

Biostatistics

Grundlagen der Bioinformatik SS2019

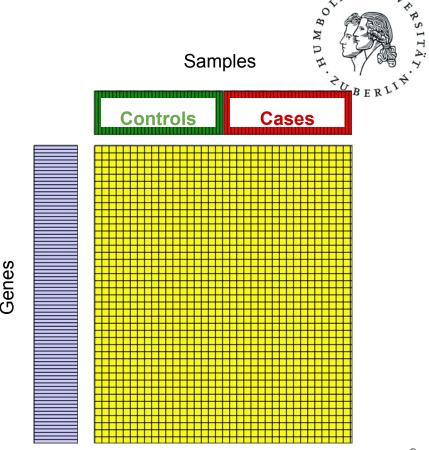
Agenda

- Normalization
- Differential expression
 - Fold Change
 - P-value
 - t-test
- Clustering

Experimental Design

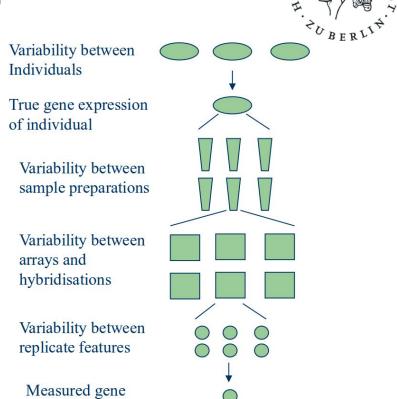
 $N_1,...,N_m$: **control** samples

 $T_1,...,T_n$: case samples


We look for:

Genes with significant differences between N and T

Compare gene X from group N with gene X of group T


$$N = \{n_1,...,n_m\} T = \{t_1,...,t_n\}$$

Many methods exist, here: Fold change t-test

Motivation normalization

- Interested in: true biological difference of mRNA expression
- What we measure: Mixture of (unwanted)
 technical and biological noise
- Correct undesired noise!

expression

Quantile normalization

- ✓ Differences between the separate values retained
- ✓ Identical distribution for each array
- Information lost
 - Especially in the lower signals

- 1. Matrix X
 - a. Columns = samples
 - b. Row = transcripts
- 2. Sort each column of $X \rightarrow X_{sort}$
- 3. Calculate row-means and store in X'_{sort}
- 4. Obtain X_n by rearranging columns of X'_{sort} to have the same ordering as the corresponding input vector

What we want: comparability

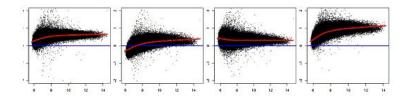


Figure 7A. Ratio Intensity Plot of all probes for four pairs of chips from GeneLogic spike-in experiment

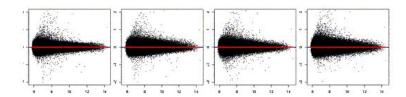
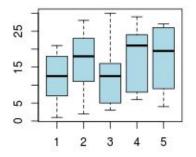
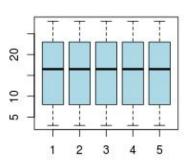




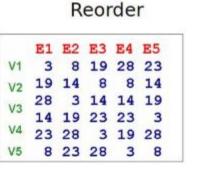
Figure 7B. As in A, after normalization by matching quantiles. Both figures courtesy of Terry Speed

before normalization

after normalization

Bolstad, Benjamin M., et al. "A comparison of normalization methods for high density oligonucleotide array data based on variance and bias." Bioinformatics 19.2 (2003): 185-193.

