Einführung in die Theoretische Informatik

Johannes Köbler

Institut für Informatik Humboldt-Universität zu Berlin

WS 2011/12

Kontextfreie Sprachen

Bemerkung

• Wie wir gesehen haben, ist folgende Sprache nicht regulär:

$$L = \{a^n b^n \mid n \ge 0\}.$$

• Es ist aber leicht, eine kontextfreie Grammatik für L zu finden:

$$G = (\{S\}, \{a, b\}, \{S \rightarrow aSb, S \rightarrow \varepsilon\}, S).$$

 Damit ist klar, dass die Klasse der regulären Sprachen echt in der Klasse der kontextfreien Sprachen enthalten ist:

$$REG \subsetneq CFL$$
.

 Als nächstes wollen wir zeigen, dass die Klasse der kontextfreien Sprachen wiederum echt in der Klasse der kontextsensitiven Sprachen enthalten ist:

$$CFL \subseteq CSL$$
.

Kontextfreie Sprachen sind auch kontextsensitiv

- Kontextfreie Grammatiken sind dadurch charakterisiert, dass sie nur Regeln der Form $A \to \alpha$ haben.
- \bullet Dies lässt die Verwendung von beliebigen $\varepsilon\text{-Regeln}$ der Form $A\to\varepsilon$ zu.
- Eine kontextsensitive Grammatik darf dagegen höchstens die arepsilon-Regel $S \to arepsilon$ haben.
- Voraussetzung hierfür ist, dass S das Startsymbol ist und dieses nicht auf der rechten Seite einer Regel vorkommt.
- Daher sind nicht alle kontextfreien Grammatiken kontextsensitiv.
- Wir werden jedoch sehen, dass sich zu jeder kontextfreien Grammatik eine äquivalente kontextsensitive Grammatik konstruieren lässt.

Entfernen von ε -Regeln

Satz

Zu jeder kontextfreien Grammatik $G = (V, \Sigma, P, S)$ gibt es eine kontextfreie Grammatik $G' = (V, \Sigma, P', S)$ ohne ε -Regeln mit $L(G') = L(G) \setminus \{\varepsilon\}$.

Beweis

• Zuerst berechnen wir die Menge $E = \{A \in V \mid A \Rightarrow^* \varepsilon\}$ aller ε -ableitbaren Variablen:

```
1 E' := \{A \in V \mid A \to \varepsilon\}

2 repeat

3 E := E'

4 E' := E \cup \{A \in V \mid \exists B_1, \dots, B_k \in E : A \to B_1 \dots B_k\}

5 until E = E'
```

• Nun bilden wir P' wie folgt:

$$\left\{ A \to \alpha' \middle| \begin{array}{l} \text{es ex. eine Regel } A \to_G \alpha, \text{ so dass } \alpha' \neq \varepsilon \text{ aus } \alpha \text{ durch } \right\} \\ \text{Entfernen von beliebig vielen Variablen } A \in E \text{ entsteht} \right\}$$

Entfernen von ε -Regeln

Beispiel

Betrachte die Grammatik $G = (\{S, T, U, X, Y, Z\}, \{a, b, c\}, P, S)$ mit

$$P: S \to aY, bX, Z; Y \to bS, aYY; T \to U; X \to aS, bXX; Z \to \varepsilon, S, T, cZ; U \to abc.$$

• Berechnung von *E*:

$$\begin{array}{c|cc} E' & \{Z\} & \{Z,S\} \\ E & \{Z,S\} & \{Z,S\} \end{array}$$

• Entferne $Z \to \varepsilon$ und füge $X \to a$ (wegen $X \to aS$), $Y \to b$ (wegen $Y \to bS$) und $Z \to c$ (wegen $Z \to cZ$) hinzu:

$$P': S \rightarrow aY, bX, Z; Y \rightarrow b, bS, aYY; T \rightarrow U; X \rightarrow a, aS, bXX; Z \rightarrow c, S, T, cZ; U \rightarrow abc.$$

Die Chomsky-Hierarchie

Satz

Zu jeder kontextfreien Grammatik $G = (V, \Sigma, P, S)$ gibt es eine kontextfreie Grammatik $G' = (V, \Sigma, P', S)$ ohne ε -Regeln mit $L(G') = L(G) \setminus \{\varepsilon\}$.

Korollar

 $\mathsf{REG} \subsetneq \mathsf{CFL} \subseteq \mathsf{CSL} \subseteq \mathsf{RE}.$

Beweis

- ullet Es ist nur noch die Inklusion CFL \subseteq CSL zu zeigen.
- Nach obigem Satz ex. zu $L \in CFL$ eine kontextfreie Grammatik $G = (V, \Sigma, P, S)$ ohne ε -Regeln mit $L(G) = L \setminus \{\varepsilon\}$.
- Da G dann auch kontextsensitiv ist, folgt hieraus im Fall $\varepsilon \notin L$ unmittelbar $L(G) = L \in \mathsf{CSL}$.
- \bullet Im Fall $\varepsilon \in \mathit{L}$ erzeugt die kontextsensitive Grammatik

$$G' = (V \cup \{S'\}, \Sigma, P \cup \{S' \rightarrow S, \varepsilon\}, S')$$

die Sprache L(G') = L, d.h. $L \in CSL$.

Abschlusseigenschaften von CFL

Satz

CFL ist abgeschlossen unter Vereinigung, Produkt und Sternhülle.

Beweis

Seien $G_1=(V_1,\Sigma,P_1,S_1)$ und $G_2=(V_2,\Sigma,P_2,S_2)$ kontextfreie Grammatiken mit $V_1\cap V_2=\emptyset$ und sei S eine neue Variable. Dann erzeugen die kontextfreien Grammatiken

$$G_3 = (V_1 \cup V_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \to S_1, S_2\}, S)$$

die Vereinigung $L(G_3) = L(G_1) \cup L(G_2)$,

$$G_4 = (V_1 \cup V_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \to S_1S_2\}, S)$$

das Produkt $L(G_4) = L(G_1)L(G_2)$ und

$$G_5 = (V_1 \cup \{S\}, \Sigma, P_1 \cup \{S \rightarrow S_1S, \varepsilon\}, S)$$

die Sternhülle $L(G_1)^*$.

Abschlusseigenschaften von CFL

Satz

CFL ist abgeschlossen unter Vereinigung, Produkt und Sternhülle.

Frage

Ist die Klasse CFL auch abgeschlossen unter

- Durchschnitt und
- Komplement?

Antwort

Nein.

Hierzu müssen wir für bestimmte Sprachen nachweisen, dass sie nicht kontextfrei sind. Dies gelingt mit einem Pumping-Lemma für kontextfreie Sprachen, für dessen Beweis wir Grammatiken in Chomsky-Normalform benötigen.

Chomsky-Normalform

Definition

Eine Grammatik (V, Σ, P, S) ist in Chomsky-Normalform (CNF), falls $P \subseteq V \times (V^2 \cup \Sigma)$ ist, also alle Regeln die Form $A \to BC$ oder $A \to a$ haben.

Anwendungen der Chomsky-Normalform

- CNF-Grammatiken bilden die Basis für eine effiziente Lösung des Wortproblems für kontextfreie Sprachen.
- Zudem ermöglichen sie den Beweis des Pumping-Lemmas für kontextfreie Sprachen.

Chomsky-Normalform

Um eine kontextfreie Grammatik in Chomsky-Normalform zu bringen, müssen wir neben den ε -Regeln $A \to \varepsilon$ auch sämtliche Variablenumbenennungen $A \to B$ loswerden.

Definition

Regeln der Form $A \rightarrow B$ heißen Variablenumbenennungen.

Satz

Zu jeder kontextfreien Grammatik G ex. eine kontextfreie Grammatik G' ohne Variablenumbenennungen mit L(G') = L(G).

Beweis

• Zuerst entfernen wir sukzessive alle Zyklen

$$A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_k \rightarrow A_1$$
.

Hierzu entfernen wir diese Regeln aus P und ersetzen alle Vorkommen der Variablen A_2, \ldots, A_k in den übrigen Regeln durch A_1 .

(Sollte sich unter den entfernten Variablen A_2, \ldots, A_k die Startvariable S befinden, so sei A_1 die neue Startvariable.)

Beispiel (Fortsetzung)

$$P: S \to aY, bX, Z; Y \to b, bS, aYY; T \to U;$$

 $X \to a, aS, bXX; Z \to c, S, T, cZ; U \to abc.$

• Entferne den Zyklus $S \to Z \to S$ und ersetze alle Vorkommen von Z durch S:

$$S \rightarrow aY, bX, c, T, cS; Y \rightarrow b, bS, aYY; T \rightarrow U; X \rightarrow a, aS, bXX; U \rightarrow abc.$$

Satz

Zu jeder kontextfreien Grammatik G ex. eine kontextfreie Grammatik G' ohne Variablenumbenennungen mit L(G') = L(G).

Beweis

• Zuerst entfernen wir alle Zyklen

$$A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_k \rightarrow A_1$$
.

- Nun werden wir sukzessive die restlichen Variablenumbenennungen los, indem wir
 - eine Regel $A \to B$ wählen, so dass in P keine Variablenumbenennung $B \to C$ mit B auf der linken Seite existiert,
 - diese Regel $A \rightarrow B$ aus P entfernen und
 - für jede Regel $B \to \alpha$ in P die Regel $A \to \alpha$ zu P hinzunehmen.

