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ABSTRACT

Many applications work with graph-structured data. As
graphs grow in size, indexing becomes essential to ensure
sufficient query performance. We present the GRIPP in-
dex structure (GRaph Indexing based on Pre- and Postorder
numbering) for answering reachability queries in graphs.

GRIPP requires only linear time and space. Using GRIPP,
we can answer reachability queries on graphs with 5 million
nodes on average in less than 5 milliseconds, which is un-
rivaled by previous methods. We evaluate the performance
and scalability of our approach on real and synthetic random
and scale-free graphs and compare our approach to existing
indexing schemes. GRIPP is implemented as stored proce-
dure inside a relational database management system and
can therefore very easily be integrated into existing graph-
oriented applications.

Categories and Subject Descriptors

H.2.8 [Database management|: Database Applications—
graph indexing and querying

General Terms

Performance.
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1. INTRODUCTION

Managing, analyzing, and querying graph-like data is im-
portant in many areas such as geographic information sys-
tems [14], web site analysis [12], and querying XML docu-
ments with XPointers [22]. In addition, the semantic web
builds on RDF, a graph-based data model, and on graph-
based query languages such as RQL [19] or SparQL'. Thus,

'http://www.w3.org/ TR /rdf-sparql-query
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querying graphs will likely become even more important
in the near future. In our own research we mostly work
with data from the Life Science domain. The importance of
graphs in this area is also increasing rapidly. It is now com-
monly acknowledged that further progress in understand-
ing the complex mechanisms inside a living cell can only be
achieved if the interplay of many components, organized in
networks, is understood [5]. Nodes in these networks are
molecules, reactions, or physical interactions. These nodes
may be annotated with a vast amount of additional data
stored in various databases. Edges represent interactions,
such as the enzymatic conversion of molecules, the regula-
tion of gene expressions, or the physical interaction of pro-
teins. Large networks, e.g., metabolic [18] or protein-protein
interaction networks [23], are built from single interactions.
In [16] van Helden and colleagues identified several impor-
tant queries on biological networks. For instance, the ques-
tion "find all genes whose expressions is directly or indirectly
influenced by a given molecule" can be mapped to a reach-
ability query in a directed graph of genes and regulation
events.

The size of the graphs or networks under consideration
can be very large. Typical biological networks are currently
in the range of tens of thousands of nodes. This num-
ber increases dramatically as activity in measuring interac-
tions moves from bacteria to higher organisms, such as hu-
mans [4], which are believed to contain more than 300,000
different proteins. Already today, networks of biomedical
entities (genes, diseases, drugs, etc.) extracted from publi-
cation databases contain more than 10 million edges?.

One important type of queries in graphs are reachability
queries. Given two nodes v and w in a graph, we want to
verify whether there exists a path from v to w. There are
two obvious approaches to answer such queries. First, one
can recursively traverse the graph at query time, starting
from v and performing a depth-first or breadth-first search
until w is reached or no more edges remain [9]. Given a
graph G with n nodes and m edges this method requires
O(m) lookups. No index is needed, but performance is bad
even on small graphs. Second, one can pre-compute the
transitive closure (TC) of the graph. Using the TC as index
reachability queries can be answered by a single lookup. But
on the downside, the computation of the TC is O(n®) and
its size O(n?) [9]. This renders its computation and storage
infeasible for large graphs (see also Section 7).

Table 1 shows the worst case complexity of several ap-
proaches to reduce computation cost or storage space (see
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Section 2.1 for details). Chen et al. [6] (Labeling+SSPT)
only index a spanning tree and store additional edges in
a separate index structure, called SSPI. The entire index
requires O(n + m) space, but parts must be traversed recur-
sively at query time. The Dual Labeling approach by Wang
et al. [26] can be queried in constant time. They also first
compute a spanning tree and build a condensed transitive
closure over the remaining ¢ edges. Index generation requires
O(n+m+t) time and its size is O(n +t?). This is accept-
able for sparse, tree-like graphs (with ¢ < n), but for denser
graphs (¢ > 2n) the method also requires an prohibitively
large amount of space. Schenkel et al. [22] proposed HOPI,
a method to compute the 2-Hop-Cover, which requires only
O(nm!/?) space, but as the TC O(n?) time to compute the
index.

Table 1: Worst case complexities of different index
and query strategies to answer reachability queries.

Query time | Index time Index size
Recursive O(n+m) - -
Labeling+SSPI | O(m — n) O(n+ m) O(n+ m)
GRIPP O(m —n) O(n+m) O(n+ m)
Dual Labeling O(1) On+m+1t3) | O(n+t?)
HOPI O(ml/2) O(n3) O(nm1/?)
TC o(1) O(n?) O(n?)

In this paper we present the GRIPP index (GRaph Index-
ing based on Pre- and Postorder numbering) for indexing
very large graphs. Its basic idea is an adaptation of the pre-
and postorder numbering scheme — so far only applied to
trees [10] and directed, acyclic graphs (DAGs) [1, 24] to
(cyclic, possibly unrooted) graphs. The GRIPP index can
be computed in O(n + m) time and requires only O(n + m)
space. Therefore, GRIPP can be used to index graphs far
beyond the scope of the TC or Dual Labeling. Answer-
ing reachability queries with GRIPP requires in worst case
O(m — n) time (see Table 1), which is the same as for La-
beling+SSPI. However, we will show that with GRIPP the
actual time to answer a reachability query is almost con-
stant over different sizes, shapes, and densities of graphs.
We will support this claim both experimentally and analyt-
ically. GRIPP indexes graphs containing 50,000 nodes and
100,000 edges in ~ 120 sec and answers reachability queries
on such graphs in ~ 3.5 ms using ~ 2 queries. Even for the
largest graphs tested, consisting of 5 million nodes and 10
million edges, the query time increases only marginally.

GRIPP is designed as a persistent index stored in a rela-
tional database management system (RDBMS). All opera-
tions for indexing and querying are implemented as stored
procedures, thus fully leveraging the main memory manage-
ment capabilities of an RDBMS. Therefore, GRIPP has no
particular requirements regarding the size of available main
memory. Integrating our method into an existing, RDBMS-
based application only requires the installation of stored
procedures. After the index is created using a simple SQL
function, applications use another SQL function to answer
reachability queries. We therefore believe that GRIPP is a
highly practical, non-intrusive method.

Our paper is organized as follows. In the next section we
describe our model and discuss related work. In Section 3
we present the GRIPP index structure itself. In Section 4
we show how to evaluate reachability queries using GRIPP
and propose pruning strategies. The effectiveness of GRIPP

depends on the order in which the graph is traversed during
index creation, which is discussed in Section 5. In Section
6 we describe several heuristics for an efficient implementa-
tion of GRIPP. In Section 7 we give experimental results for
synthetic random, synthetic scale-free, and real biological
networks, with graph sizes ranging from 1,000 to 5,000,000
nodes and different graph densities. Section 8 concludes the

paper.