Important: normalization between samples, not within one sample



		P1	FO	E3	PA	E5
	150 Alass					
	V1	1	11	13	29	26
Values	V2	15	17	5	8	14
⊒.	V3	21	2	12	20	25
Ş	VS	10	19	16	24	4
	V4	18	28	3	22	27
	V5	7	23	30	6	9
		1	1	1	1	1
S		2	2	2	2	2
×		3	3	3	3	3
Indexes		4	4	4	4	4
\succeq		5	5	5	5	5
_						

Sort							
E1	E2	E3	E4	E5			
21	28	30	29	27			
18	23	16	24	26			
15	19	13	22	25			
10	17	12	20	14			
7	11	5	8	9			
1	2	3	6	4			
3	5	6	1	5			
5	6	4	4	1			
2	4	1	5	3			
2	2	3	3	5 1 3 2 6			
6	1	2	2	6			
1	3	5	6	4			

	INC	pic	icc		
E1	E2	E3	E4	E5	
28	28	28	28	28	
23	23	23	23	23	
19	19	19	19	19	
14	14	14	14	14	
8	8	8	8	8	
3	3	3	3	3	
3	5	6	1	5	
5	6	4	4	1	
2	4	1	5	3	
4	2	3	3	2	
6	1	2	2	6	
1	3	5	6	1	

Replace

Differential expression

Fold Change

$$FC = log_2(rac{\overline{T}}{\overline{N}}) = log_2(\overline{T}) - log_2(\overline{N})$$

Thresholds (examples)

|FC| <1 not interesting |FC| >2 interesting

Genes	Mean Case	Mean Control	Mean Case / Control	FC
А	16	1	16	4
В	0.0625	1	0.0625	-4
С	10	10	1	0
D	200	1	200	7.65

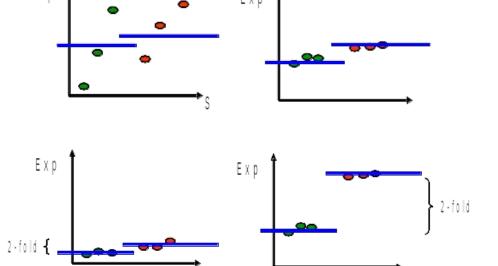
Z-score normalization

- Correct for different amount of mRNA per sample
- Z-score = scaling of counts
 - 0 = average
- Examples: 2, -1, 0.1

$$Z = (X_i - mean_{est}) / sd_{est}$$

 X_i = expression gene i

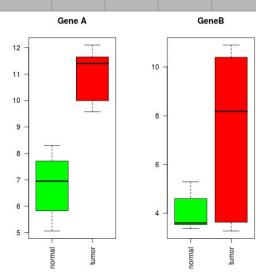
Mean_{est}: (estimated) expr. average over all genes


Sd: (estimated) expr. standard deviation of all genes

Fold Change - Advantages / Disadvantages

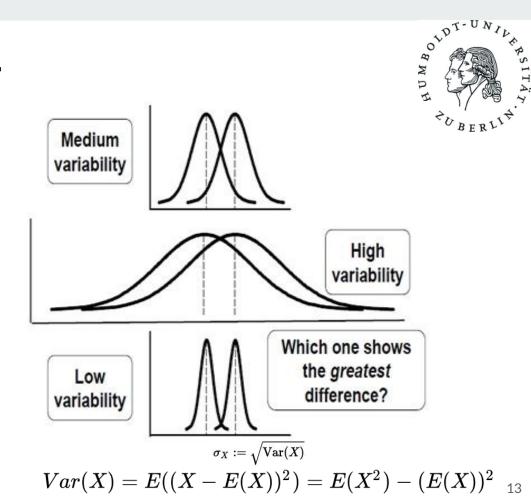
✓ intuitive measure

- ✗ Independent of scatter
- ✗ Independent of absolute values
 - Score only based on mean of groups
 - o **Spread** of data points essential



Variance essential

	N1	N2	N3	N4	N5	N6	N7	C1	C2	C3	C4	C5	C6	C7	FC
Gene A	5	5	8	8	7	6	7	10	10	12	12	11	10	12	-4
Gene B	3	4	3	3	5	5	4	4	11	10	4	11	8	3	-3


- High abs(FC) for Gene A and Gene B
- But: variance very high in the tumor samples of Gene B
- Find test for FC and variance

$$Var(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$$

Hypothesis Testing 1

- Same Mean
 - Different variance
- Measure 'uncertainty' with standard deviation sd
- Combine both to likelihood for 'correctness'
- Assumption
 - Log-Normal distributions
 - Symmetric
 - Independent

