essornodes of v have been traversed.A table of all nodes with their assigned pre- and postordervalues forms an index with whi
h rea
hability queries
an beanswered with a single query. If w is rea
hable from v, wmust have a higher preorder and lower postorder value than
v, i.e., wpre > vpre ∧wpost < vpost. However, the evaluationof this
ondition in an RDBMS is prohibitively slow dueto the two non-equijoins [13℄. An obvious optimization isto use only one
ounter for the pre- and postorder values.Therefore, all su

essor nodes w of v must lie within theborders given by the pre- and postorder values of v, i.e.,
[vpre, vpost]. Thus, reach(v , w) ⇔ vpre < wpre < vpost.Still, this method only works for trees. As soon as nodeshave multiple in
oming edges, they are visited multiple timesduring a traversal, and thus no unique pair of pre- and pos-torder values
an be assigned. To extend this strategy to di-re
ted, a
y
li
 graphs (DAGs) we used an 'unfolding' te
h-nique [24℄, where ea
h added 'non-tree' edge in the DAGintrodu
es a new entry in the index stru
ture. The tar-get node of the additional edge as well as all its su

essorsget additional pre- and postorder values in
urring an expo-nential explosion in the index size as DAGs be
ome very'tree-unlike'. Our newly proposed index stru
ture GRIPPalso traverses nodes multiple times, but does not visit
hil-dren of an already visited node again, whi
h makes its spa
erequirements only linear in the size of the graph (see alsoSe
tion 3).Agrawal et al. [1℄ des
ribed a di�erent method to indexDAGs. They propagate pre- and postorder values upwards.The sour
e of an additional edge as well as all its an
estorsre
eive the pre- and postorder value of the target as anotherpre- and postorder value pair. In
ontrast, in GRIPP onlythe target will get an additional pre- and postorder value.

For GRIPP this
omes at the
ost that at query time we haveto traverse the index re
ursively as explained in Se
tion 4,while for the approa
h of Agrawal et al. the query time is lin-ear in the number of intervals assigned to a node. To redu
ethe number of intervals of a node and therefore storage spa
eAgrawal et al. merge pre- and postorder ranges of nodes.They present an algorithm to
ompute an optimal indexstru
ture, i.e., an index stru
ture with least storage spa
e.This algorithm determines an optimal order for the traversalof nodes during labeling. The authors state that
omputingthe optimal index stru
ture has the same time
omplexity asthe
omputation of the transitive
losure, whi
h also makesit inappli
able to large DAGs. However, it would be worthstudying whether the heuristi
s des
ribed for GRIPP in Se
-tions 5 and 6 would also be appli
able here.
2.1.2 Hybrid ApproachesChen et al. [6℄ presented a hybrid index stru
ture forDAGs,
alled Label+SSPI. This approa
h uses pre- and pos-torder labeling for a spanning tree and an additional datastru
ture,
alled SSPI, for storing non-tree edges. This re-sults in an index stru
ture in the size of O(n + m). Foranswering reach(v , w) the spanning tree part is handled byan initial range query. If w is not found in the range of vthe additional data stru
ture is traversed re
ursively, whi
hleads to (m − n) queries in worst
ase (see Table 1).He et al. [15℄ proposed a di�erent indexing strategy,
alledHLSS, that �rst identi�es strongly
onne
ted
omponentsand
ollapses these to one node to redu
e the size of thegraph. The remaining stru
ture is a DAG. They label thenodes of a spanning tree with pre- and postorder values. Toen
ode the rea
hability relationship over non-tree edges they
ompute the 2-Hop-Cover over these edges. The query timeis not
onstant, but depends on the size of the 2-Hop-Coverlabel of a node.Wang et al. [26℄ proposed an index stru
ture,
alled DualLabeling that allows to answer rea
hability queries in
on-stant time. They also identify strongly
onne
ted
om-ponents and
ollapse these to one node. They label thenodes of a spanning tree with pre- and postorder values.Instead of
omputing the 2-Hop-Cover they
ompute thetransitive
losure over the remaining edges (
alled TLC ma-trix). Using pre- and postorder values of nodes the TLC ma-trix
an be further redu
ed in size. The authors state thatin sparse, tree-like graphs the number of non-tree edges issmall. Therefore the size of the TLC matrix is mu
h smallerthan the TC of the graph itself.In Se
tion 7 we will
ompare the approa
hes from Chenet al. and Wang et al. with our index stru
ture GRIPP.
3. GRIPP INDEX STRUCTUREGRIPP extends the pre- and postorder labeling s
hemeto work on graphs. Every node in the graph re
eives atleast one pair of pre- and postorder values. As nodes
anhave multiple parents one pair is not su�
ient to en
ode theentire graph stru
ture. Therefore, some nodes will get morethan one pair of values.For now, we assume that the graph has exa
tly one rootnode, i.e., one node without in
oming edges. We also assumean arbitrary, yet �xed order among
hild nodes, e.g., givenby the ID of the node. In Se
tion 6 we explain how to dealwith graphs with multiple or no root nodes.For the
reation of the GRIPP index we start at the root

node of G. During a depth-�rst traversal of G we assignpre- and postorder values. We always traverse
hild nodesa

ording to their order. A node v with n > 1 in
omingedges is rea
hed n times on edges ei, 1 ≤ i ≤ n. The edge eion whi
h we rea
h v for the �rst time is
alled a tree edge.We assign a preorder value to v and pro
eed the depth-�rsttraversal. After all
hild nodes have a value pair, v re
eivesits postorder value. Of
ourse, we rea
h v n−1 times again.Assume we rea
h v over edge ej , ej 6= ei. We
all ej anon-tree edge and assign a pre- and postorder value to v,but do not traverse
hild nodes of v. We store the pre- andpostorder values together with the node identi�er as nodeinstan
es in an index table, IND(G). Every node will haveas many instan
es in IND(G) as it has in
oming edges in G.Analogously to the distin
tion of tree and non-tree edges wedistinguish between tree and non-tree instan
es in IND(G).Definition 1 (Tree and non-tree instan
es). Let
IND(G) be the index table of graph G. Let v ∈ V be a nodeof G and v′ be an instan
e of v in IND(G). v′ is a treeinstan
e of v, i� it was the �rst instan
e
reated for v in
IND(G). Otherwise v′ is a non-tree instan
e of v.Figure 1(a) shows a graph and Figure 1(b) shows its in-dex table resulting from a traversal in lexi
ographi
 order ofnode labels. Nodes A and B have two instan
es in IND(G)be
ause they have two in
oming edges in G.rAB C DE F G H(a) Graph, G.

node pre post typer 0 21 treeA 1 20 treeB 2 7 treeE 3 4 treeF 5 6 treeC 8 9 treeD 10 19 treeG 11 14 treeB 12 13 non-treeH 15 18 treeA 16 17 non-tree(b) Index table, IND(G).Figure 1: Graph G and its GRIPP index table
IND(G). Solid lines represent tree edges, dashedlines are non-tree edges.The GRIPP index stru
ture resembles a rooted tree, whi
hwe
all the order tree, O(G).Definition 2 (Order tree). Let G = (V, E) and let
IND(G) be its index table. The order tree, O(G), is a treethat
ontains all instan
es of IND(G) as nodes and all edgesof G.Intuitively, O(G)
onsists of a spanning tree T (G) of thegraph and a non-tree part N(G). T (G)
ontains the treeinstan
e of every node in the graph and is
onne
ted bytree edges ET . N(G)
ontains a node for every non-treeinstan
e in IND(G), whi
h is
onne
ted by a non-tree edgeto a node in the spanning tree T (G). Therefore, every non-tree instan
e is a leaf node, while tree instan
es
an be inneror leaf nodes. Note that the shape of O(G) depends onthe order with whi
h G is traversed. In Se
tion 6 we shallexplain how we
an determine an order that is well suitedfor our purpose. In Figure 2 the instan
es of IND(G) shownin Figure 1(b) are plotted. Nodes A and B o

ur twi
e in
O(G) as they have two instan
es in IND(G).