2. BACKGROUND AND RELATED WORK

We adopt notation from Cormen et al. [9]. A graph G =
(V,E) is a collection of nodes V and edges E. We only
consider connected graphs with labeled nodes and directed,
unlabeled edges. The graph has n nodes and m edges, the
size of a graph is |G| = n +m. The degree of a node is the
number of incoming and outgoing edges of the node. The
density of a graph is the ratio between n and m. Given a
graph G, a path p is a sequence of nodes that are connected
by directed edges.

We assume that graphs are stored as a collection of nodes
and edges in an RDBMS. The information on nodes includes
a unique identifier. Edges are stored as binary relationship
between two nodes, i.e., as adjacency list.

We analyze the problem of answering reachability queries
on graphs. Let G = (V,E) be a graph and let v,w € V
be two nodes of G. w is reachable from v, iff there exists a
path from v to w. Given two nodes v and w, the function
reach(v, w) returns true if w is reachable from v, and false
otherwise.

Two nodes v,w € G are in the same strongly connected
component if reach(v, w) = reach(w,v) = true, otherwise
not. Collapsing every strongly connected component into a
representative node results in the component graph, which
forms a directed acyclic graph (DAG).

2.1 Reated Work

The simplest way to answer reachability questions on gra-
phs is to traverse the graph at query time using depth- or
breadth-first search [9]. SQL:2003 provides standard syn-
tax to express recursive queries and some database man-
agement systems have implemented that standard. But in
most RDBMS recursive queries cannot be expressed by SQL
queries, but must be implemented using stored procedures
(see Section 7 for their performance).

Another option is to pre-compute the transitive closure
(TC). The TC of a graph is the set of node pairs (v, w) for
which a path from v to w exists. Efficient algorithms for
computing the TC in relational databases have been devel-
oped [2, 21]. But the size of the TC is O(n?) and its com-
putation time O(n?), which makes it inapplicable to large
graphs. For instance, computing the transitive closure with
the method described in [21] on a graph of 50,000 nodes and
100,000 edges did not finish within 24 hours (see Section 7
for details).

To reduce storage space, Cohen and colleagues [8] devel-
oped the 2-Hop-Cover, which requires O(nml/z) space and
can answer reachability queries with only two lookups. How-
ever, the problem of computing the optimal 2-Hop-Cover
is NP-hard and requires the TC to be computed first [8].
Schenkel et al. [22] proposed graph partitioning as a method
to get away from the necessary pre-computation of the en-
tire TC, thus reducing storage requirements for the index
creation process. This approach, called HOPI, works very



well for forests with few connections between the different
sub-trees. But for denser graphs, such as the metabolic net-
work of KEGG, the partitioning is not effective as the size
of the 2-Hop-Cover is only two times smaller than the tran-
sitive closure itself (R. Schenkel, personal communication,
May 2006). Cheng et al. [7] proposed a complex, geometry
based method that does not require the computation of the
TC to compute the 2-Hop-Cover. In their approach they
first identify strongly connected components and then la-
bel each component. Based on these labels they generate a
reachability map that is used to compute the 2-Hop-Cover.
In contrast to Cohen et al. they use an approximation for
determining the densest subgraph, which is required during
creation of the 2-Hop-Cover. This approximation reduces
the computation time, but might increase the index size.
But for their tested graphs the storage space is only slightly
larger than compared to other approaches. However, their
approach for computing the index is main memory based,
which limits its scalability towards very large graphs.

2.1.1 Interval-Based Approaches

A different indexing strategy is to label nodes using the
pre- and postorder numbering scheme. This indexing scheme
was originally described for tree structured data [10]. In the
pre- and postorder numbering scheme each node in the tree
receives a pre- and postorder value. Both values are assigned
according to the order in which the nodes are visited during
a depth-first traversal of the tree. The preorder value vy is
assigned as soon as node v is encountered during the traver-
sal. The postorder value vpos: is assigned after all successor
nodes of v have been traversed.

A table of all nodes with their assigned pre- and postorder
values forms an index with which reachability queries can be
answered with a single query. If w is reachable from v, w
must have a higher preorder and lower postorder value than
v, 1.e., Wpre > Upre N\ Wpost < VUpost. However, the evaluation
of this condition in an RDBMS is prohibitively slow due
to the two non-equijoins [13]. An obvious optimization is
to use only one counter for the pre- and postorder values.
Therefore, all successor nodes w of v must lie within the
borders given by the pre- and postorder values of v, i.e.,
[Upre, Upost]- Thus, reach(v, w) < Vpre < Wpre < Vpost-

Still, this method only works for trees. As soon as nodes
have multiple incoming edges, they are visited multiple times
during a traversal, and thus no unique pair of pre- and pos-
torder values can be assigned. To extend this strategy to di-
rected, acyclic graphs (DAGs) we used an 'unfolding’ tech-
nique [24], where each added 'non-tree’ edge in the DAG
introduces a new entry in the index structure. The tar-
get node of the additional edge as well as all its successors
get additional pre- and postorder values incurring an expo-
nential explosion in the index size as DAGs become very
‘tree-unlike’. Our newly proposed index structure GRIPP
also traverses nodes multiple times, but does not visit chil-
dren of an already visited node again, which makes its space
requirements only linear in the size of the graph (see also
Section 3).

Agrawal et al. [1] described a different method to index
DAGs. They propagate pre- and postorder values upwards.
The source of an additional edge as well as all its ancestors
receive the pre- and postorder value of the target as another
pre- and postorder value pair. In contrast, in GRIPP only
the target will get an additional pre- and postorder value.

For GRIPP this comes at the cost that at query time we have
to traverse the index recursively as explained in Section 4,
while for the approach of Agrawal et al. the query time is lin-
ear in the number of intervals assigned to a node. To reduce
the number of intervals of a node and therefore storage space
Agrawal et al. merge pre- and postorder ranges of nodes.
They present an algorithm to compute an optimal index
structure, i.e., an index structure with least storage space.
This algorithm determines an optimal order for the traversal
of nodes during labeling. The authors state that computing
the optimal index structure has the same time complexity as
the computation of the transitive closure, which also makes
it inapplicable to large DAGs. However, it would be worth
studying whether the heuristics described for GRIPP in Sec-
tions 5 and 6 would also be applicable here.

2.1.2 Hybrid Approaches

Chen et al. [6] presented a hybrid index structure for
DAGs, called Label4+SSPI. This approach uses pre- and pos-
torder labeling for a spanning tree and an additional data
structure, called SSPI, for storing non-tree edges. This re-
sults in an index structure in the size of O(n + m). For
answering reach(v, w) the spanning tree part is handled by
an initial range query. If w is not found in the range of v
the additional data structure is traversed recursively, which
leads to (m —n) queries in worst case (see Table 1).