Hypothesis Testing 2

T-test (unpaired two-sample)

Compares the mean of two unpaired samples

Assumption

- Values normally distributed
- Equal variances

Hypothesis

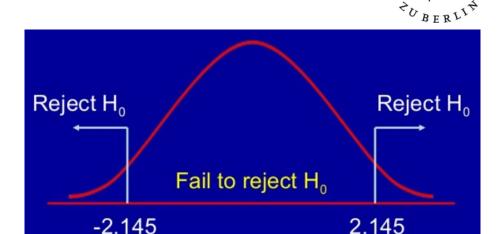
• H₀ (Null hypothesis): $m_1 = m_2$ vs. $m_1 != m_2$ (means are not equal)

Test statistic

 Function of the sample that summarizes the data set into one value that can be used for hypothesis testing

Hypothesis Testing 3

From T-statistic to p-value


 T-value, a and number of samples determine the p-value (look-up tables)

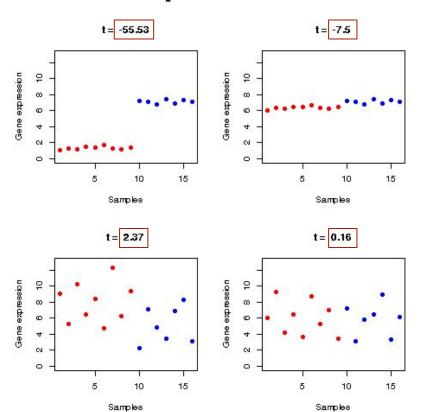
P-value

- Probability of observing your data under the assumption that H_0 is true
- Probability that you will be in error if rejecting H₀

Significance level (a)

 Probability of a false positive outcome of the test, the error of rejecting H₀ when it is actually true

If |t| > |T| we reject H_0


→ p-value is significant (p-value < a)

Hypothesis Testing - Workflow

- 1. Determine null and alternative hypothesis
- 2. Select a significance level (alpha)
- 3. Take a random sample from the population of interest
- 4. Calculate a test statistic from the sample that provides information about the null hypothesis
- 5. Decision

Examples

	q = 0.6	0.75	0.9	0.95	0.975	0.99	0.995	0.9975
n = 1	0.3249	1.0000	3.078	6.314	12.706	31.821	63.657	127.321
2	0.2887	0.8165	1.886	2.920	4.303	6.965	9.925	14.089
3	0.2767	0.7649	1.638	2.353	3.182	4.541	5.841	7.453
4	0.2707	0.7407	1.533	2.132	2.776	3.747	4.604	5.598
5	0.2672	0.7267	1.476	2.015	2.571	3.365	4.032	4.773
6	0.2648	0.7176	1.440	1.943	2.447	3.143	3.707	4.317
7	0.2632	0.7111	1.415	1.895	2.365	2.998	3.499	4.029
8	0.2619	0.7064	1.397	1.860	2.306	2.896	3.355	3.833
9	0.2610	0.7027	1.383	1.833	2.262	2.821	3.250	3.690
10	0.2602	0.6998	1.372	1.812	2.228	2.764	3.169	3.581
11	0.2596	0.6974	1.363	1.796	2.201	2.718	3.106	3.497
12	0.2590	0.6955	1.356	1.782	2.179	2.681	3.055	3.428
13	0.2586	0.6938	1.350	1.771	2.160	2.650	3.012	3.372
14	0.2582	0.6924	1.345	1.761	2.145	2.624	2.977	3.326