-

6

pre
post

5 10 15 205101520
�
r
�
A
�
B
�
E�
B
�
F�

A
�
C�

A
�
D
�
G
�B�
D

�
H
�A

�

�

Figure 2: Pre-/ postorder plane for IND(G) in Figure1(b). Dotted lines indi
ate O(G). Non-tree instan
esare displayed in gray.The spa
e requirement to store the GRIPP index table is
O(n+m), i.e., linear in the size of the graph. More pre
isely
IND(G) has as many entries as G has edges plus one entryfor every root node (see also Se
tion 6.2). To
reate theGRIPP index stru
ture we perform a depth-�rst traversal,requiring O(n + m) time.
4. QUERYING GRIPPIn the following
hapter we show how to use the GRIPPindex to e�
iently answer rea
hability queries for a �xedpair of nodes. Re
all that rea
hability queries in trees
anbe answered with a single lookup be
ause all rea
hable nodesof a node v have a preorder value that is
ontained within theborders given by vpre and vpost. When we try to query theGRIPP index stru
ture in this way, we fa
e two problems.First, v has multiple instan
es in IND(G), ea
h with itsindividual pre- and postorder value. Se
ond, in the preorderrange of an instan
e v′ we will only �nd instan
es of nodesthat are rea
hable from v′ in O(G). Nodes rea
hable from
v in G but not from v′ in O(G) will be missed. Thus, to�nd all rea
hable nodes in G, we have to extend the sear
h,using the hop te
hnique.
4.1 Hop techniqueTo evaluate reach(v , w) we use the index table IND(G).Observe that v
an have many instan
es in IND(G). Everynon-tree instan
e of v in IND(G) is a leaf node in O(G)and therefore has no su

essors in O(G). Let v′ be the treeinstan
e of v. If v′ is an inner node in O(G) it has rea
hablenodes w′ in O(G) su
h that v′

pre < w′

pre < v′

post. Those
anbe retrieved with a single query. We
all this set of instan
esrea
hable instan
e set of v. In Figure 3(a) the rea
hableinstan
e set of node D is shown. It
ontains instan
es ofnodes G, B, H , and A.Definition 3 (Rea
hable instan
e set). Let
v ∈ V be a node of graph G and v′ ∈ IND(G) its tree in-stan
e. The rea
hable instan
e set of v, written RIS(v), isthe set of all instan
es that are rea
hable from v′ in O(G),i.e., that have a preorder value in [v′

pre, v
′

post].To answer reach(v , w) we pro
eed as follows. We �rst �ndthe tree instan
e v′ of v and retrieve its rea
hable instan
eset. If w ∈ RIS(v), we �nish and return true, otherwisewe have to extend the sear
h. If RIS(v)
ontains non-treeinstan
es of nodes, their
hild nodes might not have an in-stan
e in RIS(v), i.e., these nodes are rea
hable from v in
G, but not from v′ in O(G). To a

ount for that, we have

to examine all non-tree instan
es of nodes in RIS(v). We
all those nodes hop nodes. In Figure 3(a) RIS(D)
ontainsnon-tree instan
es of nodes B and A, i.e., both are hop nodesfor D.Definition 4 (Hop node). Let v, h ∈ V and h′ be anon-tree instan
e of h. If h′ ∈ RIS(v) then h is
alled a hopnode for v.
-

6

pre
post

5 10 15 205101520
�
r
�A
�
B
�
E�
B
�
F�A
�
C�A �
D
�
G
�B�
D

�
H
�A

�

�

(a) RIS(D)

-

6

pre
post

5 10 15 205101520
�
r
�A
�
B
�
E�
B
�
F�A
�
C�A �
D
�
G
�B�
D

�
H
�A

�

�

	

(b) RIS(D) and RIS(B)in dark gray; RIS(A) inlight gray.Figure 3: The example shows reach(D , r) evaluatedon the GRIPP index stru
ture from Figure 1(b).Nodes A and B are hop nodes for D.Every hop node in RIS(v) has a rea
hable instan
e set in
O(G). The nodes in that set are rea
hable from v in G, butnot from v′ in O(G). But we need to
he
k if w is in one ofthose. Therefore, we identify all hop nodes and re
ursively
he
k their rea
hable instan
e sets by performing a depth-�rst sear
h over O(G) using hop nodes in as
ending orderof their preorder values. We stop traversing O(G) if we �ndnode w in some rea
hable instan
e set or if there exists nofurther non-traversed hop node in a rea
hable instan
e set.In IND(G) there exist m − n non-tree instan
es, ea
h ofwhi
h
an be a hop node. Thus, querying GRIPP to answer
reach(v , w) requires in worst
ase m − n queries. However,in the following we show pruning strategies that allow toquery graphs on average in almost
onstant time as shownin Se
tion 7.
4.2 Pruning strategiesConsider Figure 3(b) and reach(D , r). We �nd non-treeinstan
es of nodes B and A in RIS(D). If we �rst use nodeA as hop node, we �nd non-tree instan
es of A and B in
RIS(A). Clearly, we do not need to use A as hop nodeagain. Therefore, we next use B as hop node. The treeinstan
e of B is a su

essor of the tree instan
e of A in
O(G). This implies that RIS(B) is
ontained in RIS(A),i.e., we will not �nd new instan
es in RIS(B) that are notalready
ontained in RIS(A). Therefore, using B to retrieve
RIS(B) is not ne
essary; B
an be pruned from the list ofhop nodes.In general we want to avoid posing queries for preorderranges whi
h we have already
he
ked. During our sear
hwe keep a list U of all nodes that have been used to retrievea rea
hable instan
e set. Now assume we have found a newhop node h. The de
ision whether we need to
onsider therea
hable instan
e set of h entirely, partly, or not at all de-pends on the lo
ation of the tree instan
e h′ of h relativeto the tree instan
es of nodes in U . There are four possible

lo
ations of h′ in relation to the tree instan
e u′ of a node
u ∈ U in O(G). These are shown in Figure 4. h′ either is(a) equal to, (b) a su

essor of, (
) an an
estor of, or (d) asibling to u′. Given that we may
onsider all nodes in U forpruning, this results in four possible
ases: (a) h′ is equal tothe tree instan
e of some node in U ; (b) h′ is su

essor ofthe tree instan
e of some node in U ; (
) h′ is an
estor to treeinstan
es of nodes in U and neither (a) nor (b) is true; (d)
h′ is sibling to tree instan
es of all nodes in U . Note thatthe pre- and postorder ranges of two instan
es
an neveroverlap. They are either disjoint or one is entirely
ontainedin the other.In
ase (d), no pruning is possible and we have to
on-sider the entire rea
hable instan
e set of h, as there existsno previous rea
hable instan
e set that
overs instan
es in
RIS(h). For the remaining three
ases we
an apply pruningstrategies.