He et al. [15] proposed a different indexing strategy, called
HLSS, that first identifies strongly connected components
and collapses these to one node to reduce the size of the
graph. The remaining structure is a DAG. They label the
nodes of a spanning tree with pre- and postorder values. To
encode the reachability relationship over non-tree edges they
compute the 2-Hop-Cover over these edges. The query time
is not constant, but depends on the size of the 2-Hop-Cover
label of a node.

Wang et al. [26] proposed an index structure, called Dual
Labeling that allows to answer reachability queries in con-
stant time. They also identify strongly connected com-
ponents and collapse these to one node. They label the
nodes of a spanning tree with pre- and postorder values.
Instead of computing the 2-Hop-Cover they compute the
transitive closure over the remaining edges (called TLC ma-
trix). Using pre- and postorder values of nodes the TLC ma-
trix can be further reduced in size. The authors state that
in sparse, tree-like graphs the number of non-tree edges is
small. Therefore the size of the TLC matrix is much smaller
than the TC of the graph itself.

In Section 7 we will compare the approaches from Chen
et al. and Wang et al. with our index structure GRIPP.

3. GRIPPINDEX STRUCTURE

GRIPP extends the pre- and postorder labeling scheme
to work on graphs. Every node in the graph receives at
least one pair of pre- and postorder values. As nodes can
have multiple parents one pair is not sufficient to encode the
entire graph structure. Therefore, some nodes will get more
than one pair of values.

For now, we assume that the graph has exactly one root
node, i.e., one node without incoming edges. We also assume
an arbitrary, yet fixed order among child nodes, e.g., given
by the ID of the node. In Section 6 we explain how to deal
with graphs with multiple or no root nodes.

For the creation of the GRIPP index we start at the root



node of G. During a depth-first traversal of G we assign
pre- and postorder values. We always traverse child nodes
according to their order. A node v with n > 1 incoming
edges is reached n times on edges e;, 1 <4 < n. The edge e;
on which we reach v for the first time is called a tree edge.
We assign a preorder value to v and proceed the depth-first
traversal. After all child nodes have a value pair, v receives
its postorder value. Of course, we reach v n — 1 times again.
Assume we reach v over edge e;, e; # e;. We call e; a
non-tree edge and assign a pre- and postorder value to v,
but do not traverse child nodes of v. We store the pre- and
postorder values together with the node identifier as node
instances in an indez table, IND(G). Every node will have
as many instances in IND(G) as it has incoming edges in G.
Analogously to the distinction of tree and non-tree edges we
distinguish between tree and non-tree instances in IND(G).

DEFINITION 1 (TREE AND NON-TREE INSTANCES). Let
IND(QG) be the index table of graph G. Let v € V be a node
of G and v' be an instance of v in IND(G). v’ is a tree
instance of v, iff it was the first instance created for v in
IND(G). Otherwise v’ is a non-tree instance of v.

Figure 1(a) shows a graph and Figure 1(b) shows its in-
dex table resulting from a traversal in lexicographic order of
node labels. Nodes A and B have two instances in IND(G)
because they have two incoming edges in G.

node | pre post type
T 0 21 tree
A 1 20 tree
B 2 7 tree
E 3 4 tree
F 5 6 tree
C 8 9 tree
D 10 19 tree
G 11 14 tree
B 12 13 non-tree
H 15 18 tree
A 16 17  non-tree

(a) Graph, G.

(b) Index table, IND(G).

Figure 1: Graph G and its GRIPP index table
IND(G). Solid lines represent tree edges, dashed
lines are non-tree edges.

The GRIPP index structure resembles a rooted tree, which
we call the order tree, O(G).

DEFINITION 2 (ORDER TREE). Let G = (V, E) and let
IND(G) be its index table. The order tree, O(G), is a tree
that contains all instances of IND(G) as nodes and all edges
of G.

Intuitively, O(G) consists of a spanning tree T'(G) of the
graph and a non-tree part N(G). T(G) contains the tree
instance of every node in the graph and is connected by
tree edges ET. N(G) contains a node for every non-tree
instance in IND(G), which is connected by a non-tree edge
to a node in the spanning tree T'(G). Therefore, every non-
tree instance is a leaf node, while tree instances can be inner
or leaf nodes. Note that the shape of O(G) depends on
the order with which G is traversed. In Section 6 we shall
explain how we can determine an order that is well suited
for our purpose. In Figure 2 the instances of IND(G) shown
in Figure 1(b) are plotted. Nodes A and B occur twice in
O(G) as they have two instances in IND(G).
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Figure 2: Pre-/ postorder plane for IND(G) in Figure
1(b). Dotted lines indicate O(G). Non-tree instances
are displayed in gray.

The space requirement to store the GRIPP index table is
O(n+m), i.e., linear in the size of the graph. More precisely
IND(G) has as many entries as G has edges plus one entry
for every root node (see also Section 6.2). To create the
GRIPP index structure we perform a depth-first traversal,
requiring O(n + m) time.

4. QUERYING GRIPP

In the following chapter we show how to use the GRIPP
index to efficiently answer reachability queries for a fixed
pair of nodes. Recall that reachability queries in trees can
be answered with a single lookup because all reachable nodes
of a node v have a preorder value that is contained within the
borders given by vpre and vpost. When we try to query the
GRIPP index structure in this way, we face two problems.
First, v has multiple instances in IND(G), each with its
individual pre- and postorder value. Second, in the preorder
range of an instance v’ we will only find instances of nodes
that are reachable from v' in O(G). Nodes reachable from
v in G but not from v’ in O(G) will be missed. Thus, to
find all reachable nodes in GG, we have to extend the search,
using the hop technique.

4.1 Hop technique

To evaluate reach(v, w) we use the index table IND(G).
Observe that v can have many instances in IND(G). Every
non-tree instance of v in IND(G) is a leaf node in O(G)
and therefore has no successors in O(G). Let v’ be the tree
instance of v. If v’ is an inner node in O(G) it has reachable
nodes w’ in O(G) such that vy, < Wpre < Upose- Those can
be retrieved with a single query. We call this set of instances
reachable instance set of v. In Figure 3(a) the reachable
instance set of node D is shown. It contains instances of
nodes G, B, H, and A.

DEFINITION 3 (REACHABLE INSTANCE SET). Let
v € V be a node of graph G and v' € IND(G) its tree in-
stance. The reachable instance set of v, written RIS(v), is
the set of all instances that are reachable from v' in O(G),
i.e., that have a preorder value in [Vp,.c, Upost)-

To answer reach(v, w) we proceed as follows. We first find
the tree instance v’ of v and retrieve its reachable instance
set. If w € RIS(v), we finish and return ¢rue, otherwise
we have to extend the search. If RIS(v) contains non-tree
instances of nodes, their child nodes might not have an in-
stance in RIS(v), i.e., these nodes are reachable from v in
G, but not from v’ in O(G). To account for that, we have



to examine all non-tree instances of nodes in RIS(v). We
call those nodes hop nodes. In Figure 3(a) RIS (D) contains
non-tree instances of nodes B and A, i.e., both are hop nodes
for D.