Beispiel (Fortsetzung)

$$S \rightarrow aY, bX, c, T, cS; Y \rightarrow b, bS, aYY; T \rightarrow U;$$

 $X \rightarrow a, aS, bXX; U \rightarrow abc.$

• Entferne die Regel $T \to U$ und füge die Regel $T \to abc$ hinzu (wegen $U \to abc$):

$$S \rightarrow aY, bX, c, T, cS; Y \rightarrow b, bS, aYY; T \rightarrow abc;$$

 $X \rightarrow a, aS, bXX; U \rightarrow abc.$

• Entferne dann auch die Regel $S \to T$ und füge die Regel $S \to abc$ (wegen $T \to abc$) hinzu:

$$S \rightarrow abc, aY, bX, c, cS; Y \rightarrow b, bS, aYY; T \rightarrow abc; X \rightarrow a, aS, bXX: U \rightarrow abc.$$

• Da T und U nirgends mehr auf der rechten Seite vorkommen, können wir die Regeln $T \to abc$ und $U \to abc$ weglassen:

$$S \rightarrow abc, aY, bX, c, cS; Y \rightarrow b, bS, aYY; X \rightarrow a, aS, bXX.$$

Entfernen von ε -Regeln und von Variablenumbenennungen

Bereits gezeigt:

Korollar

Zu jeder kontextfreien Grammatik G ex. eine kontextfreie Grammatik G' ohne ε -Regeln und ohne Variablenumbenennungen mit $L(G') = L(G) \setminus \{\varepsilon\}$.

Noch zu zeigen:

Satz

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine CNF-Grammatik G' mit $L(G') = L \setminus \{\varepsilon\}$.

Umwandlung in Chomsky-Normalform

Satz

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine CNF-Grammatik G' mit $L(G') = L \setminus \{\varepsilon\}$.

Beweis

- Sei $G = (V, \Sigma, P, S)$ eine kontextfreie Grammatik ohne ε -Regeln und ohne Variablenumbenennungen für $L \setminus \{\varepsilon\}$.
- Wir transformieren *G* wie folgt in eine CNF-Grammatik.
- Füge für jedes Terminalsymbol $a \in \Sigma$ eine neue Variable X_a zu V und eine neue Regel $X_a \to a$ zu P hinzu.
- Ersetze alle Vorkommen von a durch X_a , außer wenn a alleine auf der rechten Seite einer Regel steht.
- Ersetze jede Regel $A \to B_1 \cdots B_k$, $k \ge 3$, durch die k-1 Regeln

$$A \to B_1 A_1, A_1 \to B_2 A_2, \dots, A_{k-3} \to B_{k-2} A_{k-2}, A_{k-2} \to B_{k-1} B_k,$$

wobei A_1, \ldots, A_{k-2} neue Variablen sind.

Umwandlung in Chomsky-Normalform

Beispiel (Fortsetzung)

• Betrachte die Regeln

$$P\colon\thinspace S \to abc, aY, bX, cS, c; \quad X \to aS, bXX, a; \quad Y \to bS, aYY, b.$$

• Ersetze a, b und c durch A, B und C (außer wenn sie alleine rechts vorkommen) und füge die Regeln $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$ hinzu:

$$S \rightarrow ABC$$
, AY , BX , CS , c ; $X \rightarrow AS$, BXX , a ; $Y \rightarrow BS$, AYY , b ; $A \rightarrow a$; $B \rightarrow b$; $C \rightarrow c$.

• Ersetze die Regeln $S \to ABC$, $X \to BXX$ und $Y \to AYY$ durch die Regeln $S \to AS'$, $S' \to BC$, $X \to BX'$, $X' \to XX$ und $Y \to AY'$, $Y' \to YY$:

$$S \rightarrow AS'$$
, AY , BX , CS , c ; $S' \rightarrow BC$; $X \rightarrow AS$, BX' , a ; $X' \rightarrow XX$; $Y \rightarrow BS$, AY' , b ; $Y' \rightarrow YY$; $A \rightarrow a$; $B \rightarrow b$; $C \rightarrow c$.

Links- und Rechtsableitungen

Definition

Sei $G = (V, \Sigma, P, S)$ eine kontextfreie Grammatik.

• Eine Ableitung

$$\underline{S} \Rightarrow l_1 \underline{A_1} r_1 \Rightarrow \cdots \Rightarrow l_{m-1} \underline{A_{m-1}} r_{m-1} \Rightarrow \alpha_m$$

heißt Linksableitung von α_m (kurz $S \Rightarrow_L^* \alpha_m$), falls in jedem Ableitungsschritt die am weitesten links stehende Variable ersetzt wird, d.h. es gilt $I_i \in \Sigma^*$ für $i=1,\ldots,m-1$.

- Rechtsableitungen $S_0 \Rightarrow_R^* \alpha_m$ sind analog definiert.
- G heißt mehrdeutig, wenn es ein Wort $x \in L(G)$ gibt, das zwei verschiedene Linksableitungen hat. Andernfalls heißt G eindeutig.

Leicht zu sehen:

Für alle $x \in \Sigma^*$ gilt: $x \in L(G) \Leftrightarrow S \Rightarrow^* x \Leftrightarrow S \Rightarrow^*_L x \Leftrightarrow S \Rightarrow^*_R x$.

Ein- und mehrdeutige Grammatiken

Beispiel

- Die Grammatik $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ ist eindeutig.
- ullet Dies liegt daran, dass in keiner Satzform von G die Variable S von einem a gefolgt wird.
- Daher muss jede Linksableitung eines Wortes $x \in L(G)$ die am weitesten links stehende Variable der aktuellen Satzform $\alpha S\beta$ genau dann nach aSbS expandieren, falls das Präfix α in x von einem a gefolgt wird.
- Dagegen ist die Grammatik $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, ab, \varepsilon\}, S)$ mehrdeutig, da das Wort x = ab 2 verschiedene Linksableitungen hat:

$$\underline{S} \Rightarrow ab \text{ und } \underline{S} \Rightarrow a\underline{S}bS \Rightarrow ab\underline{S} \Rightarrow ab.$$

Gerichtete Bäume und Wälder

Sei G = (V, E) ein Digraph.

- Ein (gerichteter) v_0 - v_k -Weg in G ist eine Folge von Knoten v_0, \ldots, v_k mit $(v_i, v_{i+1}) \in E$ für $i = 0, \ldots, k-1$. Seine Länge ist k.
- Ein Zyklus in G ist ein u-v-Weg der Länge $k \ge 1$ mit u = v.
- G heißt azyklisch, wenn es in G keinen gerichteten Zyklus gibt.
- G heißt gerichteter Wald, wenn G azyklisch ist und jeder Knoten $v \in V$ Eingangsgrad $\deg^-(v) \le 1$ hat.
- Ein Knoten $u \in V$ vom Ausgangsgrad $deg^+(u) = 0$ heißt Blatt.
- Ein Knoten $w \in V$ heißt Wurzel von G, falls alle Knoten $v \in V$ von w aus erreichbar sind (d.h. es gibt einen gerichteten w-v-Weg in G).
- Ein gerichteter Wald, der eine Wurzel hat, heißt gerichteter Baum.
- In einem gerichteten Baum liegen die Kantenrichtungen durch die Wahl der Wurzel bereits eindeutig fest.
- Daher kann man bei bekannter Wurzel auf die Angabe der Kantenrichtungen verzichten. Man spricht dann auch von einem Wurzelbaum.

Syntaxbäume

Wir ordnen einer Ableitung

$$A_0 \Rightarrow l_1 A_1 r_1 \Rightarrow \cdots \Rightarrow l_{m-1} A_{m-1} r_{m-1} \Rightarrow \alpha_m$$

den Syntaxbaum (oder Ableitungsbaum, engl. *parse tree*) T_m zu, wobei die Bäume T_0, \ldots, T_m induktiv wie folgt definiert sind:

- T_0 besteht aus einem einzigen Knoten, der mit A_0 markiert ist.
- Wird im (i+1)-ten Ableitungsschritt die Regel $A_i \rightarrow v_1 \cdots v_k$ mit $v_1, \ldots, v_k \in \Sigma \cup V$ angewandt, so ensteht T_{i+1} aus T_i , indem wir das Blatt A_i durch folgenden Unterbaum ersetzen:

$$k > 0$$
: A_i $k = 0$: A_i

- Hierbei stellen wir uns die Kanten von oben nach unten gerichtet und die Kinder $v_1 \cdots v_k$ von links nach rechts geordnet vor.
- Syntaxbäume sind also geordnete Wurzelbäume.