�
�
��

A
A

AA
�

h′ = u′(a) h′ equals u′

�
�
��

A
A

AA
�

u′

�
�

A
A
�

h′(b) h′ su

essor of u′

�
�
��

A
A

AA
�

h′

�
�

A
A
�

u′(
) h′ an
estor of u′

��AA
�

u′

�
�

A
A
�

h′(d) h′ sibling to u′Figure 4: Possible lo
ations of h′ of hop node h rel-ative to u′, u ∈ U .In the �rst
ase, we
an skip h entirely be
ause a non-tree instan
e of h has already been used as hop node andtherefore the rea
hable instan
e set of the tree instan
e of hhas been
he
ked.In the se
ond
ase, we
an also skip h. In this
ase (seeFigure 4(b)) there exists u ∈ U su
h that h′ is su

essor of
u′, i.e., h′ ∈ RIS(u) in O(G). Thus, the entire rea
hableinstan
e set of hop node h is
ontained in RIS(u).In the third
ase we have to be more
areful. ConsiderFigure 3(b) and the query reach(D , r). Assume, we haveretrieved RIS(D) and RIS(B) and expand the sear
h using
A as hop node. RIS(A)
ontains the tree instan
e of B and
D and therefore also
ontains RIS(B) and RIS(D) as well.Thus, when we
onsider RIS(A) we
an skip the pre- andpostorder range of RIS(B) and RIS(D).
4.2.1 Skip StrategyWe �rst assume that only one u′ exists that is a su

essorof h′. Thus, the rea
hable instan
e set of u is
ontained in
RIS(h). This situation is displayed in Figure 4(
). Con-sidering the entire rea
hable instan
e set of h leads to du-pli
ation of work. To avoid this we use the skip strategyworking as follows. For every node u ∈ U we stored the pre-and postorder value, i.e., the borders of RIS(u). In thatrange all instan
es are
overed by RIS(u) and we
an skipthe preorder range without missing instan
es. We only haveto
onsider instan
es from RIS(h) whose preorder values lieoutside the pre- and postorder range of u′.If there is more than one su

essor node of h in U , the

situation is slightly more
ompli
ated. Essentially, we
anskip all their ranges when sear
hing RIS(h). This
ould beoptimized by merging ranges iteratively during the sear
h,thus redu
ing the number of ne
essary interval operations.However, be
ause we sear
h U only a few times during area
hability query (see also Se
tion 7) we believe the
ostto merge ranges does not a

ount for the gain of merging.Therefore, if multiple u exist in RIS(h) ea
h of their rangesis
onsidered separately for skipping.
4.2.2 Stop StrategyWhen querying graphs for rea
hability between nodes vand w we
an stop extending the sear
h as soon as we havefound an instan
e of w in the rea
hable instan
e set of the
urrent hop node h. But if w /∈ RIS(h) we must
he
k everyhop node in RIS(h) and start a re
ursive sear
h. It wouldbe advantageous if we knew in advan
e that in RIS(h) nohop node exists that will extend the sear
h, be
ause in that
ase we do not have to query for the tree instan
es of hopnodes. We now show
ases where this property
an be pre-
omputed.Re
all that a hop node for node s is a node h that has anon-tree instan
e in RIS(s). h is not used as hop node ifthe tree instan
e of h is in RIS(s) (Figures 4(a), 4(b)). We
an pre
ompute a list of nodes S for whi
h all hop nodeshave this property. We
all these nodes stop nodes as theirrea
hable instan
e sets will not extend the sear
h.Definition 5 (Stop node). Let s ∈ V be a node ofgraph G and let RIS(s) be its rea
hable instan
e set in O(G).
s is
alled a stop node i� all non-tree instan
es in RIS(s)also have their
orresponding tree instan
es in RIS(s).Intuitively, a stop node s is a node in G for whi
h for ev-ery non-tree instan
e in RIS(s) exists a
orresponding treeinstan
e in the same set. This means, that all nodes rea
h-able from s in G are rea
hable from s′ in O(G), i.e., havean instan
e in RIS(s). Clearly, nodes rea
hable from s in G
an also have non-tree instan
es in other rea
hable instan
esets than in RIS(s).When we rea
h the tree instan
e of a stop node s duringthe sear
h we immediately know that we do not need to ex-tend the sear
h using hop nodes of RIS(s). The GRIPP in-dex stru
ture in Figure 1
ontains several stop nodes, namelynodes r, A, B, E, F , and C. As heuristi
, during the sear
hwe prefer stop nodes as hop nodes over non-stop nodes.
5. THE IMPACT OF TRAVERSAL ORDERThe GRIPP index stru
ture is
reated using an arbitraryyet �xed order of nodes. The
hosen order does not in�uen
ethe size of the index, as the spa
e requirements to storethe GRIPP index table is linear in the size of the graph.However, it has a strong in�uen
e on the performan
e ofrea
hability queries. In the following, we des
ribe an orderwhi
h works extremely well on many types of graphs. InSe
tion 6.1 we will show simple heuristi
s to approximatethis order with minimal e�ort. Using this order, queryingthe GRIPP index requires on average signi�
antly less than
m−n re
ursive
alls; in fa
t, as our experiments in Se
tion 7show, the number of
alls remains almost
onstant over alltested types of graphs.Our idea is based on the following observations. In everygraph one
an identify strongly
onne
ted
omponents C1... Ck in linear time. Ea
h
omponent
an be
ollapsed

into a representative node (see Figure 5). The rea
habilityinformation for nodes within one
omponent are identi
al(this obvious optimization is used by many graph indexingstrategies, su
h as [1℄ or [26℄). Therefore, we
an divide theproblem of �nding a good traversal order in two separateparts. First, �nd a good traversal order for nodes withinone strongly
onne
ted
omponent and se
ond, �nd a goodtraversal order for the
omponents in the
omponent graph.
C1

r

a1 an

c

s1

sn

C2Figure 5: Stru
ture of a graph. Solid lines indi
ateedges, dotted lines paths. The gray area
ontains allnodes and edges in the strongly
onne
ted
ompo-nents.We �rst
onsider the traversal order for nodes within astrongly
onne
ted
omponent C. Assume that during index
reation we rea
h node c ∈ C. We add the tree instan
e of cto IND(G). If no other node of C has been traversed before,we traverse all remaining nodes of C � all are rea
hable from
c sin
e C is a strongly
onne
ted
omponent. Thus, everynode in C will have a tree instan
e in RIS(c) and we
ananswer reach(v , w) for v = c and w ∈ C with a single lookup.If v 6= c, but v ∈ C the situation is di�erent. Suppose
RIS(v)
ontains a non-tree instan
e of c and suppose we use
c as �rst hop node. We then
an answer reach(v , w) (with
w ∈ C) with two re
ursive
alls, i.e., one to retrieve RIS(v)and one for RIS(c). To a
hieve this for every v ∈ C, wehave to �nd a traversal order su
h that for every node v ∈ C,
RIS(v)
ontains a non-tree instan
e of c. We therefore mustsolve the following problem: Find a node c ∈ C su
h thatwe
an divide C in partitions P1, . . . , Pn with n equals theindegree of c. For every Pi, 1 ≤ i ≤ n
ompute a Hamiltonpath starting at node v and ending at node c, with v = cor v
hild node of a node in Pj , j 6= i. If we
reate GRIPPalong those Hamilton paths we
an ensure that for everynode v ∈ C, RIS(v)
ontains at least one non-tree instan
eof c.Now suppose that we have not traversed any su