DerINITION 4 (Hop NODE). Let v,h € V and h' be a
non-tree instance of h. If k' € RIS(v) then h is called a hop
node for v.
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(a) RIS(D) (b) RIS(D) and RIS(B

in dark gray; RIS(A) in
light gray.

Figure 3: The example shows reach(D, r) evaluated
on the GRIPP index structure from Figure 1(b).
Nodes A and B are hop nodes for D.

Every hop node in RIS(v) has a reachable instance set in
O(G). The nodes in that set are reachable from v in G, but
not from v’ in O(G). But we need to check if w is in one of
those. Therefore, we identify all hop nodes and recursively
check their reachable instance sets by performing a depth-
first search over O(G) using hop nodes in ascending order
of their preorder values. We stop traversing O(G) if we find
node w in some reachable instance set or if there exists no
further non-traversed hop node in a reachable instance set.

In IND(G) there exist m — n non-tree instances, each of
which can be a hop node. Thus, querying GRIPP to answer
reach(v, w) requires in worst case m — n queries. However,
in the following we show pruning strategies that allow to
query graphs on average in almost constant time as shown
in Section 7.

4.2 Pruning strategies

Consider Figure 3(b) and reach(D,r). We find non-tree
instances of nodes B and A in RIS(D). If we first use node
A as hop node, we find non-tree instances of A and B in
RIS(A). Clearly, we do not need to use A as hop node
again. Therefore, we next use B as hop node. The tree
instance of B is a successor of the tree instance of A in
O(G). This implies that RIS(B) is contained in RIS(A),
i.e., we will not find new instances in RIS(B) that are not
already contained in RIS(A). Therefore, using B to retrieve
RIS(B) is not necessary; B can be pruned from the list of
hop nodes.

In general we want to avoid posing queries for preorder
ranges which we have already checked. During our search
we keep a list U of all nodes that have been used to retrieve
a reachable instance set. Now assume we have found a new
hop node h. The decision whether we need to consider the
reachable instance set of h entirely, partly, or not at all de-
pends on the location of the tree instance h’ of h relative
to the tree instances of nodes in U. There are four possible

locations of A’ in relation to the tree instance u’ of a node
u € U in O(G). These are shown in Figure 4. h' either is
(a) equal to, (b) a successor of, (¢) an ancestor of, or (d) a
sibling to u’. Given that we may consider all nodes in U for
pruning, this results in four possible cases: (a) b’ is equal to
the tree instance of some node in U; (b) h’ is successor of
the tree instance of some node in U; (c) k' is ancestor to tree
instances of nodes in U and neither (a) nor (b) is true; (d)
I’ is sibling to tree instances of all nodes in U. Note that
the pre- and postorder ranges of two instances can never
overlap. They are either disjoint or one is entirely contained
in the other.

In case (d), no pruning is possible and we have to con-
sider the entire reachable instance set of h, as there exists
no previous reachable instance set that covers instances in
RIS(h). For the remaining three cases we can apply pruning

strategies.

) ' equals u’ ) k' successor of u’

h/

A MR
(¢) A" ancestor of u’ (d) A’ sibling to u’

Figure 4: Possible locations of ' of hop node h rel-
ative to u', u € U.

In the first case, we can skip h entirely because a non-
tree instance of h has already been used as hop node and
therefore the reachable instance set of the tree instance of h
has been checked.

In the second case, we can also skip h. In this case (see
Figure 4(b)) there exists u € U such that h’ is successor of
o', e, ' € RIS(u) in O(G). Thus, the entire reachable
instance set of hop node h is contained in RIS (u).

In the third case we have to be more careful. Consider
Figure 3(b) and the query reach(D,r). Assume, we have
retrieved RIS(D) and RIS(B) and expand the search using
A as hop node. RIS(A) contains the tree instance of B and
D and therefore also contains RIS(B) and RIS(D) as well.
Thus, when we consider RIS(A) we can skip the pre- and
postorder range of RIS(B) and RIS(D).

42.1 Skip Strategy

We first assume that only one v’ exists that is a successor
of h/. Thus, the reachable instance set of u is contained in
RIS(h). This situation is displayed in Figure 4(c). Con-
sidering the entire reachable instance set of h leads to du-
plication of work. To avoid this we use the skip strategy
working as follows. For every node u € U we stored the pre-
and postorder value, i.e., the borders of RIS(u). In that
range all instances are covered by RIS(u) and we can skip
the preorder range without missing instances. We only have
to consider instances from RIS (h) whose preorder values lie
outside the pre- and postorder range of u’.

If there is more than one successor node of h in U, the



situation is slightly more complicated. Essentially, we can
skip all their ranges when searching RIS(h). This could be
optimized by merging ranges iteratively during the search,
thus reducing the number of necessary interval operations.
However, because we search U only a few times during a
reachability query (see also Section 7) we believe the cost
to merge ranges does not account for the gain of merging.
Therefore, if multiple u exist in RIS(h) each of their ranges
is considered separately for skipping.

4.2.2 Sop Srategy

When querying graphs for reachability between nodes v
and w we can stop extending the search as soon as we have
found an instance of w in the reachable instance set of the
current hop node h. But if w ¢ RIS(h) we must check every
hop node in RIS(h) and start a recursive search. It would
be advantageous if we knew in advance that in RIS(h) no
hop node exists that will extend the search, because in that
case we do not have to query for the tree instances of hop
nodes. We now show cases where this property can be pre-
computed.

Recall that a hop node for node s is a node h that has a
non-tree instance in RIS(s). h is not used as hop node if
the tree instance of h is in RIS(s) (Figures 4(a), 4(b)). We
can precompute a list of nodes S for which all hop nodes
have this property. We call these nodes stop nodes as their
reachable instance sets will not extend the search.

DEFINITION 5  (STOP NODE). Let s € V be a node of
graph G and let RIS(s) be its reachable instance set in O(G).
s is called a stop node iff all non-tree instances in RIS(s)
also have their corresponding tree instances in RIS(s).

Intuitively, a stop node s is a node in G for which for ev-
ery non-tree instance in RIS(s) exists a corresponding tree
instance in the same set. This means, that all nodes reach-
able from s in G are reachable from s’ in O(G), i.e., have
an instance in RIS(s). Clearly, nodes reachable from s in G
can also have non-tree instances in other reachable instance
sets than in RIS(s).

When we reach the tree instance of a stop node s during
the search we immediately know that we do not need to ex-
tend the search using hop nodes of RIS(s). The GRIPP in-
dex structure in Figure 1 contains several stop nodes, namely
nodes r, A, B, E, F, and C. As heuristic, during the search
we prefer stop nodes as hop nodes over non-stop nodes.