Degrees of freedom: |Samples| - 2, Here 16 - 2 = 14

Example

Hypothesis

$$H_0: m_N - m_T = 0 \text{ vs } H_1: m_N - m_T! = 0$$

Significance level 0.05

5.05

Test statistic

P-value 0.06

-> Not significant

5.29, 5.06, 3.6

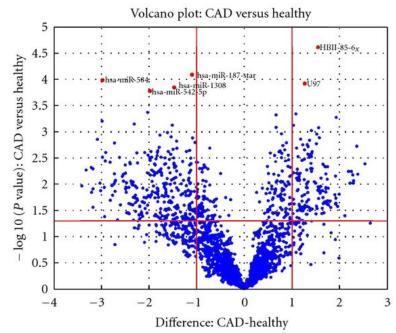
 $N = \{3.58, 4.14, 3.49, 3.37,$

Data from slide 9

10.5, 8.18, 3.27

$$t=rac{X_1-X_2}{S_p\cdot\sqrt{rac{1}{n_1}\cdotrac{1}{n_2}}}$$
 = - 2.27

Volcano plot



Combine P-value and Log-FC

- Y-axis: Negative log10 of the p-value
- X-axis: Fold-change

Interested in

- Upper left
- Upper right corner

Multiple Testing Correction

Problem

Microarrays has 22k genes, thus an α =0.05 leads to approximately 22 000 * 0.05 ~ 1100 FPs.

Solution

Multiple testing correction, two basic approaches:

- 1. Family wise error rate (FWER), the probability of having at least one false positive in the set of results considered as significant
- 2. False discovery rate (FDR), the expected proportion of true null hypotheses rejected in the total number of rejections. (FDR measures the expected proportion of incorrectly rejected null hypotheses, i.e. type I errors)

Bonferroni correction

Let N be the number of genes tested and p the p-value of a given probe, one computes an adjusted p-value using

$$p_{adjusted} = p*N$$

E.g. case of two p-values (multiply by 2)

- 1. 0.001 -> 0.002
- 2. 0.03 -> 0.06

• Iff the adjusted p-value is smaller than the *alpha*, the probe is considered differentially expressed.

- Bonferroni assumes independence between the tests (usually wrong)
- Appropriate when a single false positive in a set of tests would be a problem (e.g., drug development)

Benjamini - Hochberg correction

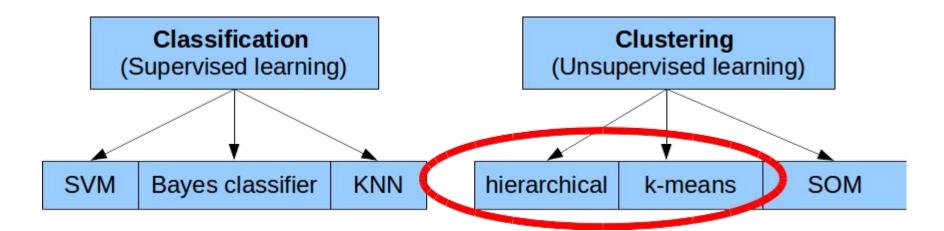
- 1. Choose a specific α (e.g. α =0.05)
- 2. Rank all m p-values from smallest to largest
- 3. Correct all p-values: BH(pi)i=1,...,m = p_i^* m/i
- 4. BH (p) = significant if BH(p) $\leq \alpha$

Genes	p-value	rank	BH(p)	Significant 0.05
Α	0.00001	1	0.00001*1000/1 = 0.01	yes
В	0.0004	2	0.0004*1000/2 = 0.20	no
С	0.01	3	0.01*1000/3 = 3.3 -> 1.0	no