essornodes of c in G when we traverse c, i.e., we have not traversedany nodes of C or any nodes in su

essor
omponents of
C. We traverse nodes in C along Hamilton paths and alsotraverse all nodes in su

essor
omponents of C. This meansall rea
hable nodes of c in G have a tree instan
e in RIS(c).In addition, every non-tree instan
e in RIS(c) must alsohave its
orresponding tree instan
e in RIS(c), i.e., c is astop node. In Figure 6 the tree instan
e of c, c′ is shownas double
ir
led node in the gray area. Given v ∈ C we
an answer reach(v , w) for any node w ∈ G with at most

two re
ursive
alls, one initial
all to test RIS(v), �nding anon-tree instan
e of c (or possibly already an instan
e of w),and a se
ond
all using c as hop node to test RIS(c). As cis a stop node we do not have to use any further hop nodes,regardless if RIS(c)
ontains an instan
e of w or not.
c′

s1

sn

r

a1 an

Figure 6: Optimal GRIPP index stru
ture. Cir
lesindi
ate tree instan
es, squares non-tree instan
es.The double
ir
led node is the stop node, the doublesquared nodes are its non-tree instan
es. In gray isthe area of instan
es of the giant strong
omponent.Therefore, we have to ensure that
omponent C is tra-versed before any of its su

essor
omponents in the
ompo-nent graph. Clearly, this is not possible for any C, but theproblem is alleviated by the following observation. Erdösand Rényi [11℄ proved that dire
ted random graphs withmore edges that nodes
ontain one giant strongly
onne
ted
omponent C. The size of C depends on the graph den-sity. The experimental results given in Se
tion 7 show thatthis is also true for our generated s
ale-free graphs. There-fore, graphs of a
ertain density usually appear as shownin Figure 5, with one
omponent being very large (giant)and all other
omponents being small. In this setting, it isonly important to traverse the giant
omponent before anyof its su

essor
omponents. The remaining su

essor
om-ponents are traversed in des
ending order of the size of theirsu

essor sets, i.e., of the number of rea
hable nodes. Re
all,for nodes in a
omponent C that has been traversed beforeany of its su

essor
omponents we
an answer reach(v , w),with v ∈ C and w ∈ G, with two re
ursive
alls.We
an also estimate the number of re
ursive
alls to an-swer reach(v , w) for every node v /∈ C. If RIS(v)
ontains nonon-tree instan
e we
an immediately return false using one
all. Otherwise, we have to query GRIPP re
ursively, butwe will at most use m′ − n′ re
ursive
alls with m′ numberof edges and n′ number of nodes in the
omponent graph.In some
ases this number
an even be redu
ed. Considerthe
ase where v is sibling to nodes in C and RIS(v) only
ontains non-tree instan
es of nodes in C and possibly ofnodes in su

essor
omponents of C. Suppose we �rst usea node from C as hop node. We then need at most threere
ursive
alls to answer reach(v , w). One
all to retrieve
RIS(v), �nding the non-tree instan
e h′ of a node h ∈ Cand using h as hop node, one
all to retrieve RIS(h), whi
h
ontains a non-tree instan
e of c, and one
all to test RIS(c).If we
an ensure this order of hop nodes we
an also answerrea
hability queries for su
h
ases with a
onstant number

of
alls.Con
luding, a good traversal order
an be obtained as fol-lows. First identify all strongly
onne
ted
omponents andbuild the
omponent graph. Using Tarjan's algorithm thistakes O(n+m) time. Se
ond, determine the traversal orderof
omponents in the
omponent graph by
omputing thesize of the su

essor sets of all k
omponents, whi
h requires
O(k3) time. Third,
ompute a good order for nodes withinevery
omponent C by �rst identifying a node c and then
omputing Hamilton paths as des
ribed above. As �ndingHamilton paths in graphs is NP-
omplete [9℄, this is not fea-sible for pra
ti
al appli
ation. In the next se
tion we presenta simple heuristi
 for determining a traversal order, whi
h,as we will show experimentally in Se
tion 7, requires an al-most
onstant number of
alls to answer reach(v , w) overdi�erent sizes, shapes and densities of graphs.
6. IMPLEMENTATIONIn this se
tion we present a suitable heuristi
 to
omputea GRIPP index stru
ture that works well on many types ofgraphs. We also present details on our implementation ofthe GRIPP indexing and sear
h algorithm.
6.1 Giant Component and Node OrderDuring the
reation of the GRIPP index for large graphswe want to avoid to
ompute the strongly
onne
ted
om-ponents, as this also requires time. We found the followingheuristi
 to work very well. To ensure that we traverse nodesof the giant strongly
onne
ted
omponent before any othernodes we want to traverse a node from the giant strongly
onne
ted
omponent as �rst node during index
reation.Therefore we
reate a virtual root node (see Se
tion 6.2)and atta
h an additional edge between the virtual root nodeand the node with the highest degree. This node
an befound very qui
kly and, as nodes with a high degree tendto have many su

essor nodes and
an be rea
hed by manynodes, this node is very likely a member of the giant strongly
onne
ted
omponent. Choosing this node has the addi-tional advantage that it also has many in
oming edges andtherefore will get many non-tree instan
es in IND(G). Thismeans that it is likely to �nd a non-tree instan
e of thatnode in the rea
hable instan
e set of other nodes, and re
allthat this node is a stop node.In the next step of the index
reation we traverse
hildnodes of that node. We try to traverse the
hild node withthe largest rea
hable instan
e set �rst as this node
overs alarge part of the remaining graph. We use the heuristi
 thata node with a high degree is likely to have a larger rea
hableinstan
e set than a node with a lower degree. Therefore, weprefer
hild nodes with a high degree, i.e., we traverse
hildnodes a

ording to their degree.In Se
tion 7 we show that using these heuristi
s we rea
han almost
onstant query time over di�erent sizes and shapesof graphs.
6.2 Virtual root nodeWe only explained the
reation of the GRIPP index stru
-ture for graphs with a single root node. However, all kindsof graphs
an be treated in the following way, essentiallyignoring how many nodes have no in
oming edges. We �rstadd a virtual root node r to the graph. We add an edgebetween r and the node with the highest degree among allnodes. We then traverse and label the nodes as explained in