5. THEIMPACT OF TRAVERSAL ORDER

The GRIPP index structure is created using an arbitrary
yet fixed order of nodes. The chosen order does not influence
the size of the index, as the space requirements to store
the GRIPP index table is linear in the size of the graph.
However, it has a strong influence on the performance of
reachability queries. In the following, we describe an order
which works extremely well on many types of graphs. In
Section 6.1 we will show simple heuristics to approximate
this order with minimal effort. Using this order, querying
the GRIPP index requires on average significantly less than
m—n recursive calls; in fact, as our experiments in Section 7
show, the number of calls remains almost constant over all
tested types of graphs.

Our idea is based on the following observations. In every
graph one can identify strongly connected components C

C} in linear time. Each component can be collapsed

into a representative node (see Figure 5). The reachability
information for nodes within one component are identical
(this obvious optimization is used by many graph indexing
strategies, such as [1] or [26]). Therefore, we can divide the
problem of finding a good traversal order in two separate
parts. First, find a good traversal order for nodes within
one strongly connected component and second, find a good
traversal order for the components in the component graph.

Figure 5: Structure of a graph. Solid lines indicate
edges, dotted lines paths. The gray area contains all
nodes and edges in the strongly connected compo-
nents.

We first consider the traversal order for nodes within a
strongly connected component C. Assume that during index
creation we reach node ¢ € C. We add the tree instance of ¢
to IND(G). If no other node of C has been traversed before,
we traverse all remaining nodes of C'  all are reachable from
¢ since C' is a strongly connected component. Thus, every
node in C will have a tree instance in RIS(c¢) and we can
answer reach(v, w) for v = cand w € C with a single lookup.

If v # ¢, but v € C the situation is different. Suppose
RIS(v) contains a non-tree instance of ¢ and suppose we use
c as first hop node. We then can answer reach(v, w) (with
w € C) with two recursive calls, i.e., one to retrieve RIS (v)
and one for RIS(c¢). To achieve this for every v € C, we
have to find a traversal order such that for every node v € C,
RIS(v) contains a non-tree instance of c. We therefore must
solve the following problem: Find a node ¢ € C such that
we can divide C' in partitions Pi,..., P, with n equals the
indegree of c. For every P;, 1 < i < n compute a Hamilton
path starting at node v and ending at node ¢, with v = ¢
or v child node of a node in Pj, j # i. If we create GRIPP
along those Hamilton paths we can ensure that for every
node v € C, RIS(v) contains at least one non-tree instance
of c.

Now suppose that we have not traversed any successor
nodes of cin G when we traverse ¢, i.e., we have not traversed
any nodes of C or any nodes in successor components of
C. We traverse nodes in C along Hamilton paths and also
traverse all nodes in successor components of C. This means
all reachable nodes of ¢ in G have a tree instance in RIS(c).
In addition, every non-tree instance in RIS(c¢) must also
have its corresponding tree instance in RIS(c), i.e., cis a
stop node. In Figure 6 the tree instance of ¢, ¢’ is shown
as double circled node in the gray area. Given v € C we
can answer reach(v, w) for any node w € G with at most



two recursive calls, one initial call to test RIS(v), finding a
non-tree instance of ¢ (or possibly already an instance of w),
and a second call using ¢ as hop node to test RIS(c). As ¢
is a stop node we do not have to use any further hop nodes,
regardless if RIS(c) contains an instance of w or not.

Figure 6: Optimal GRIPP index structure. Circles
indicate tree instances, squares non-tree instances.
The double circled node is the stop node, the double
squared nodes are its non-tree instances. In gray is
the area of instances of the giant strong component.

Therefore, we have to ensure that component C' is tra-
versed before any of its successor components in the compo-
nent graph. Clearly, this is not possible for any C, but the
problem is alleviated by the following observation. Erdds
and Rényi [11] proved that directed random graphs with
more edges that nodes contain one giant strongly connected
component C. The size of C' depends on the graph den-
sity. The experimental results given in Section 7 show that
this is also true for our generated scale-free graphs. There-
fore, graphs of a certain density usually appear as shown
in Figure 5, with one component being very large (giant)
and all other components being small. In this setting, it is
only important to traverse the giant component before any
of its successor components. The remaining successor com-
ponents are traversed in descending order of the size of their
successor sets, i.e., of the number of reachable nodes. Recall,
for nodes in a component C' that has been traversed before
any of its successor components we can answer reach(v, w),
with v € C and w € G, with two recursive calls.

We can also estimate the number of recursive calls to an-
swer reach(v, w) for every node v ¢ C. If RIS(v) contains no
non-tree instance we can immediately return false using one
call. Otherwise, we have to query GRIPP recursively, but
we will at most use m’ — n’ recursive calls with m’ number
of edges and n’ number of nodes in the component graph.

In some cases this number can even be reduced. Consider
the case where v is sibling to nodes in C' and RIS(v) only
contains non-tree instances of nodes in C' and possibly of
nodes in successor components of C'. Suppose we first use
a node from C as hop node. We then need at most three
recursive calls to answer reach(v, w). One call to retrieve
RIS(v), finding the non-tree instance h’ of a node h € C
and using h as hop node, one call to retrieve RIS (h), which
contains a non-tree instance of ¢, and one call to test RIS (c).
If we can ensure this order of hop nodes we can also answer
reachability queries for such cases with a constant number

of calls.

Concluding, a good traversal order can be obtained as fol-
lows. First identify all strongly connected components and
build the component graph. Using Tarjan’s algorithm this
takes O(n+m) time. Second, determine the traversal order
of components in the component graph by computing the
size of the successor sets of all k£ components, which requires
O(k®) time. Third, compute a good order for nodes within
every component C by first identifying a node ¢ and then
computing Hamilton paths as described above. As finding
Hamilton paths in graphs is NP-complete [9], this is not fea-
sible for practical application. In the next section we present
a simple heuristic for determining a traversal order, which,
as we will show experimentally in Section 7, requires an al-
most constant number of calls to answer reach(v, w) over
different sizes, shapes and densities of graphs.

6. IMPLEMENTATION

In this section we present a suitable heuristic to compute
a GRIPP index structure that works well on many types of
graphs. We also present details on our implementation of
the GRIPP indexing and search algorithm.

6.1 Giant Component and Node Order

During the creation of the GRIPP index for large graphs
we want to avoid to compute the strongly connected com-
ponents, as this also requires time. We found the following
heuristic to work very well. To ensure that we traverse nodes
of the giant strongly connected component before any other
nodes we want to traverse a node from the giant strongly
connected component as first node during index creation.
Therefore we create a virtual root node (see Section 6.2)
and attach an additional edge between the virtual root node
and the node with the highest degree. This node can be
found very quickly and, as nodes with a high degree tend
to have many successor nodes and can be reached by many
nodes, this node is very likely a member of the giant strongly
connected component. Choosing this node has the addi-
tional advantage that it also has many incoming edges and
therefore will get many non-tree instances in IND(G). This
means that it is likely to find a non-tree instance of that
node in the reachable instance set of other nodes, and recall
that this node is a stop node.