Syntaxbäume

Beispiel

• Betrachte die Grammatik $G=(\{S\},\{a,b\},\{S\to aSbS,\varepsilon\},S)$ und die Ableitung

$$\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aaSb\underline{S}bS \Rightarrow aa\underline{S}bbS \Rightarrow aabb\underline{S} \Rightarrow aabb$$

• Die zugehörigen Syntaxbäume sind dann

$$T_5$$
: S
 $ASbS$
 $ASbS$
 $ASbS$
 C
 C
 C

 $\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aaSb\underline{S}bS \Rightarrow aa\underline{S}bbS \Rightarrow aabb\underline{S} \Rightarrow aabb$

Syntaxbäume

Beispiel

• In $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ führen insgesamt 8 Ableitungen auf den Syntaxbaum

```
S

//\\
a S b S

//\\\\\
a S b S ε

| | |

ε ε
```

Syntaxbäume und Linksableitungen

- Seien T_0,\ldots,T_m die zu einer Ableitung $S=\alpha_0\Rightarrow\cdots\Rightarrow\alpha_m$ gehörigen Syntaxbäume.
- Dann haben alle Syntaxbäume T_0, \ldots, T_m die Wurzel S.
- Die Satzform α_i ergibt sich aus T_i , indem wir die Blätter von T_i von links nach rechts zu einem Wort zusammensetzen.
- Auf den Syntaxbaum T_m führen neben $\alpha_0 \Rightarrow \cdots \Rightarrow \alpha_m$ alle Ableitungen, die sich von dieser nur in der Reihenfolge der Regelanwendungen unterscheiden.
- Dazu gehört genau eine Linksableitung.
- Linksableitungen und Syntaxbäume entsprechen sich also eineindeutig.
- Dasselbe gilt für Rechtsableitungen.
- Ist T Syntaxbaum einer CNF-Grammatik, so hat jeder Knoten in T höchstens zwei Kinder (d.h. T ist ein Binärbaum).

Welche Sprache erzeugt $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$?

- L(G) enthält nur Wörter $x \in \{a, b\}^*$ mit $\#_a(x) = \#_b(x)$ (*).
- Zusätzlich muss für jedes Präfix u von x gelten: $\#_a(u) \ge \#_b(u)$ (**).
- Dies lässt sich durch Induktion über die Ableitungslänge I für jede aus S ableitbare Satzform $\alpha \in \{a, b, S\}^*$ zeigen.

$$I = 0$$
: Klar, da $\alpha = S$ beide Bedingungen erfüllt.

$$I \rightsquigarrow I + 1$$
: Gelte $S \Rightarrow^I \alpha \Rightarrow \beta$.

- Falls β aus α durch Anwendung der Regel $S \rightarrow \varepsilon$ entsteht, ist dies ebenfalls klar.
- Entsteht β aus α durch die Regel $S \rightarrow aSbS$, so folgt $\#_a(\beta) = \#_a(\alpha) + 1 = \#_b(\alpha) + 1 = \#_b(\beta)$, also (*). Zudem entspricht jedem Präfix u von β ein Präfix u' von α mit $\#_a(u) \#_b(u) \ge \#_a(u') \#_b(u')$, wodurch sich (**) von α auf β überträgt.
- Tatsächlich sind in G alle Wörter x ableitbar, die (*, **) erfüllen.

Welche Sprache erzeugt $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$?

- Tatsächlich sind in G alle Wörter x ableitbar, die (*, **) erfüllen.
- Dazu zeigen wir durch Induktion über n folgende Behauptung: Alle Wörter x der Länge $\le n$, die (*, **) erfüllen, sind in G ableitbar.

$$n = 0$$
: Klar, da $x = \varepsilon$ aus S ableitbar ist.
 $n \rightsquigarrow n + 1$: Sei x ein Wort der Länge $n + 1$, das $(*, **)$ erfüllt und sei

- u das kürzeste Präfix von x mit $\#_a(u) = \#_b(u) > 1$.

 Dann muss u die Form u = avb haben, wobei v
 - (*, **) erfüllt. Nach IV gilt daher $S \Rightarrow^* v$.

 Zudem hat x die Form x = uw, wobei auch w
 - Zudem hat x die Form x = uw, wobei auch w (*, **) erfüllt. Nach IV gilt daher $S \Rightarrow^* w$.
 - Nun ist x aus S wie folgt ableitbar:

$$S \Rightarrow aSbS \Rightarrow^* avbS = uS \Rightarrow^* uw = x.$$

Chomsky-Normalform

Definition

Eine Grammatik (V, Σ, P, S) ist in Chomsky-Normalform (CNF), falls $P \subseteq V \times (V^2 \cup \Sigma)$ ist, also alle Regeln die Form $A \to BC$ oder $A \to a$ haben.

Anwendungen der Chomsky-Normalform

- CNF-Grammatiken bilden die Basis für eine effiziente Lösung des Wortproblems für kontextfreie Sprachen.
- Zudem ermöglichen sie den Beweis des Pumping-Lemmas für kontextfreie Sprachen.

Abschätzung der Blätterzahl bei Binärbäumen

Definition

Die Tiefe eines Baumes mit Wurzel w ist die maximale Länge eines Weges von w zu einem Blatt.

Lemma

Ein Binärbaum B der Tiefe $\leq k$ hat $\leq 2^k$ Blätter.

Beweis durch Induktion über k:

k = 0: Ein Baum der Tiefe 0 kann nur einen Knoten haben.

 $k \rightsquigarrow k+1$: Sei B ein Binärbaum der Tiefe $\leq k+1$.

Dann hängen an B's Wurzel maximal zwei Unterbäume.

Da deren Tiefe $\leq k$ ist, haben sie nach IV $\leq 2^k$ Blätter.

Also hat $B \leq 2^{k+1}$ Blätter.

Mindesttiefe von Binärbäumen

Lemma

Ein Binärbaum B der Tiefe $\leq k$ hat $\leq 2^k$ Blätter.

Korollar

Ein Binärbaum B mit mehr als 2^{k-1} Blättern hat mindestens die Tiefe k.

Beweis

Würde ein Binärbaum B der Tiefe $\leq k-1$ mehr als 2^{k-1} Blätter besitzen, so stünde dies im Widerspruch zu obigem Lemma.

Das Pumping-Lemma für kontextfreie Sprachen

Als erste Anwendung der Chomsky-Normalform beweisen wir das Pumping-Lemma für kontextfreie Sprachen.

Satz (Pumping-Lemma für kontextfreie Sprachen)

Zu jeder kontextfreien Sprache L gibt es eine Zahl I, so dass sich alle Wörter $z \in L$ mit $|z| \ge I$ in z = uvwxy zerlegen lassen mit

- 1 $vx \neq \varepsilon$, 2 $|vwx| \leq I$ und
- $uv^iwx^iy \in L$ für alle i > 0.

Beispiel

- Betrachte die Sprache $L = \{a^n b^n | n \ge 0\}.$
- Dann lässt sich jedes Wort $z = a^n b^n = a^{n-1} ab b^{n-1}$ in L mit $|z| \ge 2$ pumpen:
 - Zerlege z in z=uvwxy mit u=aⁿ⁻¹, v=a, w=ɛ, x=b, y=bⁿ⁻¹.
 Dann ist für alle i > 0 das Wort uvⁱwxⁱy = aⁿ⁻¹aⁱbⁱbⁿ⁻¹ ∈ L.

Satz (Pumping-Lemma für kontextfreie Sprachen)

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine Zahl I, so dass sich alle Wörter $z \in L$ mit $|z| \ge I$ in z = uvwxy zerlegen lassen mit

- $vx \neq \varepsilon,$
- $|vwx| \leq I$ und
- **3** $uv^iwx^iy \in L$ für alle $i \ge 0$.

Beweis

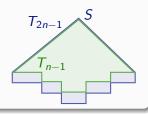
- Sei $G = (V, \Sigma, P, S)$ eine CNF-Grammatik für $L \setminus \{\varepsilon\}$.
- Ist nun $z=z_1\cdots z_n\in L$ mit $n\geq 1$, so ex. in G eine Ableitung $S=\alpha_0\Rightarrow \alpha_1\cdots\Rightarrow \alpha_m=z$.
- Da G in CNF ist, werden hierbei genau n-1 Regeln der Form $A \to BC$ und genau n Regeln der Form $A \to a$ angewandt.

Beweis

- Sei $G = (V, \Sigma, P, S)$ eine CNF-Grammatik für $L \setminus \{\varepsilon\}$.
- Ist nun $z=z_1\cdots z_n\in L$ mit $n\geq 1$, so ex. in G eine Ableitung

$$S = \alpha_0 \Rightarrow \alpha_1 \cdots \Rightarrow \alpha_m = z.$$

- Da G in CNF ist, werden hierbei genau n-1 Regeln der Form $A \to BC$ und genau n Regeln der Form $A \to a$ angewandt.
- Folglich ist m = 2n 1 und z hat den Syntaxbaum T_{2n-1} .
- Wir können annehmen, dass die n-1 Regeln der Form $A \to BC$ vor den n Regeln der Form $A \to a$ zur Anwendung kommen.
- Dann besteht α_{n-1} aus n Variablen und T_{n-1} hat wie T_{2n-1} genau n Blätter.
- Setzen wir $I = 2^k$, wobei k = ||V|| ist, so hat T_{n-1} im Fall $n \ge I$ mindestens $I = 2^k > 2^{k-1}$ Blätter und daher mindestens die Tiefe k.