Se
tion 3 starting from r and using
hild nodes in the orderof their degree. In general, some nodes will not be rea
hedduring this traversal, i.e., nodes without in
oming edges ornodes in not
onne
ted subgraphs. We �nd those nodes andadd another edge from r to the node with the highest degree.This is repeated until all nodes have at least one instan
e inthe index table. This way, we uniformly handle graphs withnone, one, or multiple root nodes.
6.3 Stop node listTo
reate the list of stop nodes we have to
he
k therea
hable instan
e set of every node. As this is too time
onsuming for large graphs, we test only sele
ted nodes. Weare espe
ially interested in nodes whose rea
hable instan
eset
overs a large amount of instan
es. Therefore, we only
onsider
hild nodes of the virtual root node as stop node
andidates. Additionally, we require that the size of therea
hable instan
e set of a stop node
andidate ex
eeds a
ertain threshold t. Furthermore, we only test a node if itis a potential hop node, i.e., if it has a non-tree instan
e in
IND(G). For a stop node
andidate s we
he
k if the treeinstan
e h′ of every hop node in RIS(s) has a preorder valuethat is lower than the preorder value of the tree instan
e s′of s. If that is the
ase, h′ is sibling to s′ in O(G) and s isnot a stop node; otherwise, s is a stop node.
6.4 Query algorithmThe GRIPP index as well as all temporary information(stop nodes, visited hop nodes, et
.) are stored in rela-tional tables. The instan
e type of a node is stored as spe-
ial attribute in the index table. We
reated b-tree indexeson relevant attributes, in
luding a
ombined index on theattributes preorder, node, and instan
e type. To answer
reach(v , w) Algorithm 1 starts by testing w ∈ RIS(v) witha query over the index. It then adds v to the list U of usednodes. If v is a stop node, the algorithm stops.Otherwise, we perform a depth-�rst sear
h
onsideringnon-tree instan
es in RIS(v) in as
ending order of their pre-order rank as hop nodes, unless RIS(v)
ontains a non-treeinstan
e of a stop node, whi
h is preferentially used. In thenext step we sele
t all hop nodes from RIS(v) whi
h are notalready
overed by another rea
hable instan
e set. For ev-ery hop node h we determine the lo
ation of its tree instan
e
h′ and test if RIS(h) is
ompletely or partly
overed fromnodes in U . If not, we pro
eed, using h as next hop node.We stop on
e we found an instan
e of w or if there are nomore non-traversed hop nodes. All
he
ks are implementedas relational queries.
6.5 Practical ApplicabilityThe GRIPP indexing and query algorithm is implementedas stored pro
edure. Therefore, there is virtually no limitin the size of the graphs, as all operations are performedas SQL queries leveraging the memory management of theunderlying RDBMS. As an additional advantage, GRIPPmay be integrated very easily into all appli
ations that storegraph-like data in a RDBMS. All that needs to be done isthe installation of stored pro
edures. Views
an be used to
reate the expe
ted table stru
ture for the indexing fun
tion.The index is stored in a separate table. Then, rea
habilityof two nodes
an be tested by a simple
all of a user-de�nedSQL fun
tion.

Algorithm 1: Fun
tion to answer reach(v , w) using theGRIPP index.used_hops ← ∅used_stops ← ∅FUNCTION rea
hability(v, w) RETURNS booleanif w ∈ RIS(v) thenreturn trueelseused_hops ← used_hops ∪ (v)if v ∈ STOP_NODES thenused_stops ← used_stops ∪ (v)return falseelsewhile non_tree_inst ← nextStop(RIS(v)) dotree_inst ← getTreeInst(non_tree_inst)if rea
hability(tree_inst, w) then returntrueendif isInRIS(v, used_stops) thenreturn falseendH1 ... Hn ← getUsedHopsInRIS(v)// skip rangesnon_tree_instan
es ← getNonTreeInst(RIS(v) \RIS(H1) \ ... \ RIS(Hn))forea
h non_tree_inst ∈ non_tree_instan
es dotree_inst ← getTreeInst(non_tree_inst)if !hasChildren(tree_inst) then
ontinueend// if new hop has been used as hopif tree_inst ∈ used_hops then
ontinueend// if new hop is in a RIS of a used hopif isInRIS(tree_inst, used_hops) then
ontinueend// otherwise
all re
ursivelyif rea
hability(tree_inst, w) then returntrueif isInRIS(v, used_stops) thenreturn falseendendreturn falseendendend
7. EXPERIMENTAL RESULTSTo evaluate our approa
h we use syntheti
 as well as real-world data. We
ompare GRIPP in detail to the Dual Label-ing approa
h from Wang et al. [26℄ and the Labeling+SSPIapproa
h from Chen et al. [6℄. Both algorithms
an onlyindex dire
ted, a
y
li
 graphs (DAG). Therefore we �rstidentify strongly
onne
ted
omponents of G and
ollapseea
h
omponent into a representative node. This step takes
O(n+m) using Tarjan's algorithm [9℄. The resulting
ompo-nent graph is a DAG. To
ompare our approa
h we
reatedand queried the GRIPP index for the
omponent graph aswell as for the graph itself. For a more detailed
omparisonof GRIPP with TC and re
ursive fun
tions see [25℄.For syntheti
 data we
reated random as well as s
ale-free graphs in the size of 1,000 to 5,000,000 nodes and 0 to2,000% more edges than nodes using the methods des
ribedin [3℄. The degree distribution in s
ale-free graphs follows apower law with an exponent γ = 2.7. As real-world data we

Table 2: Average time and size for di�erent indexing methods on syntheti
 s
ale-free graphs with 100 % moreedges than nodes. (a) Average time (se
).Component Graph Dual Labeling GRIPP Label + SSPINo. nodes No. nodes No. edges Time GRIPP index Stop nodes1,000 422.2 588.8 2.9 8.8 0.8 0.2 1.15,000 2,184.6 3,111.8 16.1 906.8 4.0 2.8 6.910,000 4,324.6 6,152.0 34.1 7,937.6 8.0 6.0 16.550,000 21,816.0 31,110.4 278.1 > 86,400.0 41.3 33.6 208.9(b) Average number of tuples.Component Graph Dual Labeling GRIPP Label + SSPINo. nodes No. nodes No. edges Node labels TLC values GRIPP index Stop nodes Node labels SSPI1,000 422.2 588.8 423.2 3,431.8 768.2 1.0 423.2 533.25,000 2,184.6 3,111.8 2,185.6 117,699.8 3,975.0 1.0 2,185.6 2,838.410,000 4,324.6 6,152.0 4,325.6 452,693.8 7,969.6 1.0 4,325.6 5,583.450,000 21,816.0 31,110.4 - - 39,905.0 1.0 21,817.0 28,267.0
103

104

105

106

107

108

102 103 104 105 106 107

si
ze

 in
 tu

pl
es

 (
lo

g)

Number of nodes (log)

GRIPP
Dual Labeling

Transitive closure(a) Average size (tuples) 100

101

102

103

104

105

102 103 104 105 106 107

tim
e

in
 s

ec
on

ds
 (

lo
g)

Number of nodes (log)