In the next step of the index creation we traverse child
nodes of that node. We try to traverse the child node with
the largest reachable instance set first as this node covers a
large part of the remaining graph. We use the heuristic that
a node with a high degree is likely to have a larger reachable
instance set than a node with a lower degree. Therefore, we
prefer child nodes with a high degree, i.e., we traverse child
nodes according to their degree.

In Section 7 we show that using these heuristics we reach
an almost constant query time over different sizes and shapes
of graphs.

6.2 Virtual root node

We only explained the creation of the GRIPP index struc-
ture for graphs with a single root node. However, all kinds
of graphs can be treated in the following way, essentially
ignoring how many nodes have no incoming edges. We first
add a virtual root node r to the graph. We add an edge
between r and the node with the highest degree among all
nodes. We then traverse and label the nodes as explained in



Section 3 starting from r and using child nodes in the order
of their degree. In general, some nodes will not be reached
during this traversal, i.e., nodes without incoming edges or
nodes in not connected subgraphs. We find those nodes and
add another edge from r to the node with the highest degree.
This is repeated until all nodes have at least one instance in
the index table. This way, we uniformly handle graphs with
none, one, or multiple root nodes.

6.3 Stop nodelist

To create the list of stop nodes we have to check the
reachable instance set of every node. As this is too time
consuming for large graphs, we test only selected nodes. We
are especially interested in nodes whose reachable instance
set covers a large amount of instances. Therefore, we only
consider child nodes of the virtual root node as stop node
candidates. Additionally, we require that the size of the
reachable instance set of a stop node candidate exceeds a
certain threshold ¢. Furthermore, we only test a node if it
is a potential hop node, i.e., if it has a non-tree instance in
IND(G). For a stop node candidate s we check if the tree
instance h’ of every hop node in RIS(s) has a preorder value
that is lower than the preorder value of the tree instance s’
of s. If that is the case, h' is sibling to s’ in O(G) and s is
not a stop node; otherwise, s is a stop node.

6.4 Query algorithm

The GRIPP index as well as all temporary information
(stop nodes, visited hop nodes, etc.) are stored in rela-
tional tables. The instance type of a node is stored as spe-
cial attribute in the index table. We created b-tree indexes
on relevant attributes, including a combined index on the
attributes preorder, node, and instance type. To answer
reach(v, w) Algorithm 1 starts by testing w € RIS(v) with
a query over the index. It then adds v to the list U of used
nodes. If v is a stop node, the algorithm stops.

Otherwise, we perform a depth-first search considering
non-tree instances in RIS(v) in ascending order of their pre-
order rank as hop nodes, unless RIS(v) contains a non-tree
instance of a stop node, which is preferentially used. In the
next step we select all hop nodes from RIS(v) which are not
already covered by another reachable instance set. For ev-
ery hop node h we determine the location of its tree instance
B’ and test if RIS(h) is completely or partly covered from
nodes in U. If not, we proceed, using h as next hop node.
We stop once we found an instance of w or if there are no
more non-traversed hop nodes. All checks are implemented
as relational queries.

6.5 Practical Applicability

The GRIPP indexing and query algorithm is implemented
as stored procedure. Therefore, there is virtually no limit
in the size of the graphs, as all operations are performed
as SQL queries leveraging the memory management of the
underlying RDBMS. As an additional advantage, GRIPP
may be integrated very easily into all applications that store
graph-like data in a RDBMS. All that needs to be done is
the installation of stored procedures. Views can be used to
create the expected table structure for the indexing function.
The index is stored in a separate table. Then, reachability
of two nodes can be tested by a simple call of a user-defined
SQL function.

Algorithm 1: Function to answer reach(v, w) using the
GRIPP index.

used hops «— 0

used stops < ()

FUNCTION reachability(v, w) RETURNS boolean

if w € RIS(v) then
| return true

else
used hops < used hops U (v)
if v € STOP NODES then
‘ used stops « used stops U (v)
return false
else

while non tree inst «— nextStop(RIS(v)) do
tree _inst < getTreeInst(non tree inst)
if reachability(tree inst, w) then return

true
end

if isInRIS(v, used stops) then

| return false

end

Hy ... Hp < getUsedHopsInRIS(v)

// skip ranges

non tree instances < getNonTreeInst(RIS(v) \
RIS(H1) \ ... \ RIS(Hy))

foreach non tree inst € non tree instances do
tree inst «— getTreeInst(non tree inst)

if /hasChildren(tree inst) then

| continue N

end

// if new hop has been used as hop

if tree inst € used hops then

| continue

end

// if new hop is in a RIS of a used hop
if isInRIS(tree inst, used hops) then

| continue

end

// otherwise call recursively

if reachability(tree inst, w) then return
true

if isInRIS(v, used stops) then

| return false

end

end

return false
end

end
end

7. EXPERIMENTAL RESULTS

To evaluate our approach we use synthetic as well as real-
world data. We compare GRIPP in detail to the Dual Label-
ing approach from Wang et al. [26] and the Labeling+SSPI
approach from Chen et al. [6]. Both algorithms can only
index directed, acyclic graphs (DAG). Therefore we first
identify strongly connected components of G and collapse
each component into a representative node. This step takes
O(n+m) using Tarjan’s algorithm [9]. The resulting compo-
nent graph is a DAG. To compare our approach we created
and queried the GRIPP index for the component graph as
well as for the graph itself. For a more detailed comparison
of GRIPP with TC and recursive functions see [25].

For synthetic data we created random as well as scale-
free graphs in the size of 1,000 to 5,000,000 nodes and 0 to
2,000% more edges than nodes using the methods described
in [3]. The degree distribution in scale-free graphs follows a
power law with an exponent v = 2.7. As real-world data we



Table 2: Average time and size for different indexing methods on synthetic scale-free graphs with 100 % more

edges than nodes.

(a) Average time (sec).

Component Graph Dual Labeling GRIPP Label 4+ SSPI
No. nodes | No. nodes | No. edges | Time GRIPP index | Stop nodes
1,000 422.2 588.8 2.9 8.8 0.8 0.2 1.1
5,000 2,184.6 3,111.8 16.1 906.8 4.0 2.8 6.9
10,000 4,324.6 6,152.0 34.1 7,937.6 8.0 6.0 16.5
50,000 21,816.0 31,1104 | 278.1 > 86,400.0 41.3 33.6 208.9
(b) Average number of tuples.
Component Graph Dual Labeling GRIPP Label 4+ SSPI
No. nodes | No. nodes | No. edges | Node labels | TLC values | GRIPP index | Stop nodes | Node labels SSPI
1,000 422.2 588.8 423.2 3,431.8 768.2 1.0 423.2 533.2
5,000 2,184.6 3,111.8 2,185.6 117,699.8 3,975.0 1.0 2,185.6 2,838.4
10,000 4,324.6 6,152.0 4,325.6 452,693.8 7,969.6 1.0 4,325.6 5,583.4
50,000 21,816.0 31,1104 - - 39,905.0 1.0 21,817.0 | 28,267.0
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Figure 7: Average time and size for the GRIPP index table, Dual Labeling on the component graph, and the
transitive closure for synthetic scale-free graphs with 100 % more edges than nodes.

used data of metabolic networks provided by KEGG [18],
aMAZE [20], and Reactome [17]. Nodes represent enzymes,
chemical compounds or reactions, while edges represent the
participation of an enzyme or compound in a reaction. The
degree distribution in metabolic networks follows a power
law with exponent 7 = 3.0, i.e., they are also scale-free.
Properties of these data set can be seen in Table 4.