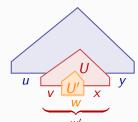


Beweis (Fortsetzung)

- Setzen wir $I = 2^k$, wobei k = ||V|| ist, so hat T_{n-1} im Fall $n \ge I$ mindestens $I = 2^k > 2^{k-1}$. Blätter und daher mindestens die Tiefe k.
- t $T_{n-1}A$ A

 T_{2n-1}

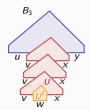
- ullet Sei π ein von der Wurzel ausgehender Pfad maximaler Länge in \mathcal{T}_{n-1} .
- Dann hat π mindestens die Länge k und unter den letzten k+1Knoten von π müssen zwei mit derselben Variablen A markiert sein.
- Seien U und U' die von diesen Knoten ausgehenden Unterbäume des vollständigen Syntaxbaums T_{2n-1} .
- Nun zerlegen wir z wie folgt:
 - w' ist das Teilwort von z = uw'y, das von U erzeugt wird und
 - w ist das Teilwort von w' = vwx, das von U' erzeugt wird.



Beweis (Schluss)

- Da U mehr Blätter hat als U', ist $vx \neq \varepsilon$ (Bed. 1).
- Da der Baum $U^* = U \cap T_{n-1}$ höchstens die Tiefe k hat (andernfalls wäre π nicht maximal), hat U^* (und damit U) höchstens $2^k = I$ Blätter.

- Folglich ist $|vwx| \le I$ (Bed. 2).
- Schließlich lassen sich Syntaxbäume B_i für die Wörter uv^iwx^iy , $i \ge 0$, wie folgt konstruieren (Bed. 3):
 - B_0 entsteht aus $B_1 = T_{2n-1}$, indem wir U durch U' ersetzen.
 - B_{i+1} entsteht aus B_i , indem wir U' durch U ersetzen:



Anwendung des Pumping-Lemmas

Beispiel

- Die Sprache $\{a^nb^nc^n \mid n \ge 0\}$ ist nicht kontextfrei.
- Für eine vorgegebene Zahl $l \ge 0$ hat nämlich $z = a^l b^l c^l$ die Länge $|z| = 3l \ge l$.
- Dieses Wort lässt sich aber nicht pumpen:

Für jede Zerlegung z=uvwxy mit $vx\neq \varepsilon$ und $|vwx|\leq I$ gehört $z'=uv^2wx^2y$ nicht zu L:

- Wegen $vx \neq \varepsilon$ ist |z| < |z'|.
- Wegen $|vwx| \le I$ kann in vx nicht jedes der drei Zeichen a, b, c vorkommen.
- Kommt aber in vx beispielsweise kein a vor, so ist

$$\#_a(z') = \#_a(z) = I = |z|/3 < |z'|/3.$$

• Also kann z' nicht zu L gehören.

Abschlusseigenschaften von CFL

Wie wir gesehen haben, ist die Klasse CFL abgeschlossen unter

- Vereinigung,
- Produkt und
- Sternhülle.

Satz

CFL ist nicht abgeschlossen unter

- Durchschnitt und
- Komplement.

Abschlusseigenschaften von CFL

Beweis von $L_1, L_2 \in CFL \not\Rightarrow L_1 \cap L_2 \in CFL$

• Die beiden Sprachen

$$L_1 = \{a^n b^m c^m \mid n, m \ge 0\}$$
 und $L_2 = \{a^n b^n c^m \mid n, m \ge 0\}$ sind kontextfrei (siehe Übungen).

- Nicht jedoch ihr Schnitt $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}.$
- Also ist CFL nicht unter Durchschnitt abgeschlossen.

Beweis von $L \in CFL \not\Rightarrow \overline{L} \in CFL$

Da CFL zwar unter Vereinigung aber nicht unter Schnitt abgeschlossen ist, kann CFL wegen de Morgan nicht unter Komplement abgeschlossen sein.

Das Wortproblem für CFL

Das Wortproblem für kontextfreie Grammatiken

Gegeben: Eine kontextfreie Grammatik G und ein Wort x.

Gefragt: Ist $x \in L(G)$?

Frage

Wie lässt sich das Wortproblem für kontextfreie Grammatiken entscheiden?

Satz

Das Wortproblem für kontextfreie Grammatiken ist effizient entscheidbar.

Beweis

- Sei eine Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $x = x_1 \cdots x_n$ gegeben.
- Falls $x = \varepsilon$ ist, können wir effizient prüfen, ob $S \Rightarrow^* \varepsilon$ gilt.
- Hierzu genügt es, die Menge $E = \{A \in V \mid A \Rightarrow^* \varepsilon\}$ aller ε -ableitbaren Variablen zu berechnen und zu prüfen, ob $S \in E$ ist.
- Andernfalls bringen wir G in CNF und starten den nach seinen Autoren Cocke, Younger und Kasami benannten CYK-Algorithmus.
- Dieser bestimmt mittels dynamischer Programmierung für $l=1,\ldots,n$ und $k=1,\ldots,n-l+1$ die Menge $V_{l,k}$ aller Variablen, aus denen das Teilwort $x_k\cdots x_{k+l-1}$ ableitbar ist.
- Dann gilt $x \in L(G) \Leftrightarrow S \in V_{n,1}$.

Berechnung der Mengen $V_{l,k}$

Beweis (Schluss)

- Sei $G = (V, \Sigma, P, S)$ eine CNF-Grammatik und sei $x \in \Sigma^+$.
- Dann lassen sich die Mengen

$$V_{l,k} = \{A \in V \mid A \Rightarrow^* x_k \cdots x_{k+l-1}\}$$

wie folgt bestimmen.

• Für l=1 gehört A zu $V_{1,k}$, falls die Regel $A \to x_k$ existiert,

$$V_{1,k} = \{A \in V \mid A \to x_k\}.$$

• Für l > 1 gehört A zu $V_{l,k}$, falls eine Regel $A \rightarrow BC$ und eine Zahl $I' \in \{1, \dots, I-1\}$ ex., so dass

 $B \in V_{l',k}$ und $C \in V_{l-l',k+l'}$ sind:

$$x_k \cdots x_{k+l'-1}$$
 $x_{k+l'} \cdots x_{k+l}$

$$V_{l,k} = \{ A \in V \mid \exists l' < l, \ B \in V_{l',k}, \ C \in V_{l-l',k+l'} : A \to BC \in P \}.$$

```
Algorithmus CYK(G, x)
    Input: CNF-Grammatik G = (V, \Sigma, P, S) und Wort x = x_1 \cdots x_n
       for k := 1 to n do
          V_{1,k} := \{ A \in V \mid A \to x_k \in P \}
 3
       for l := 2 to n do
          for k := 1 to n - l + 1 do
             V_{lk} := \emptyset
             for l' := 1 to l - 1 do
                for all A \rightarrow BC \in P do
                  if B \in V_{l',k} and C \in V_{l-l',k+l'} then
                     V_{l,k} := V_{l,k} \cup \{A\}
10
        if S \in V_{n,1} then accept else reject
11
```

Der CYK-Algorithmus lässt sich leicht dahingehend modifizieren, dass er im Fall $x \in L(G)$ auch einen Syntaxbaum T von x bestimmt.

Beispiel

• Betrachte die CNF-Grammatik mit den Regeln

Beispiel

• Betrachte die CNF-Grammatik mit den Regeln

$$P: S \rightarrow AS', AY, BX, CS, c, S' \rightarrow BC, X \rightarrow AS, BX', a, X' \rightarrow XX, Y \rightarrow BS, AY', b, Y' \rightarrow YY, A \rightarrow a, B \rightarrow b, C \rightarrow c.$$

Beispiel

• Betrachte die CNF-Grammatik mit den Regeln

$$\begin{array}{lll} P\colon\thinspace S\to AS', AY, BX, CS, c, & S'\to BC, & X\to AS, BX', a, & X'\to XX, \\ Y\to BS, AY', b, & Y'\to YY, & A\to a, & B\to b, & C\to c. \end{array}$$

Beispiel

• Betrachte die CNF-Grammatik mit den Regeln

$$\begin{array}{lll} P\colon\thinspace S\to AS', AY, BX, CS, c, & S'\to BC, & X\to AS, BX', a, & X'\to XX, \\ Y\to BS, AY', b, & Y'\to YY, & A\to a, & B\to b, & C\to c. \end{array}$$

k:	1	2	3
	а	b	b
<i>l</i> : 1			
2			
3			

Beispiel

Betrachte die CNF-Grammatik mit den Regeln

$$P: S \rightarrow AS', AY, BX, CS, c, S' \rightarrow BC, X \rightarrow AS, BX', a, X' \rightarrow XX, Y \rightarrow BS, AY', b, Y' \rightarrow YY, A \rightarrow a, B \rightarrow b, C \rightarrow c.$$

k:	1	2	3
	а	b	b
<i>l</i> : 1	{ X , A }		
2			
3			

Beispiel

• Betrachte die CNF-Grammatik mit den Regeln

k:	1	2	3
	а	b	b
<i>l</i> : 1	{ <i>X</i> , <i>A</i> }	{ Y , B }	
2			
3			

Beispiel

• Betrachte die CNF-Grammatik mit den Regeln

k:	1	2	3
	а	b	b
<i>l</i> : 1	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ Y , B }
2			
3			