GRIPP
Dual Labeling

Transitive closure(b) Average time (se
)Figure 7: Average time and size for the GRIPP index table, Dual Labeling on the
omponent graph, and thetransitive
losure for syntheti
 s
ale-free graphs with 100 % more edges than nodes.used data of metaboli
 networks provided by KEGG [18℄,aMAZE [20℄, and Rea
tome [17℄. Nodes represent enzymes,
hemi
al
ompounds or rea
tions, while edges represent theparti
ipation of an enzyme or
ompound in a rea
tion. Thedegree distribution in metaboli
 networks follows a powerlaw with exponent γ = 3.0, i.e., they are also s
ale-free.Properties of these data set
an be seen in Table 4.We implemented GRIPP as well as all
ompetitive meth-ods (based the original
ode kindly provided by their au-thors) as stored pro
edures in a
ommer
ial obje
t-relationaldatabase system. Tests were performed on a DELL dualXeon ma
hine with 4 GB RAM. Queries were run with-out rebooting the database. The indexing times are aver-aged over �ve di�erent graphs for every number of nodesand edges. The query times for reach(v , w) are averagedover 5,000 randomly sele
ted node pairs for every numberof nodes and edges.For the index
reation and querying we also
omparedGRIPP to
omputing the transitive
losure for the entiregraph. Clearly, querying the transitive
losure is the fastestmethod, but we
annot
ompute the transitive
losure forgraphs
ontaining more than 10,000 nodes and 20,000 edgesin feasible time and the resulting stru
ture would
ontainover 60 million tuples. We also
ompared GRIPP to re-
ursive query strategies, whi
h need no index
reation atall. We used our own implementation of a re
ursive sear
hand the re
ursive SQL
ommand available in the RDBMS.Our own implementation of a re
ursive traversal is always

outperformed by GRIPP and all
ompeting methods. Evenin graphs having the small world
hara
teristi
, i.e., whereea
h node
an be rea
hed from ea
h node within ∼ 6 steps, abreadth-�rst strategy requires in the order of d6
alls, where
d is the average out-degree of nodes. The built-in re
ur-sive SQL
ommand outperforms our own re
ursive fun
tionfor very small and sparse graphs. However, it is extremelyslow already for medium-sized graphs. A single query on agraph with 1,000 nodes and 1,500 edges took more than 7hours to
omplete. The reason seems to be that all pathsare enumerated in the graph beginning from the start node.
7.1 Index CreationTable 2(a) shows the average time required to index s
ale-free graphs with 1,000 to 50,000 nodes and 100 % more edgesthan nodes. The
omponent graph has on average 43% ofthe nodes and 31% of the edges of the original graph, i.e., the
omponent graph is mu
h smaller than the original graph.All used graphs
ontain one giant strongly
onne
ted
ompo-nent. For instan
e, s
ale-free graphs with 50,000 nodes and100,000 edges have one giant strongly
onne
ted
omponentthat
ontains on average 28,184 nodes, i.e., more than halfthe nodes of the entire graph. The remaining
omponentsusually
ontain only one node.For graphs of 50,000 or more nodes we
ould not
omputethe Dual Labeling within 24 hours using our database-basedre-implementation. We also tried the C++-based main-memory implementation of Dual Labeling provided by the

authors of this algorithm. Compared to our re-implemen-tation, their program is mu
h faster for small graphs, butthe program breaks for graphs with 50,000 or more nodes. In
ontrast,
omputing the GRIPP index table on the
ompo-nent graph for the same
omponent graphs took less than 50se
onds. Computing the GRIPP index on the entire graphrequires about 120 se
onds. Our results support the analysisthat the time
omplexity of Dual Labeling is O(n+m+ t3),e.g.,
omputing the index for 50,000 nodes and 100,000 edgesmight take almost two weeks. In
ontrast,
omputing theGRIPP index as well as the Label+SSPI index is linear inthe number of edges. Therefore, both indexes
an be
om-puted for even larger graphs. We show this in the followingfor GRIPP.Table 2(b) shows the average size of the index stru
tures.Dual Labeling generates by far the largest index, mainly dueto the TLC values. The TLC values basi
ally represent a
ondensed transitive
losure over the remaining edges. Butthe index stru
ture is two orders of magnitude smaller thanthe transitive
losure over the entire graph. For instan
e,for s
ale-free graphs with 10,000 nodes and 20,000 edgesDual Labeling requires on average 460,000 tuples, while thetransitive
losure requires on average over 60 million tuples.GRIPP and Label+SSPI require spa
e linear in the sizeof the graph. The GRIPP index is slightly smaller than La-bel+SSPI, be
ause GRIPP
reates one tuple for every edgeplus one tuple for every
hild to the virtual root node. La-bel+SSPI
reates one tuple for every node in the
omponentgraph (Node labels) and stores for every node that has morethan one parent node all parent nodes in the SSPI index. Inaddition one tuple is
reated for every node that has a parentnode with an entry in the SSPI index, i.e., in worst
ase thisindex has the size of m. This worst
ase is almost rea
hedfor the indexed graphs.The �gures for random graphs (data not shown) for allthree methods are almost identi
al to the �gures for s
ale-free graphs.To test the s
alability of GRIPP we
reated the index forgraphs with 1,000 to 5,000,000 nodes and 100 % more edgesthan nodes. We did not
ompute the
omponent graph, butapplied the GRIPP indexing algorithm dire
tly to the graph.Figure 7 shows the
omputation time and size of the GRIPPindex, Dual Labeling, and the transitive
losure for syntheti
s
ale-free graphs. The data support our
laim that GRIPP
an be
omputed in linear time and spa
e. In worst
ase,i.e., for a graph with n − 1 nodes without in
oming edgesand m edges GRIPP has the size of n − 1 + m. Figures forrandom graphs are
omparable (data not shown).We also indexed graphs with 100,000 nodes and in
reasinggraph density (data not shown). The data show that GRIPPalso s
ales roughly linear with in
reasing number of edges.For example, the
omputation of the GRIPP index table for100,000 nodes and 400,000 edges took less than 400 se
onds,
ompared to about 240 se
onds for a graph with 100,000nodes and 200,000 edges.Con
luding, GRIPP and Label+SSPI are highly s
alablein terms of index
reation, while Dual Labeling
an not beapplied to large graphs. In the next se
tion we evaluate thequery performan
e.
7.2 Query timesWe
ompare querying GRIPP with querying the other twoindexing methods. For the
omparison we randomly sele
ted