We implemented GRIPP as well as all competitive meth-
ods (based the original code kindly provided by their au-
thors) as stored procedures in a commercial object-relational
database system. Tests were performed on a DELL dual
Xeon machine with 4 GB RAM. Queries were run with-
out rebooting the database. The indexing times are aver-
aged over five different graphs for every number of nodes
and edges. The query times for reach(v,w) are averaged
over 5,000 randomly selected node pairs for every number
of nodes and edges.

For the index creation and querying we also compared
GRIPP to computing the transitive closure for the entire
graph. Clearly, querying the transitive closure is the fastest
method, but we cannot compute the transitive closure for
graphs containing more than 10,000 nodes and 20,000 edges
in feasible time and the resulting structure would contain
over 60 million tuples. We also compared GRIPP to re-
cursive query strategies, which need no index creation at
all. We used our own implementation of a recursive search
and the recursive SQL command available in the RDBMS.
Our own implementation of a recursive traversal is always

outperformed by GRIPP and all competing methods. Even
in graphs having the small world characteristic, i.e., where
each node can be reached from each node within ~ 6 steps, a
breadth-first strategy requires in the order of d° calls, where
d is the average out-degree of nodes. The built-in recur-
sive SQL command outperforms our own recursive function
for very small and sparse graphs. However, it is extremely
slow already for medium-sized graphs. A single query on a
graph with 1,000 nodes and 1,500 edges took more than 7
hours to complete. The reason seems to be that all paths
are enumerated in the graph beginning from the start node.

7.1 Index Creation

Table 2(a) shows the average time required to index scale-
free graphs with 1,000 to 50,000 nodes and 100 % more edges
than nodes. The component graph has on average 43% of
the nodes and 31% of the edges of the original graph, i.e., the
component graph is much smaller than the original graph.
All used graphs contain one giant strongly connected compo-
nent. For instance, scale-free graphs with 50,000 nodes and
100,000 edges have one giant strongly connected component
that contains on average 28,184 nodes, i.e., more than half
the nodes of the entire graph. The remaining components
usually contain only one node.

For graphs of 50,000 or more nodes we could not compute
the Dual Labeling within 24 hours using our database-based
re-implementation. We also tried the C++-based main-
memory implementation of Dual Labeling provided by the



authors of this algorithm. Compared to our re-implemen-
tation, their program is much faster for small graphs, but
the program breaks for graphs with 50,000 or more nodes. In
contrast, computing the GRIPP index table on the compo-
nent graph for the same component graphs took less than 50
seconds. Computing the GRIPP index on the entire graph
requires about 120 seconds. Our results support the analysis
that the time complexity of Dual Labeling is O(n +m +t°),
e.g., computing the index for 50,000 nodes and 100,000 edges
might take almost two weeks. In contrast, computing the
GRIPP index as well as the Label+SSPI index is linear in
the number of edges. Therefore, both indexes can be com-
puted for even larger graphs. We show this in the following
for GRIPP.

Table 2(b) shows the average size of the index structures.
Dual Labeling generates by far the largest index, mainly due
to the TLC values. The TLC values basically represent a
condensed transitive closure over the remaining edges. But
the index structure is two orders of magnitude smaller than
the transitive closure over the entire graph. For instance,
for scale-free graphs with 10,000 nodes and 20,000 edges
Dual Labeling requires on average 460,000 tuples, while the
transitive closure requires on average over 60 million tuples.

GRIPP and Label+SSPI require space linear in the size
of the graph. The GRIPP index is slightly smaller than La-
bel+SSPI, because GRIPP creates one tuple for every edge
plus one tuple for every child to the virtual root node. La-
bel+SSPI creates one tuple for every node in the component
graph (Node labels) and stores for every node that has more
than one parent node all parent nodes in the SSPI index. In
addition one tuple is created for every node that has a parent
node with an entry in the SSPI index, i.e., in worst case this
index has the size of m. This worst case is almost reached
for the indexed graphs.

The figures for random graphs (data not shown) for all
three methods are almost identical to the figures for scale-
free graphs.

To test the scalability of GRIPP we created the index for
graphs with 1,000 to 5,000,000 nodes and 100 % more edges
than nodes. We did not compute the component graph, but
applied the GRIPP indexing algorithm directly to the graph.
Figure 7 shows the computation time and size of the GRIPP
index, Dual Labeling, and the transitive closure for synthetic
scale-free graphs. The data support our claim that GRIPP
can be computed in linear time and space. In worst case,
i.e., for a graph with n — 1 nodes without incoming edges
and m edges GRIPP has the size of n — 1+ m. Figures for
random graphs are comparable (data not shown).

We also indexed graphs with 100,000 nodes and increasing
graph density (data not shown). The data show that GRIPP
also scales roughly linear with increasing number of edges.
For example, the computation of the GRIPP index table for
100,000 nodes and 400,000 edges took less than 400 seconds,
compared to about 240 seconds for a graph with 100,000
nodes and 200,000 edges.

Concluding, GRIPP and Label4+SSPI are highly scalable
in terms of index creation, while Dual Labeling can not be
applied to large graphs. In the next section we evaluate the
query performance.

7.2 Querytimes
We compare querying GRIPP with querying the other two
indexing methods. For the comparison we randomly selected

5,000 node pairs for every number of nodes and edges and
computed reach(v, w).

Table 3(a) shows the average number of recursive calls
for the different query strategies on scale-free graphs with
1,000 to 50,000 nodes and 100 % more edges than nodes.
Dual Labeling requires only one call to answer reach(v, w)
using the index structure. The number of recursive calls for
the Label4+SSPI strategy depends on the size of the graph.
For graphs of 50,000 nodes and 100,000 edges it requires on
average 994 recursive calls, ranging from 1 call for a pair of
nodes in the same component to 11,504 calls in worst case.
This explains the high standard deviation.

Table 3: Average number of calls and average query
time to answer reach(v,w) for the three different
query strategies on scale-free graphs with 100%
more edges than nodes.

(a) Average number of calls.