Beispiel

Betrachte die CNF-Grammatik mit den Regeln

$$P: \begin{tabular}{ll} S \to AS', AY', BX, CS, c, & S' \to BC, & X \to AS, BX', a, & X' \to XX, \\ Y \to BS, AY', b, & Y' \to YY, & A \to a, & B \to b, & C \to c. \end{tabular}$$

k:	1	2	3
	а	b	b
<i>l</i> : 1	{ <i>X</i> , <i>A</i> }	{ Y , B}	{ <i>Y</i> , <i>B</i> }
2	{ <i>S</i> }		
3			

Beispiel

• Betrachte die CNF-Grammatik mit den Regeln

$$\begin{array}{lll} P\colon\thinspace S\to AS', AY, BX, CS, c, & S'\to BC, & X\to AS, BX', a, & X'\to XX, \\ Y\to BS, AY', b, & {\color{red} Y'\to YY}, & A\to a, & B\to b, & C\to c. \end{array}$$

k:	1	2	3
	а	b	b
<i>l</i> : 1	{ <i>X</i> , <i>A</i> }	{ Y , B}	{ Y , B}
2	<i>{S}</i>	{ Y '}	
3			

Beispiel

Betrachte die CNF-Grammatik mit den Regeln

k:	1	2	3
	а	b	b
<i>l</i> : 1	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>Y</i> , <i>B</i> }
2	<i>{S}</i>	{ Y '}	
3	{ Y }		

Beispiel

• Betrachte die CNF-Grammatik mit den Regeln

$$\begin{array}{lll} P\colon\thinspace S\to AS', AY, BX, CS, c, & S'\to BC, & X\to AS, BX', a, & X'\to XX, \\ Y\to BS, AY', b, & Y'\to YY, & A\to a, & B\to b, & C\to c. \end{array}$$

• Dann erhalten wir für das Wort x = abb folgende Mengen $V_{l,k}$:

• Wegen $S \not\in V_{3,1}$ ist $x \not\in L(G)$.

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

$$P: S \rightarrow AS', AY, BX, CS, c, S' \rightarrow BC, X \rightarrow AS, BX', a, X' \rightarrow XX, Y \rightarrow BS, AY', b, Y' \rightarrow YY, A \rightarrow a, B \rightarrow b, C \rightarrow c.$$

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

$$P: S \rightarrow AS', AY, BX, CS, c, S' \rightarrow BC, X \rightarrow AS, BX', a, X' \rightarrow XX, Y \rightarrow BS, AY', b, Y' \rightarrow YY, A \rightarrow a, B \rightarrow b, C \rightarrow c.$$

а	а	b	а	b	b

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

P:
$$S \rightarrow AS', AY, BX, CS, c, S' \rightarrow BC, X \rightarrow AS, BX', a, X' \rightarrow XX, Y \rightarrow BS, AY', b, Y' \rightarrow YY, A \rightarrow a, B \rightarrow b, C \rightarrow c.$$

а	а	Ь	а	Ь	b
{ X , A }	{ X , A }	{ Y , B }	{ X , A }	{ Y , B }	{ Y , B }

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

$$P: S \to AS', AY, BX, CS, c, S' \to BC, X \to AS, BX', a, X' \to XX, Y \to BS, AY', b, Y' \to YY, A \to a, B \to b, C \to c.$$

а	а	b	а	b	b
$\{X,A\}$	$\{X,A\}$	{ <i>Y</i> , <i>B</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>Y</i> , <i>B</i> }
{ X '}					

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

P:
$$S \rightarrow AS'$$
, AY' , BX , CS , c , $S' \rightarrow BC$, $X \rightarrow AS$, BX' , a , $X' \rightarrow XX$, $Y \rightarrow BS$, AY' , b , $Y' \rightarrow YY$, $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$.

а	а	Ь	а	Ь	b
{ <i>X</i> , <i>A</i> }	{ <i>X</i> , <i>A</i> }	{ Y , B}	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>Y</i> , <i>B</i> }
{ <i>X</i> ′}	{ <i>S</i> }				

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

P:
$$S \rightarrow AS', AY, BX, CS, c, S' \rightarrow BC, X \rightarrow AS, BX', a, X' \rightarrow XX, Y \rightarrow BS, AY', b, Y' \rightarrow YY, A \rightarrow a, B \rightarrow b, C \rightarrow c.$$

а	а	Ь	а	Ь	b
	$\{X,A\}$	{ <i>Y</i> , <i>B</i> }	$\{X,A\}$	{ <i>Y</i> , <i>B</i> }	{ <i>Y</i> , <i>B</i> }
{ <i>X</i> ′}	<i>{S}</i>	{ <i>S</i> }			

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

P:
$$S \rightarrow AS'$$
, AY' , BX , CS , c , $S' \rightarrow BC$, $X \rightarrow AS$, BX' , a , $X' \rightarrow XX$, $Y \rightarrow BS$, AY' , b , $Y' \rightarrow YY$, $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$.

а	а	b	а	Ь	b
{ <i>X</i> , <i>A</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>X</i> , <i>A</i> }	{ Y , B}	{ <i>Y</i> , <i>B</i> }
{ <i>X</i> ′}	<i>{S}</i>	<i>{S}</i>	{ <i>5</i> }		

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

$$P: S \rightarrow AS', AY, BX, CS, c, S' \rightarrow BC, X \rightarrow AS, BX', a, X' \rightarrow XX, Y \rightarrow BS, AY', b, Y' \rightarrow YY, A \rightarrow a, B \rightarrow b, C \rightarrow c.$$

a	a	Ь	а	Ь	b
{ <i>X</i> , <i>A</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>X</i> , <i>A</i> }	{ Y , B}	{ Y , B}
{ <i>X</i> '}	<i>{S}</i>	<i>{S}</i>	<i>{S}</i>	{ Y '}	

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

P:
$$S \rightarrow AS'$$
, AY , BX , CS , c , $S' \rightarrow BC$, $X \rightarrow AS$, BX' , a , $X' \rightarrow XX$, $Y \rightarrow BS$, AY' , b , $Y' \rightarrow YY$, $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$.

а	а	Ь	а	Ь	b
{ <i>X</i> , <i>A</i> }	$\{X,A\}$	{ <i>Y</i> , <i>B</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>Y</i> , <i>B</i> }
{X'}	{ <i>5</i> }	<i>{S}</i>	<i>{S}</i>	{ <i>Y'</i> }	
{ X }					

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

P:
$$S \rightarrow AS'$$
, AY , BX , CS , c , $S' \rightarrow BC$, $X \rightarrow AS$, BX' , a , $X' \rightarrow XX$, $Y \rightarrow BS$, AY' , b , $Y' \rightarrow YY$, $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$.

а	а	Ь	а	b	b
{ <i>X</i> , <i>A</i> }	{ <i>X</i> , <i>A</i> }	$\{Y,B\}$	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>Y</i> , <i>B</i> }
{ <i>X</i> ′}	<i>{S}</i>	{ <i>5</i> }	<i>{S}</i>	{ <i>Y'</i> }	
{ <i>X</i> }	{ X }				

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

P:
$$S \rightarrow AS', AY, BX, CS, c, S' \rightarrow BC, X \rightarrow AS, BX', a, X' \rightarrow XX, Y \rightarrow BS, AY', b, Y' \rightarrow YY, A \rightarrow a, B \rightarrow b, C \rightarrow c.$$

а	а	b	а	b	Ь
{ <i>X</i> , <i>A</i> }	$\{X,A\}$	{ <i>Y</i> , <i>B</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>Y</i> , <i>B</i> }
{ <i>X</i> ′}	<i>{S}</i>	<i>{S}</i>	{ <i>S</i> }	{ <i>Y'</i> }	
{ <i>X</i> }	{ <i>X</i> }	{ <mark>Y</mark> }			

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

$$P: S \rightarrow AS', AY, BX, CS, c, S' \rightarrow BC, X \rightarrow AS, BX', a, X' \rightarrow XX, Y \rightarrow BS, AY', b, Y' \rightarrow YY, A \rightarrow a, B \rightarrow b, C \rightarrow c.$$

а	a	Ь	а	Ь	b
{ <i>X</i> , <i>A</i> }	$\{X,A\}$	{ <i>Y</i> , <i>B</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>Y</i> , <i>B</i> }
{ <i>X</i> ′}	<i>{S}</i>	<i>{S}</i>	<i>{S}</i>	{ Y '}	
{ <i>X</i> }	{ <i>X</i> }	{Y}	{ <mark>Y</mark> }		

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

$$\begin{array}{lll} P \colon \ S \to AS', AY, BX, CS, c, & S' \to BC, & X \to AS, BX', a, & X' \to XX, \\ Y \to BS, AY', b, & Y' \to YY, & A \to a, & B \to b, & C \to c. \end{array}$$

а	а	Ь	а	Ь	Ь
$\{X,A\}$	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>Y</i> , <i>B</i> }
{ <i>X</i> ′}	<i>{S}</i>	<i>{S}</i>	<i>{S}</i>	{ <i>Y'</i> }	
{ <i>X</i> }	{ X }	{Y}	{Y}		
{ X ′}					

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

P:
$$S \rightarrow AS'$$
, AY' , BX , CS , c , $S' \rightarrow BC$, $X \rightarrow AS$, BX' , a , $X' \rightarrow XX$, $Y \rightarrow BS$, AY' , b , $Y' \rightarrow YY$, $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$.