5,000 node pairs for every number of nodes and edges and
omputed reach(v , w).Table 3(a) shows the average number of re
ursive
allsfor the di�erent query strategies on s
ale-free graphs with1,000 to 50,000 nodes and 100 % more edges than nodes.Dual Labeling requires only one
all to answer reach(v , w)using the index stru
ture. The number of re
ursive
alls forthe Label+SSPI strategy depends on the size of the graph.For graphs of 50,000 nodes and 100,000 edges it requires onaverage 994 re
ursive
alls, ranging from 1
all for a pair ofnodes in the same
omponent to 11,504
alls in worst
ase.This explains the high standard deviation.Table 3: Average number of
alls and average querytime to answer reach(v , w) for the three di�erentquery strategies on s
ale-free graphs with 100%more edges than nodes.(a) Average number of
alls.No.nodes DualLabeling GRIPPDAG Label+SSPI1,000 1.0 ± 0.00 1.8 ± 0.74 22.0 ± 52.305,000 1.0 ± 0.00 1.9 ± 0.82 92.1 ± 238.3110,000 1.0 ± 0.00 1.8 ± 0.77 194.7 ± 497.6850,000 - 1.9 ± 0.77 944.3 ± 2,419.83(b) Average query time (ms).No.nodes DualLabeling GRIPPDAG Label+SSPI1,000 0.8 ± 0.33 1.6 ± 1.45 5.9 ± 13.395,000 0.8 ± 0.32 2.0 ± 2.15 22.7 ± 59.3910,000 0.8 ± 0.32 2.1 ± 2.56 48.8 ± 127.6750,000 - 4.4 ± 6.74 253.0 ± 637.68When querying the
omponent graph (DAG) as well asthe graph itself using GRIPP the number of re
ursive
allsremains almost
onstant over di�erent sizes of graphs, sup-porting our analysis from Se
tion 5 and sele
tion of heuris-ti
s. The maximum number of re
ursive
alls is between 7and 8 for di�erent sizes of s
ale-free graphs. The numberof re
ursive
alls for GRIPP on DAGs is smaller than ongraphs. The reason is that we do not require a re
ursive
allfor nodes in the same
omponent, i.e., we
an immediatelyanswer reach(v , w) if both nodes are in the same
omponent.The query times shown in Table 3(b) for the di�erentstrategies
orrespond well with the number of re
ursive
alls.Dual Labeling requires on average 0.8 ms regardless the sizeof the graph. For GRIPP on the
omponent graph the av-erage query times range from 1.6 to 4.4 ms while for La-bel+SSPI the query times range from 5.9 to 253.0 ms. Thetime di�eren
e between GRIPP and Label+SSPI strategygrows as the number of nodes and edges in
reases. Thesame is true for random graphs (data not shown).Figure 8(a) shows the average time ne
essary to answer
reach(v , w) using GRIPP on s
ale-free and random graphs.The query times in
rease slightly with in
reasing numberof nodes. The reason is that rea
hable instan
e sets be-
ome larger. As these are a

essed through b-tree indexesthe in
rease is sublinear. The number of re
ursive
alls re-mains with 2.3 almost
onstant over the di�erent sizes ofgraphs with
onstant density (data not shown), supportingour analysis from Se
tion 5. The maximum number of re-
ursive
alls ranges from 6
alls for the graph with 1,000nodes to 10
alls for the graph with 5,000,000 nodes.

 0

 1

 2

 3

 4

 5

 6

 7

5000000

1000000

500000

100000

50000

10000

5000

1000

A
vg

. q
ue

ry
 ti

m
e

(m
s)

No. nodes

scale-free
random

(a) Graphs with 100 % more edges than nodes. 0

 1

 2

 3

 4

 5

 6

 7

 150000
 200000
 250000
 300000
 350000
 400000
 450000

A
vg

. q
ue

ry
 ti

m
e

(m
s)

No. edges

scale-free
random

(b) Graphs with 100,000 nodes.Figure 8: Average query times (ms) and standard deviation for syntheti
 random and s
ale-free graphs.Table 4: Indexing and querying real-world graphs using GRIPP.Database Graph size GRIPP index Stop nodes Querying GRIPPNo.nodes No.edges Density Time(se
) No.Tuples Time(se
) No.Tuples Avg. querytime (ms) Avg. No.re
ursive
allsRea
tome 3,677 14,447 3.93 21.1 14,906 0.6 22 4.63 ± 4.016 2.56 ± 1.124aMAZE 11,876 35,846 3.02 35.4 37,568 0.1 1 3.43 ± 1.597 2.25 ± 0.967KEGG 14,269 35,170 2.46 37.2 36,527 0.1 1 3.34 ± 1.430 2.36 ± 0.913Figure 8(b) shows the average query time for graphs with100,000 nodes and in
reasing density. We observed thatwith in
reasing density the number of re
ursive
alls forGRIPP even de
reases. For instan
e, on s
ale-free graphswith 100,000 nodes and 150,000 edges GRIPP requires onaverage 2.3 re
ursive
alls to answer reach(v , w). In
on-trast, for s
ale-free graphs with 100,000 nodes and 450,000edges GRIPP requires on average only 1.8 and the timedrops from 3.4 ms to 2.5 ms. This trend
ontinues as thedensity in
reases (tested for graphs with 100,000 nodes andup to 2,000,000 edges). There are two reasons for this. First,with in
reasing graph density the size of the giant strongly
onne
ted
omponent also in
reases, i.e., more nodes arerea
hable from the �rst traversed node. Therefore, whenrea
hing that node, a large fra
tion of the graph is already
overed and less re
ursive
alls are ne
essary. The se
ondreason is that more and more nodes re
eive non-tree in-stan
es in GRIPP. This means with in
reasing density the
han
e in
reases that RIS(v)
ontains an instan
e of w.With further in
reasing graph density, Dual Labeling andLabel+SSPI will also perform better as the size of the
om-ponent graph de
reases. For Dual Labeling this means thatgenerating the index will be
ome faster, and for Label+SSPIindexing as well as querying will be faster.
7.3 Real world graphsTo evaluate GRIPP on real-world graphs we used themetaboli
 networks provided by Rea
tome [17℄, aMAZE [20℄,and KEGG [18℄. Table 4 shows the properties of the graph,i.e., number of nodes and edges and density. The table alsoshows the time required to
ompute the GRIPP index andthe stop node list. The times
orrespond well with the timesfor generated graphs of
omparable size.The table also shows the the average number of
alls andaverage time to answer reach(v , w). The average number of
alls as well as the average query time is slightly higher thanfor syntheti
 s
ale-free graphs of
omparable size. This in-di
ates that, although the networks are also s
ale-free, theystill have a di�erent stru
ture than syntheti
 graphs.

8. CONCLUSIONWe presented the GRIPP index stru
ture for rea
habilityqueries on dire
ted graphs. Sin
e
reating GRIPP requiresonly linear time and spa
e, it
an be used to index graphswith �ve million and more nodes. We showed analyti
allyand experimentally that using GRIPP we
an answer rea
h-ability queries on many types of graphs in almost
onstanttime using an almost
onstant number of
alls. As GRIPPis entirely based on SQL it
an easily be integrated intoexisting graph appli
ations.No graph index stru
ture suits all possible graph appli-
ations equally well. We tested GRIPP on syntheti
 ran-dom and s
ale-free graphs and on real biologi
al datasetsof various sizes and shapes and obtained very favorable re-sults. GRIPP works parti
ular well on large graphs that
ontain one large strongly
onne
ted
omponent, whi
h is atypi
al feature of graphs having a density above a
ertainthreshold. For very small graphs whose indexes
an be
om-puted and held in main memory, GRIPP is outperformedby methods based on transitive
losure or variations of it,su
h as Dual Labeling. The later is also superior for verysparse graphs, as long as they have below ∼ 10.000 nodes.For denser graphs the
omponent graphs typi
ally shrinksenormously (as almost all nodes fall into one
omponent),whi
h favors all methods that �rst
ompute the
omponentgraph (in
luding GRIPP-DAG). However, GRIPP is by farthe fastest method for indexing typi
al and large biologi
alnetworks. This observation very likely
arries over to othertypes of graphs su
h as so
ial networks or Web graphs, asthese share many
hara
teristi
s with biologi
al networks [3℄.Finally, GRIPP is highly advantageous for any appli
ationwhi
h stores and analyzes graphs in a RDBMS sin
e its in-tegration is very easy.In the future we plan to in
lude GRIPP as indexing
om-ponent into a
omprehensive graph query language. Wewill study extensions of GRIPP to support distan
e (lengthof the shortest path between two nodes) and path lengthqueries (all paths between two nodes of a
ertain length).