No. Dual GRIPP
nodes Labeling DAG Label+SSP1
1,000 1.0 £ 0.00 1.8 £ 0.74 22.0 £ 52.30
5,000 1.0 £ 0.00 1.9 £ 0.82 92.1 £ 238.31
10,000 1.0 £ 0.00 1.8 £0.77 194.7 £ 497.68
50,000 - 1.9 £ 0.77 944.3 + 2,419.83
(b) Average query time (ms).
No. Dual GRIPP
nodes Labeling DAG Label+SSPI
1,000 0.8 + 0.33 1.6 £ 1.45 59 + 13.39
5,000 0.8 4+ 0.32 2.0 + 2.15 22.7 £ 59.39
10,000 0.8 £ 0.32 2.1 £+ 2.56 48.8 £ 127.67
50,000 - 44 +£6.74 253.0 £ 637.68

When querying the component graph (DAG) as well as
the graph itself using GRIPP the number of recursive calls
remains almost constant over different sizes of graphs, sup-
porting our analysis from Section 5 and selection of heuris-
tics. The maximum number of recursive calls is between 7
and 8 for different sizes of scale-free graphs. The number
of recursive calls for GRIPP on DAGs is smaller than on
graphs. The reason is that we do not require a recursive call
for nodes in the same component, i.e., we can immediately
answer reach(v, w) if both nodes are in the same component.

The query times shown in Table 3(b) for the different
strategies correspond well with the number of recursive calls.
Dual Labeling requires on average 0.8 ms regardless the size
of the graph. For GRIPP on the component graph the av-
erage query times range from 1.6 to 4.4 ms while for La-
bel+SSPI the query times range from 5.9 to 253.0 ms. The
time difference between GRIPP and Label4-SSPI strategy
grows as the number of nodes and edges increases. The
same is true for random graphs (data not shown).

Figure 8(a) shows the average time necessary to answer
reach(v, w) using GRIPP on scale-free and random graphs.
The query times increase slightly with increasing number
of nodes. The reason is that reachable instance sets be-
come larger. As these are accessed through b-tree indexes
the increase is sublinear. The number of recursive calls re-
mains with 2.3 almost constant over the different sizes of
graphs with constant density (data not shown), supporting
our analysis from Section 5. The maximum number of re-
cursive calls ranges from 6 calls for the graph with 1,000
nodes to 10 calls for the graph with 5,000,000 nodes.



(a) Graphs with 100 % more edges than nodes.
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Figure 8: Average query times (ms) and standard deviation for synthetic random and scale-free graphs.

Table 4: Indexing and querying real-world graphs using GRIPP.

Graph size GRIPP index Stop nodes Querying GRIPP
Database . .
No. No. Densit Time No. Time No. Avg. query Avg. No.
nodes edges ] y (sec) Tuples (sec) Tuples time (ms) recursive calls
Reactome 3,677 14,447 3.93 21.1 14,906 0.6 22 4.63 + 4.016 2.56 + 1.124
aMAZE 11,876 35,846 3.02 35.4 37,568 0.1 1 3.43 £ 1.597 2.25 £+ 0.967
KEGG 14,269 35,170 2.46 37.2 36,527 0.1 1 3.34 £ 1.430 2.36 = 0.913

Figure 8(b) shows the average query time for graphs with
100,000 nodes and increasing density. We observed that
with increasing density the number of recursive calls for
GRIPP even decreases. For instance, on scale-free graphs
with 100,000 nodes and 150,000 edges GRIPP requires on
average 2.3 recursive calls to answer reach(v, w). In con-
trast, for scale-free graphs with 100,000 nodes and 450,000
edges GRIPP requires on average only 1.8 and the time
drops from 3.4 ms to 2.5 ms. This trend continues as the
density increases (tested for graphs with 100,000 nodes and
up to 2,000,000 edges). There are two reasons for this. First,
with increasing graph density the size of the giant strongly
connected component also increases, i.e., more nodes are
reachable from the first traversed node. Therefore, when
reaching that node, a large fraction of the graph is already
covered and less recursive calls are necessary. The second
reason is that more and more nodes receive non-tree in-
stances in GRIPP. This means with increasing density the
chance increases that RIS(v) contains an instance of w.

With further increasing graph density, Dual Labeling and
Label+SSPI will also perform better as the size of the com-
ponent graph decreases. For Dual Labeling this means that
generating the index will become faster, and for Label+SSPI
indexing as well as querying will be faster.

7.3 Real world graphs

To evaluate GRIPP on real-world graphs we used the
metabolic networks provided by Reactome [17], aMAZE [20],
and KEGG [18]. Table 4 shows the properties of the graph,
i.e., number of nodes and edges and density. The table also
shows the time required to compute the GRIPP index and
the stop node list. The times correspond well with the times
for generated graphs of comparable size.

The table also shows the the average number of calls and
average time to answer reach(v, w). The average number of
calls as well as the average query time is slightly higher than
for synthetic scale-free graphs of comparable size. This in-
dicates that, although the networks are also scale-free, they
still have a different structure than synthetic graphs.

8. CONCLUSION

We presented the GRIPP index structure for reachability
queries on directed graphs. Since creating GRIPP requires
only linear time and space, it can be used to index graphs
with five million and more nodes. We showed analytically
and experimentally that using GRIPP we can answer reach-
ability queries on many types of graphs in almost constant
time using an almost constant number of calls. As GRIPP
is entirely based on SQL it can easily be integrated into
existing graph applications.

No graph index structure suits all possible graph appli-
cations equally well. We tested GRIPP on synthetic ran-
dom and scale-free graphs and on real biological datasets
of various sizes and shapes and obtained very favorable re-
sults. GRIPP works particular well on large graphs that
contain one large strongly connected component, which is a
typical feature of graphs having a density above a certain
threshold. For very small graphs whose indexes can be com-
puted and held in main memory, GRIPP is outperformed
by methods based on transitive closure or variations of it,
such as Dual Labeling. The later is also superior for very
sparse graphs, as long as they have below ~ 10.000 nodes.
For denser graphs the component graphs typically shrinks
enormously (as almost all nodes fall into one component),
which favors all methods that first compute the component
graph (including GRIPP-DAG). However, GRIPP is by far
the fastest method for indexing typical and large biological
networks. This observation very likely carries over to other
types of graphs such as social networks or Web graphs, as
these share many characteristics with biological networks [3].
Finally, GRIPP is highly advantageous for any application
which stores and analyzes graphs in a RDBMS since its in-
tegration is very easy.

In the future we plan to include GRIPP as indexing com-
ponent into a comprehensive graph query language. We
will study extensions of GRIPP to support distance (length
of the shortest path between two nodes) and path length
queries (all paths between two nodes of a certain length).



Finally, for this purpose GRIPP needs to be adapted to set-
oriented query semantics. A typical query would have to
compute, given a node v and a set of nodes W, all nodes in
W reachable from v. We are confident that there are better
ways of using the GRIPP index structure for such queries
than calling the reachable function |W| times.
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