а	а	Ь	а	Ь	b
{ <i>X</i> , <i>A</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>Y</i> , <i>B</i> }
{ <i>X</i> ′}	<i>{S}</i>	<i>{S}</i>	<i>{S}</i>	{ <i>Y'</i> }	
{ <i>X</i> }	{ <i>X</i> }	{ Y }	{ Y }		
{ <i>X</i> ′}	{ <i>S</i> }				

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

$$P: S \rightarrow AS', AY, BX, CS, c, S' \rightarrow BC, X \rightarrow AS, BX', a, X' \rightarrow XX, Y \rightarrow BS, AY', b, Y' \rightarrow YY, A \rightarrow a, B \rightarrow b, C \rightarrow c.$$

а	а	Ь	а	Ь	Ь
$\{X,A\}$	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ Y , B}
{ <i>X</i> ′}	<i>{S}</i>	<i>{S}</i>	<i>{S}</i>	{ <i>Y'</i> }	
{ <i>X</i> }	{ <i>X</i> }	{ <mark>Y</mark> }	{Y}		
{ <i>X</i> ′}	<i>{S}</i>	{ Y '}			

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

$$P: S \rightarrow AS', AY, BX, CS, c, S' \rightarrow BC, X \rightarrow AS, BX', a, X' \rightarrow XX, Y \rightarrow BS, AY', b, Y' \rightarrow YY, A \rightarrow a, B \rightarrow b, C \rightarrow c.$$

а	а	Ь	а	Ь	b
{ <i>X</i> , <i>A</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>Y</i> , <i>B</i> }
{ <i>X</i> ′}	<i>{S}</i>	<i>{S}</i>	<i>{S}</i>	{ <i>Y'</i> }	
{ <i>X</i> }	{ <i>X</i> }	{Y}	{Y}		
{ <i>X</i> ′}	{ <i>S</i> }	{ <i>Y'</i> }			
{ X }					

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

P:
$$S \rightarrow AS'$$
, AY , BX , CS , c , $S' \rightarrow BC$, $X \rightarrow AS$, BX' , a , $X' \rightarrow XX$, $Y \rightarrow BS$, AY' , b , $Y' \rightarrow YY$, $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$.

а	а	Ь	а	Ь	b
$\{X,A\}$	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>Y</i> , <i>B</i> }
{ <i>X</i> '}	<i>{S}</i>	<i>{S}</i>	<i>{S}</i>	{ <i>Y'</i> }	
{ <i>X</i> }	{ <i>X</i> }	{ Y }	{Y}		
{ <i>X</i> ′}	<i>{S}</i>	{ Y '}			
{ <i>X</i> }	{ Y }				

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

P:
$$S \rightarrow AS'$$
, AY' , BX , CS , c , $S' \rightarrow BC$, $X \rightarrow AS$, BX' , a , $X' \rightarrow XX$, $Y \rightarrow BS$, AY' , b , $Y' \rightarrow YY$, $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$.

а	а	Ь	а	Ь	Ь
{ <i>X</i> , <i>A</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>X</i> , <i>A</i> }	{ <i>Y</i> , <i>B</i> }	{ <i>Y</i> , <i>B</i> }
{ <i>X</i> ′}	<i>{S}</i>	<i>{S}</i>	<i>{S}</i>	{ <i>Y'</i> }	
{ <i>X</i> }	{ <i>X</i> }	{Y}	{Y}		
{ <i>X</i> ′}	<i>{S}</i>	{ <i>Y'</i> }			
{ <i>X</i> }	{ Y }				
{ <i>S</i> }					

Ein Maschinenmodell für die kontextfreien Sprachen

Frage

Wie lässt sich das Maschinenmodell des DFA erweitern, um die Sprache

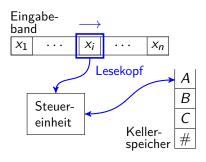
$$L = \{a^n b^n \mid n \ge 0\}$$

und alle anderen kontextfreien Sprachen erkennen zu können?

Antwort

- Dass ein DFA die Sprache L nicht erkennen kann, liegt an seinem beschränkten Speichervermögen, das zwar von L aber nicht von der Eingabe abhängen darf.
- Um L erkennen zu können, genügt bereits ein so genannter Kellerspeicher (auch Stapel, engl. stack oder pushdown memory).
- Dieser erlaubt nur den Zugriff auf die höchste belegte Speicheradresse.

Der Kellerautomat



- verfügt zusätzlich über einen Kellerspeicher,
- ullet kann auch arepsilon-Übergänge machen,
- hat Lesezugriff auf das aktuelle Eingabezeichen und auf das oberste Kellersymbol,
- kann das oberste Kellersymbol löschen (durch eine pop-Operation) und
- danach beliebig viele Symbole einkellern (mittels push-Operationen).

Formale Definition des Kellerautomaten

Notation

Für eine Menge M bezeichne $\mathcal{P}_e(M)$ die Menge aller endlichen Teilmengen von M, d.h.

$$\mathcal{P}_e(M) = \{A \subseteq M \mid A \text{ ist endlich}\}.$$

Definition

Ein Kellerautomat (kurz: PDA, engl. *pushdown automaton*) wird durch ein 6-Tupel $M = (Z, \Sigma, \Gamma, \delta, q_0, \#)$ beschrieben, wobei

- $Z \neq \emptyset$ eine endliche Menge von Zuständen,
- \bullet Σ das Eingabealphabet,
- Γ das Kelleralphabet,
- $\delta: Z \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to \mathcal{P}_e(Z \times \Gamma^*)$ die Überführungsfunktion,
- $q_0 \in Z$ der Startzustand und
- $\# \in \Gamma$ das Kelleranfangszeichen ist.

Der Kellerautomat

Arbeitsweise eines PDA

- Wenn p der momentane Zustand, A das oberste Kellerzeichen und $u \in \Sigma$ das nächste Eingabezeichen (bzw. $u = \varepsilon$) ist, so kann M im Fall $(q, B_1 \cdots B_k) \in \delta(p, u, A)$
 - in den Zustand q wechseln,
 - den Lesekopf auf dem Eingabeband um $|u| \in \{0,1\}$ Positionen vorrücken und
 - das Zeichen A aus- sowie die Zeichenfolge $B_1 \cdots B_k$ einkellern (danach ist B_1 das oberste Kellerzeichen).
- Hierfür sagen wir auch, M führt die Anweisung

$$puA \rightarrow qB_1 \cdots B_k$$

aus.

• Im Fall $u = \varepsilon$ spricht man auch von einem ε -Übergang.

Formale Definition der Konfiguration eines PDA

• Eine Konfiguration wird durch ein Tripel

$$K = (p, x_i \cdots x_n, A_1 \cdots A_l) \in Z \times \Sigma^* \times \Gamma^*$$

beschrieben und besagt, dass

- p der momentane Zustand,
- $x_i \cdots x_n$ der ungelesene Rest der Eingabe und
- $A_1 \cdots A_l$ der aktuelle Kellerinhalt ist (A_1 ist oberstes Symbol).
- In der Konfiguration $K = (p, x_i \cdots x_n, A_1 \cdots A_l)$ kann M eine bel. Anweisung $puA_1 \rightarrow qB_1 \cdots B_k$ mit $u \in \{\varepsilon, x_i\}$ ausführen.

Diese überführt M in die Folgekonfiguration

$$K' = (q, x_i \cdots x_n, B_1 \cdots B_k A_2 \cdots A_l) \text{ mit } j = i + |u|.$$

Hierfür schreiben wir auch kurz $K \vdash K'$.

• Eine Rechnung von M bei Eingabe x ist eine Folge von Konfigurationen $K_0, K_1, K_2 \dots$ mit $K_0 = (q_0, x, \#)$ und $K_0 \vdash K_1 \vdash K_2 \dots$. K_0 heißt Startkonfiguration von M bei Eingabe x.

Definition der von einem PDA erkannten Sprache

Notation

Die reflexive, transitive Hülle von \vdash bezeichnen wir wie üblich mit \vdash^* .

Definition

Die von $M = (Z, \Sigma, \Gamma, \delta, q_0, \#)$ akzeptierte oder erkannte Sprache ist

$$L(M) = \{x \in \Sigma^* \mid \exists q \in Z : (q_0, x, \#) \vdash^* (q, \varepsilon, \varepsilon)\}.$$

Bemerkung

- Ein PDA M akzeptiert also genau dann eine Eingabe x, wenn es eine Rechnung gibt, bei der M
 - das gesamte Eingabewort bis zum Ende liest und
 - den Keller leert.
- Man beachte, dass bei leerem Keller kein weiterer Übergang mehr möglich ist.