Finally, for this purpose GRIPP needs to be adapted to set-oriented query semanti
s. A typi
al query would have to
ompute, given a node v and a set of nodes W , all nodes in
W rea
hable from v. We are
on�dent that there are betterways of using the GRIPP index stru
ture for su
h queriesthan
alling the rea
hable fun
tion |W | times.
AcknowledgmentsThis work is supported by BMBF grant no. 0312705B.
9. REFERENCES[1℄ R. Agrawal, A. Borgida, and H. V. Jagadish. E�
ientManagement of Transitive Relationships in LargeData and Knowledge Bases. In Pro
eedings of theACM SIGMOD International Conferen
e onManagement of Data, pages 253�262, 1989. ACMPress.[2℄ R. Agrawal and H. V. Jagadish. Dire
t algorithms for
omputing the transitive
losure of database relations.In Pro
eedings of the 13th International Conferen
e onVery Large Data Bases (VLDB), pages 255�266, 1987.Morgan Kaufmann.[3℄ A.-L. Barabási and R. Albert. Emergen
e of S
aling inRandom Networks. S
ien
e, 286(5439):509�512, O
t1999.[4℄ A.-L. Barabási and Z. N. Oltvai. Network biology:understanding the
ell's fun
tional organization.Nature Reviews Geneti
s, 5(2):101�113, Feb 2004.[5℄ I. Borodina and J. Nielsen. From genomes to in sili
o
ells via metaboli
 networks. Current Opinion inBiote
hnology, 16(3):350�355, Jun 2005.[6℄ L. Chen, A. Gupta, and M. E. Kurul. Sta
k-basedAlgorithms for Pattern Mat
hing on DAGs. InPro
eedings of the 31st International Conferen
e onVery Large Data Bases (VLDB), pages 493�504, 2005.ACM Press.[7℄ J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu.Fast Computation of Rea
hability Labeling for LargeGraphs. In Pro
eedings of the 10th InternationalConferen
e on Extending Database Te
hnology(EDBT), volume 3896 of Le
ture Notes in ComputerS
ien
e, pages 961�979, 2006. Springer.[8℄ E. Cohen, E. Halperin, H. Kaplan, and U. Zwi
k.Rea
hability and Distan
e Queries via 2-Hop Labels.SIAM J. Comput., 32(5):1338�1355, 2003.[9℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introdu
tion to Algorithms. MIT Press, 2001.[10℄ P. Dietz and D. Sleator. Two algorithms formaintaining order in a list. In Pro
eedings of the 19thannual ACM Symposium on Theory of
omputing(STOC), pages 365�372, 1987. ACM Press.[11℄ P. Erdös and A. Rényi On the Evolution of RandomGraphs. Publ. Math. Inst. Hungar. A
ad. S
i., 5:17 �61, 1960.[12℄ M. F. Fernandez, D. Flores
u, A. Y. Levy, andD. Su
iu. A query language for a web-site managementsystem. SIGMOD Re
ord, 26(3):4�11, 1997.[13℄ T. Grust, M. van Keulen, and J. Teubner.A

elerating XPath evaluation in any RDBMS. ACMTrans. Database Syst., 29:91�131, 2004.

[14℄ R. H. Güting. GraphDB: Modeling and QueryingGraphs in Databases. In Pro
eedings of the 20thInternational Conferen
e on Very Large Data Bases(VLDB), pages 297�308, 1994. Morgan Kaufmann.[15℄ H. He, H. Wang, J. Yang, and P. S. Yu. Compa
tRea
hability Labeling for Graph-Stru
tured Data.InPro
eedings of the 2005 ACM InternationalConferen
e on Information and KnowledgeManagement (CIKM), pages 594�601, 2005. ACMPress.[16℄ J. van Helden, A. Naim, R. Man
uso, M. Eldridge, etal. Representing and analysing mole
ular and
ellularfun
tion using the
omputer. Journal of Biologi
alChemistry, 381(9-10):921�935, Sep-O
t 2000.[17℄ G. Joshi-Tope, M. Gillespie, I. Vastrik,P. D'Eusta
hio, et al. Rea
tome: a knowledgebase ofbiologi
al pathways. Nu
lei
 A
ids Resear
h,33:D428�D432, Jan 2005.[18℄ M. Kanehisa, S. Goto, S. Kavashima, Y. Okuno, andM. Hattori. The KEGG resour
e for de
iphering thegenome. Nu
lei
 A
ids Resear
h, 32:D277�D280, Jan2004.[19℄ G. Karvounarakis, S. Alexaki, V. Christophides,D. Plexousakis, and M. S
holl. RQL: A de
larativequery language for RDF, 2002. In Pro
eedings of the11th Intl. World Wide Web Conferen
e (WWW), 2002.[20℄ C. Lemer, E. Antezana, F. Cou
he, F. Fays, et al. TheaMAZE LightBen
h: a web interfa
e to a relationaldatabase of
ellular pro
esses. Nu
lei
 A
ids Resear
h,32:D443�D448, Jan 2004.[21℄ H. Lu. New Strategies for Computing the TransitiveClosure of a Database Relation. In Pro
eedings of the13th International Conferen
e on Very Large DataBases (VLDB), pages 267�274, 1987. MorganKaufmann.[22℄ R. S
henkel, A. Theobald, and G. Weikum. E�
ientCreation and In
remental Maintenan
e of the HOPIIndex for Complex XML Do
ument Colle
tions. InPro
eedings of the 21st International Conferen
e onData Engineering (ICDE), pages 360�371, 2005. IEEEComputer So
iety.[23℄ U. Stelzl, U. Worm, M. Lalowski, C. Haenig, et al. Ahuman protein-protein intera
tion network: a resour
efor annotating the proteome. Cell, 122(6):957�968,Sep 2005.[24℄ S. Triÿl and U. Leser. Querying Ontologies inRelational Database Systems. In Pro
eedings of theSe
ond International Workshop on Data Integration inthe Life S
ien
es (DILS), volume 3615 of Le
tureNotes in Computer S
ien
e, pages 63�79, 2005.Springer.[25℄ S. Triÿl and U. Leser. GRIPP - Indexing and QueryingGraphs based on Pre- and Postorder Numbering.Te
hni
al Report No. 207, Humboldt-Universität zuBerlin, Institut für Informatik, 2006.[26℄ H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu.Dual Labeling: Answering Graph Rea
hability Queriesin Constant Time. In Pro
eedings of the 22ndInternational Conferen
e on Data Engineering(ICDE), page 75, 2006. IEEE Computer So
iety.