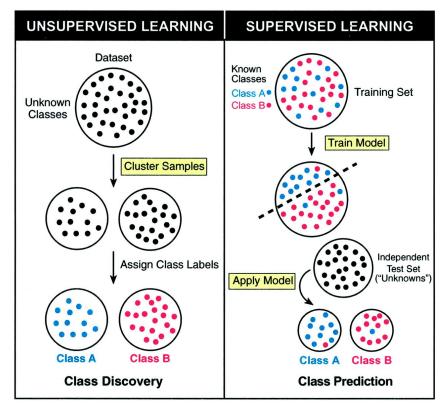
Clustering - Motivation

Subgroups detection

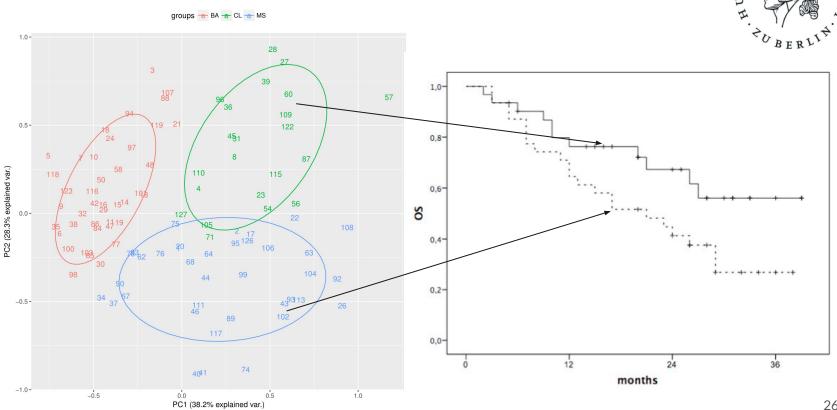
Quality control


Similarity-detection in spatial and temporal behavior

- Co-regulated / expressed genes
 - E.g. genes controlled by the same transcription-factor


Discovery of new disease subtypes

Overview unsupervised clustering


Clustering

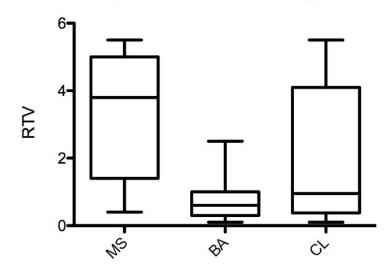
Ramaswamy & Golub 2002

Example

Clustering

Goal

 Partitioning Biological interpretation of subtypes (clusters)


Requires

o (Useful) similarity measure

Advantages

Intuitive Simple (you would think)

cetuximab response in different subtypes of HNSCC

Hierarchical Clustering - algorithm

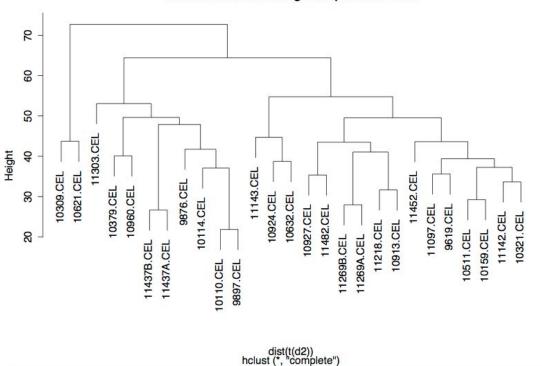
OLDI-UNIVERSITA OBERLIA

- Distance measure
 - a. Euclidean
 - b. Pearson, etc.
- 2. Compute similarity matrix S
- 3. While |S|>1:
 - a. Determine pair (X,Y) with minimal distance
 - b. Compute new value Z = avg(X,Y), (single, average, or complete linkage)
 - c. Delete X and Y in S, insert Z in S
 - d. Compute new distances of Z to all elements in S
 - e. Visualize X and Y as pair

Hierarchical Clustering

- o Binary tree
- Cutting the dendrogram at a particular height partitions the data into disjoint clusters
- For an easier determination of clusters
 - Length of branch is set in relation to the difference of the leafs.

Linkage Rule essential


Hierarchical Clustering - Linkage

- Methods produce similar results for data with strong clustering tendency
 - (each cluster is compact and separated)
- Single Linkage
 - Single smallest distance $D(X,Y) = \min_{x \in X, y \in Y} d_{xy}$
 - Violates the compactness property (i.e., observations inside the same cluster should tend to be similar)
- Complete Linkage
 - Most distant elements $D(X,Y) = \max_{x \in X, y \in Y} d_{xy}$
- Average Linkage
 - Compromise $D(X,Y) = \frac{1}{N_X N_Y} \sum_{x \in X} \sum_{y \in Y} d_{xy}$

Hierarchical Clustering

Hierarchical clustering of expression data