Ein Kellerautomat

Beispiel

- Sei $M = (Z, \Sigma, \Gamma, \delta, q, \#)$ mit $Z = \{q, p\}$, $\Sigma = \{a, b\}$, $\Gamma = \{A, \#\}$ und
 - $\delta: q \varepsilon \# o q$ (1) q a # o q A (2) q a A o q A A (3) q b A o p (4) p b A o p (5)

 $\varepsilon \#, \varepsilon$ (1)

a#, A (2)

aA, AA (3) bA, ε (5)

 bA, ε (4)

• Dann akzeptiert M die Eingabe x = aabb:

$$(q, aabb, \#) \vdash_{(2)} (q, abb, A) \vdash_{(3)} (q, bb, AA) \vdash_{(4)} (p, b, A) \vdash_{(5)} (p, \varepsilon, \varepsilon).$$

• Allgemeiner akzeptiert M das Wort $x = a^n b^n$ mit folgender Rechnung: n = 0: $(q, \varepsilon, \#) \vdash_{(1)} (q, \varepsilon, \varepsilon)$.

$$n \geq 1: (q, a^{n}b^{n}, \#) \vdash_{(2)} (q, a^{n-1}b^{n}, A) \vdash_{(3)}^{n-1} (q, b^{n}, A^{n})$$
$$\vdash_{(4)} (p, b^{n-1}, A^{n-1}) \vdash_{(5)}^{n-1} (p, \varepsilon, \varepsilon).$$

• Dies zeigt, dass M alle Wörter der Form $a^n b^n$, $n \ge 0$, akzeptiert.

Ein Kellerautomat

Beispiel

- Sei $M=(Z,\Sigma,\Gamma,\delta,q,\#)$ mit $Z=\{q,p\}$, $\Sigma=\{a,b\}$, $\Gamma=\{A,\#\}$ und
 - $C = \{a, b\}, \ \Gamma = \{A, \#\} \text{ und}$ $\delta : q\varepsilon\# \to q \ (1) \ qa\# \to qA \ (2) \ qaA \to qAA \ (3)$ $qbA \to p \ (4) \ pbA \to p \ (5)$
- Als nächstes zeigen wir, dass jede von M akzeptierte Eingabe $x = x_1 \dots x_n \in L(M)$ die Form $x = a^m b^m$ haben muss.
- Ausgehend von der Startkonfiguration (q, x, #) sind nur die Anweisungen (1) oder (2) ausführbar.
- Führt M zuerst Anweisung (1) aus, so wird der Keller geleert.
- Daher kann M in diesem Fall nur das leere Wort $x = \varepsilon = a^0 b^0$ akzeptieren.
- Falls M mit Anweisung (2) beginnt, muss M später mittels Anweisung
 (4) in den Zustand p gelangen, da sonst der Keller nicht geleert wird.

Ein Kellerautomat

Beispiel

• Sei $M = (Z, \Sigma, \Gamma, \delta, q, \#)$ mit $Z = \{q, p\}$, $\Sigma = \{a, b\}$, $\Gamma = \{A, \#\}$ und $\delta : q\varepsilon\# \to q$ (1) $qa\# \to qA$ (2) $qaA \to qAA$ (3)

 $qbA \rightarrow p$ (4) $pbA \rightarrow p$ (5)

- $\begin{array}{ccc}
 \varepsilon\#,\varepsilon & (1) \\
 a\#,A & (2) \\
 aA,AA & (3) & bA,\varepsilon & (5)
 \end{array}$ $\begin{array}{ccc}
 bA,\varepsilon & (4) \\
 P
 \end{array}$
- Falls M mit Anweisung (2) beginnt, muss M später mittels Anweisung
 (4) in den Zustand p gelangen, da sonst der Keller nicht geleert wird.
- Dies geschieht, sobald M nach Lesen von $m \ge 1$ a's das erste b liest:

$$(q, x_{1} \cdots x_{n}, \#) \vdash_{(2)} (q, x_{2} \cdots x_{n}, A) \vdash_{(3)}^{m-1} (q, x_{m+1} \cdots x_{n}, A^{m})$$

$$\vdash_{(4)} (p, x_{m+2} \cdots x_{n}, A^{m-1})$$

mit $x_1 = x_2 = \cdots = x_m = a$ und $x_{m+1} = b$.

• Um den Keller leeren zu können, muss M nun noch genau m-1 b's lesen, weshalb x auch in diesem Fall die Form $a^m b^m$ haben muss.

Ein Maschinenmodell für die Klasse CFL

Ziel

Als nächstes wollen wir zeigen, dass PDAs genau die kontextfreien Sprachen erkennen.

Satz

 $CFL = \{L(M) \mid M \text{ ist ein PDA}\}.$

Beweis von CFL $\subseteq \{L(M) \mid M \text{ ist ein PDA}\}$

Idee:

• Konstruiere zu einer kontextfreien Grammatik $G = (V, \Sigma, P, S)$ einen PDA $M = (\{q\}, \Sigma, \Gamma, \delta, q, S)$ mit $\Gamma = V \cup \Sigma$, so dass folgende Äquivalenz gilt:

$$S \Rightarrow^* x_1 \cdots x_n \text{ gdw. } (q, x_1 \cdots x_n, S) \vdash^* (q, \varepsilon, \varepsilon).$$

ullet Hierzu fügen wir folgende Anweisungen zu δ hinzu:

für jede Regel
$$A \to_G \alpha$$
: $q \in A \to q \alpha$, für jedes Zeichen $a \in \Sigma$: $qaa \to q \in A$.

- *M* versucht also, eine Linksableitung für die Eingabe *x* zu finden.
- Da *M* hierbei den Syntaxbaum von oben nach unten aufbaut, wird *M* als *Top-Down Parser* bezeichnet.
- Dann gilt $S \Rightarrow_{l}^{l} x_1 \cdots x_n$ gdw. $(q, x_1 \cdots x_n, S) \vdash^{l+n} (q, \varepsilon, \varepsilon)$.
- Daher folgt

$$x \in L(G) \Leftrightarrow S \Rightarrow_{L}^{*} x \Leftrightarrow (q, x, S) \vdash^{*} (q, \varepsilon, \varepsilon) \Leftrightarrow x \in L(M).$$

Beweis von CFL $\subseteq \{L(M) \mid M \text{ ist ein PDA}\}\$

Beispiel

• Betrachte die Grammatik $G = (\{S\}, \{a, b\}, P, S)$ mit den Regeln

$$P: S \rightarrow aSbS$$
 (1), $S \rightarrow a$ (2).

• Der zugehörige PDA besitzt dann die Anweisungen

$$\delta: qaa
ightarrow qarepsilon \qquad qbb
ightarrow qarepsilon (0) \qquad qbb
ightarrow qarepsilon (0') \ qarepsilon S
ightarrow qaSbS \ (1') \qquad qarepsilon S
ightarrow qa \ (2')$$

• Der Linksableitung $\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aab\underline{S} \Rightarrow aaba$ in G entspricht dann die Rechnung

$$(q, aaba, S) \vdash_{(1')} (q, aaba, aSbS) \vdash_{(0)} (q, aba, SbS) \vdash_{(2')} (q, aba, abS)$$
$$\vdash_{(0)} (q, ba, bS) \vdash_{(0')} (q, a, S) \vdash_{(2')} (q, a, a) \vdash_{(0)} (q, \varepsilon, \varepsilon)$$

von *M* und umgekehrt.

Idee:

• Konstruiere zu einem PDA $M=(Z,\Sigma,\Gamma,\delta,q_0,\#)$ eine kontextfreie Grammatik $G=(V,\Sigma,P,S)$ mit Variablen $X_{pAp'},\ A\in\Gamma,\ p,p'\in Z$, so dass folgende Äquivalenz gilt:

$$X_{pAp'} \Rightarrow^* x \text{ gdw. } (p, x, A) \vdash^* (p', \varepsilon, \varepsilon).$$

- Ein Wort x soll also genau dann in G aus $X_{pAp'}$ ableitbar sein, wenn M ausgehend vom Zustand p bei Lesen von x in den Zustand p' gelangen kann und dabei das Zeichen A aus dem Keller entfernt.
- Hierzu fügen wir für jede Anweisung $puA \to p_0A_1 \cdots A_k$, $k \ge 0$, die folgenden $\|Z\|^k$ Regeln zu P hinzu:

Für jede Zustandsfolge
$$p_1,\ldots,p_k\colon X_{pAp_k}\!\!\to uX_{p_0A_1p_1}\cdots X_{p_{k-1}A_kp_k}.$$

 \bullet Um damit alle Wörter $x \in L(M)$ aus S ableiten zu können, benötigen wir jetzt nur noch die Regeln

$$S \to X_{q_0 \# p'}, p' \in Z.$$

Beispiel

• Betrachte den PDA $M=(\{p,q\},\{a,b\},\{A,\#\},\delta,p,\#)$ mit den Anweisungen

$$\delta: p\varepsilon\# \to q\varepsilon \quad (1) \qquad pa\# \to pA \quad (2) \qquad paA \to pAA \quad (3)$$
$$pbA \to q\varepsilon \quad (4) \qquad qbA \to q\varepsilon \quad (5)$$

• Dann erhalten wir die Grammatik $G = (V, \Sigma, P, S)$ mit der Variablenmenge

$$V = \{S, X_{p\#p}, X_{p\#q}, X_{q\#p}, X_{q\#q}, X_{pAp}, X_{pAq}, X_{qAp}, X_{qAq}\}.$$

• Die Regelmenge P enthält neben den beiden Startregeln

$$S \rightarrow X_{p\#p}, X_{p\#q} (0,0')$$

die folgenden Produktionen:

Beispiel (Fortsetzung)

• P enthält neben den beiden Startregeln $S \rightarrow X_{p\#p}, X_{p\#q} \ (0,0')$ die folgenden Produktionen:

	Anweisung			p_1,\ldots,p_k	zugehörige Regeln	
	$p\varepsilon\# \to q\varepsilon$	(1)	0	-	$X_{p\#q} \rightarrow \varepsilon$	(1')
	pa# o pA	(2)	1	р	$X_{p\#p} \rightarrow aX_{pAp}$	(2')
_				q	$X_{p\#q} \rightarrow aX_{pAq}$	(2")
	paA o pAA	(3)	2	p , p	$X_{pAp} \rightarrow aX_{pAp}X_{pAp}$	(3')
				p , q	$X_{pAq} \rightarrow aX_{pAp}X_{pAq}$	(3'')
				q, p	$X_{pAp} \rightarrow aX_{pAq}X_{qAp}$	(3"")
				q, q	$X_{pAq} \rightarrow aX_{pAq}X_{qAq}$	(3"")
	$pbA ightarrow {f q}arepsilon$	(4)	0	-	$X_{pAq} \rightarrow b$	(4')
	qbA ightarrow qarepsilon	(5)	0	-	$X_{qA_{\mathbf{q}}} \rightarrow b$	(5')

Beispiel (Schluss)

Die Anweisungen

$$\delta: p\varepsilon\# \to q\varepsilon$$
 (1) $pa\# \to pA$ (2) $paA \to pAA$ (3) $pbA \to q\varepsilon$ (4) $qbA \to q\varepsilon$ (5)

von M führen also auf die folgenden Regeln von G:

$$S \to X_{p\#p}, X_{p\#q}$$
 (0,0') $X_{p\#q} \to \varepsilon$ (1')
 $X_{p\#p} \to aX_{pAp}$ (2') $X_{p\#q} \to aX_{pAq}$ (2")
 $X_{pAp} \to aX_{pAp}X_{pAp}$ (3') $X_{pAq} \to aX_{pAp}X_{pAq}$ (3")
 $X_{pAq} \to aX_{pAq}X_{qAp}$ (3"") $X_{pAq} \to aX_{pAq}X_{qAq}$ (3"")
 $X_{pAq} \to b$ (4') $X_{qAq} \to b$ (5')

Der akzeptierenden Rechnung

$$(p, aabb, \#) \vdash (p, abb, A) \vdash (p, bb, AA) \vdash (q, b, A) \vdash (q, \varepsilon, \varepsilon)$$

$$(p, bb, AA) \vdash (q, b, A) \vdash (q, \varepsilon, \varepsilon)$$

$$(p, bb, AA) \vdash (q, b, A) \vdash (q, \varepsilon, \varepsilon)$$

$$(p, bb, AA) \vdash (q, b, A) \vdash (q, \varepsilon, \varepsilon)$$

von M entspricht dann in G die Linksableitung $\underline{S} \Rightarrow \underbrace{X_{p\#q}}_{(0')} \Rightarrow \underbrace{aX_{pAq}}_{(2'')} \Rightarrow \underbrace{aaX_{pAq}}_{(3''')} X_{qAq} \Rightarrow \underbrace{aabX_{qAq}}_{(5')} \Rightarrow \underbrace{aabX_{qAq}}_{(5')} \Rightarrow \underbrace{aabb}_{(5')}.$

• Für einen PDA $M=(Z,\Sigma,\Gamma,\delta,q_0,\#)$ sei G die Grammatik (V,Σ,P,S) mit $V=\{S\}\cup\{X_{pAq}\mid p,q\in Z,A\in\Gamma\}$, wobei P neben den Regeln $S\to X_{q_0\#p'},\ p'\in Z$, für jede Anweisung

$$puA \rightarrow p_0A_1 \cdots A_k, \ k \geq 0$$

von M und jede Zustandsfolge p_1, \ldots, p_k die folgende Regel enthält:

$$X_{pAp_k} \rightarrow uX_{p_0A_1p_1}\cdots X_{p_{k-1}A_kp_k}.$$

Dann lässt sich mit Hilfe der Äquivalenz

$$X_{pAp'} \Rightarrow^* x \text{ gdw. } (p, x, A) \vdash^* (p', \varepsilon, \varepsilon),$$

deren Beweis wir später nachholen, leicht die Korrektheit von G zeigen:

$$x \in L(M) \Leftrightarrow (q_0, x, \#) \vdash^* (p', \varepsilon, \varepsilon)$$
 für ein $p' \in Z$
 $\Leftrightarrow S \Rightarrow X_{q_0 \# p'} \Rightarrow^* x$ für ein $p' \in Z$
 $\Leftrightarrow x \in L(G)$.

• Es bleibt zu zeigen, dass für alle $p,p'\in Z$, $A\in \Gamma$ und $x\in \Sigma^*$ folgende Äquivalenz gilt:

$$X_{pAp'} \Rightarrow^* x \text{ gdw. } (p, x, A) \vdash^* (p', \varepsilon, \varepsilon).$$
 (*)

ullet Hierzu zeigen wir durch Induktion über m folgende stärkere Behauptung:

$$X_{pAp'} \Rightarrow^m x \text{ gdw. } (p, x, A) \vdash^m (p', \varepsilon, \varepsilon).$$
 (**)

Beweis von (**) durch Induktion über *m*:

m = 0: Da weder $X_{pAp'} \Rightarrow^0 x$ noch $(p, x, A) \vdash^0 (p', \varepsilon, \varepsilon)$ gelten, ist die Äquivalenz (**) für m = 0 erfüllt.

 $m \rightsquigarrow m + 1$: Wir zeigen zuerst die Implikation von links nach rechts.

- Gelte also $X_{pAp'} \Rightarrow^{m+1} x$ und sei α die im ersten Schritt abgeleitete Satzform, d.h. $X_{pAp'} \Rightarrow \alpha \Rightarrow^m x$.
- Wegen $X_{pAp'} \to_G \alpha$ gibt es eine Anweisung $puA \to p_0A_1 \cdots A_k$, $k \ge 0$, und Zustände $p_1, \ldots, p_k \in Z$ mit

$$\alpha = u X_{p_0 A_1 p_1} \cdots X_{p_{k-1} A_k p_k}$$
, wobei $p_k = p'$ ist.

• Wegen $\alpha \Rightarrow^m x$ ex. eine Zerlegung $x = uu_1 \cdots u_k$ und Zahlen $m_i \ge 1$ mit $m_1 + \cdots + m_k = m$ und

$$X_{p_i,A_{i+1},p_{i+1}} \Rightarrow^{m_{i+1}} u_{i+1} \ (i=0,\ldots,k-1).$$

Nach IV gibt es somit Rechnungen

$$(p_i, u_{i+1}, A_{i+1}) \vdash^{m_{i+1}} (p_{i+1}, \varepsilon, \varepsilon), i = 0, \ldots, k-1.$$

Induktionsschritt für die Implikation von links nach rechts

Nach IV gibt es somit Rechnungen

$$(p_i, u_{i+1}, A_{i+1}) \vdash^{m_{i+1}} (p_{i+1}, \varepsilon, \varepsilon), i = 0, \dots, k-1,$$

aus denen sich die gesuchte Rechnung der Länge m+1 zusammensetzen lässt:

$$(p, uu_{1} \cdots u_{k}, A) \vdash (p_{0}, u_{1} \cdots u_{k}, A_{1} \cdots A_{k})$$

$$\vdash^{m_{1}} (p_{1}, u_{2} \cdots u_{k}, A_{2} \cdots A_{k})$$

$$\vdots$$

$$\vdash^{m_{k-1}} (p_{k-1}, u_{k}, A_{k})$$

$$\vdash^{m_{k}} (p_{k}, \varepsilon, \varepsilon).$$

Induktionsschritt für die Implikation von rechts nach links

ullet Sei nun umgekehrt eine Rechnung der Länge m+1 gegeben:

$$(p, x, A) \vdash (p_0, x', A_1 \cdots A_k) \vdash^m (p', \varepsilon, \varepsilon).$$

- Sei $puA \to p_0A_1 \cdots A_k$, $k \ge 0$, die im ersten Rechenschritt ausgeführte Anweisung (d.h. x = ux').
- $A_{i+1}\cdots A_k$ gelangt (d.h. $p_k=p'$).

• Für i = 1, ..., k sei p_i der Zustand, in den M mit Kellerinhalt

- ullet Dann enthält P die Regel $X_{pAp_k} o u X_{p_0A_1p_1} \cdots X_{p_{k-1}A_kp_k}.$
- Zudem sei u_i für $i=1,\ldots,k$ das Teilwort von x', das M zwischen den Besuchen von p_{i-1} und p_i liest.
- Dann ex. Zahlen $m_i \ge 1$ mit $m_1 + \cdots + m_k = m$ und $(p_i, u_{i+1}, A_{i+1}) \vdash^{m_{i+1}} (p_{i+1}, \varepsilon, \varepsilon)$ für $i = 0, \dots, k-1$.
- Nach IV gibt es daher Ableitungen

$$X_{p_i,A_{i+1},p_{i+1}} \Rightarrow^{m_{i+1}} u_{i+1}, i = 0,\ldots,k-1.$$

Induktionsschritt für die Implikation von rechts nach links

• Nach IV gibt es daher Ableitungen

$$X_{p_i,A_{i+1},p_{i+1}} \Rightarrow^{m_{i+1}} u_{i+1}, i = 0, \dots, k-1,$$

die wir zu der gesuchten Ableitung zusammensetzen können: