Algorithms and Data Structures

All Pairs Shortest Paths

UIf Leser

Content of this Lecture

e All-Pairs Shortest Paths

— Transitive closure: Warshall’s algorithm
— Shortest paths: Floyd’s algorithm

o Reachability in Trees

Ulf Leser: Algorithms and Data Structures p

Recall: DFS

We put every node exactly once
on the stack
— Once visited, never visited again

We look at every edge exactly
once

— Outgoing edges of a visited node

are never considered again

U can be implemented as bit-
array of size |V|, allowing O(1)
operations

— Add, remove, getNextUnseen

Altogether: O(n+m)

func void traverse (G graph,
v node,
U set) {
t := new Stack();
t.put(v);
U =0\ {v};
while not t.isEmpty() do

n := t.pop():;
print n;
c := n.outgoingNodes() ;

foreach x in ¢ do
if x€U then
U :=0U \ {x};
t.push(x);
end if;
end for;
end while;

}

Ulf Leser: Algorithms and Data Structures 3

Recall: Transitive Closure

e Definition
Let G=(V,E) be a digraph and v, v,eV. The transitive
closure of G Is a graph G'=(V, E)) where (v,v,)eE"iff G
contains a path from v; to v,

e TC usually is dense and represented as adjacency matrix

e Compact encoding of reachability information

and many more

Ulf Leser: Algorithms and Data Structures

Shortest Path Problems

e Dijkstra finds shortest path between a given start node and
all other nodes assuming that all edge weights are positive

e All-pairs shortest paths: Given a digraph G with positive or
negative edge weights, find the (cycle-free) distance
between all pairs of nodes

— We will interpret “find” as “compute the distance matrix”

>|A|B|C|D|E|F|G|X]|Y
A

B | 3| - |-

C

D |-2]1]-1 3 |46 |73
E

F

G

X

Y

Ulf Leser: Algorithms and Data Structures 6

Why Negative Edge Weights?

e One application: Transportation company

— Every route incurs cost (for fuel, salary, etc.)

— Every route creates income (for carrying the freight)
e If cost>income, edge weights become negative

— But still important to find the best route
— Example: Best tour from X to C

Shortest path =
max revenue

Cost Incoming

Ulf Leser: Algorithms and Data Structures 7

No Dijkstra

e Dijkstra’s algorithm does not work
— Recall that Dijkstra enumerates nodes by their shortest paths

— Now: Adding a subpath to a so-far shortest path may make it
“shorter” (by negative edge weights)

K1
K2
K3
K4
K5
K6
K7 4
K8

DL |IN|IN]O

Ulf Leser: Algorithms and Data Structures 8

No Dijkstra

e Dijkstra’s algorithm does not work
— Recall that Dijkstra enumerates nodes by their shortest paths

— Now: Adding a subpath to a so-far shortest path may make it
“shorter” (by negative edge weights)

K1
K2
K3
K4
K5
K6
K7 4
K8

DL |IN|IN]O

Ulf Leser: Algorithms and Data Structures 9

No Dijkstra

e Dijkstra’s algorithm does not work
— Recall that Dijkstra enumerates nodes by their shortest paths

— Now: Adding a subpath to a so-far shortest path may make it
“shorter” (by negative edge weights)

Ulf Leser: Algorithms and Data Structures 10

Negative Cycles

e Shortest path
between X and K57
— X-K3-K4-K5: 5
— X-K3-K4-K5-X-K3-K4-K5: 4
— X-K3-K4-K5-X-K3-K4-K5-X-K3-K4-K5: 3

e SP-Problem undefined if G contains a negative cycle

Ulf Leser: Algorithms and Data Structures 11

All-Pairs: First Approach

e We start with a simpler problem: Computing the transitive
closure of a digraph G without edge weights

e First idea

L - p p p1 P
— Reachability is transitive: x Sy Ay 52 = x5y 52z =x—>Z

— We may use this idea to iteratively build longer and longer paths
— First extend edges with edges — path of length 2
— Extend paths of length 2 with edges — paths of length 3

— No necessary path can be longer then |V|
e Or it would contain a cycle

e In each step, we store “reachable by a path of length <k”
IN @ matrix

Ulf Leser: Algorithms and Data Structures 12

1,2, 3,4

Example — After z

W [~ |||
QA | —H|—A|[—=]|+~
Ol |||~ |
(n'n T I T I O O T I I
L | A | A |[—A|—= |~
< |0 |(O |0 (W
[I I I I I
AQ|—A | |—A|[—]|~
O | ™ | ||
0O (v [|||~
L | A | A |[—A|—=]|
< |0 |O|O|Ww
W[|||~
O|— |~ |~ i
O~ — | —
M | — [
<L [||
< 0 |O |0 |wWw
L — ||~
Q|- |~ |-
O~ —i
M| i
< — |
< |0 |(O |0 |w
L i
) — |
Q|
N |~
< —
< | m|(O |0 |Ww

Path length:

13

Ulf Leser: Algorithms and Data Structures

Naive Algorithm

Z appears nowhere; it is
there to ensure that we
stop when the longest

possible shortest paths has

G = (V, E);
M := adjacency

for i = 1..n do
for j =1..n do

if M’ [i,j]=L then

been found
e Mis the adjacency matrix of G,
M” eventually the TC of G

e M’: Represents paths <z
e M": Represents paths <z+1
e Reachability is transitive:

.P1 . D2 .P1 , D2

for k=1 to n do
if M[j,k]=1 then
M7 [i,k] :=1; <
end if;
end for;
end if;
end for;
end for;
end for;

i—>j-Kk

———iojajok =
/-I:acm look at all pairs

reachable by a path of length
<z+1

Loop k extends path of length
<z by all outgoing edges

e Obviously O(n%)

Ulf Leser: Algorithms and Data Structures

14

Observation

A|B|C|D|E A|B|C|D|E AIB|C|D|E
A 1 A 111 A 1111
B 1 B 1 B 1[1
X
C 1 C 1 » C 1(1
D 1 D 1 D1 1
Ell El1l E{1(1]1
e In the first step, we actually compute MxM, and then

replace each value >1 with 1
— We only state that there is a path; not how many and not how long

e Computing TC can be described as matrix operations

Ulf Leser: Algorithms and Data Structures 15

Paths in the Naive Algorithm

AIB|C|D|E AIB|C|D|E AB|C|D|E A[B|C|D|E AB|C|D|E
A 1 A 1 1 A 1|1|1{1|[A|1|1|1]21|2|[A|lLl]21]1]|1]|1
B 1 B 111 |B|1 111||B|1f{1j1]1|1||Bf1f{1|1|1]1
C 1 C 111 (C|1 11| |C|1f{1j1]1|1]|C|{1f{1|1|1]1
D 11| D1 1| (D|1]|1(1 1(|D|1|1|1|1|1{|D|1f1|1|1|1
Ell E{1|1(1 E{1|1]|1]1 E{1|1(1|1{1||E|L1|1|1|1|1
e The naive algorithm always extends paths by one edge

— Computes MxM, M2xM, M3xM, ... M™1xM

Ulf Leser: Algorithms and Data Structures 16

Idea for Improvement

e Why not extend paths by all paths found so-far?
— We compute
M2'=MxM: Path of length <2
M3'=M2xMUMZxM?’; Path of length <2+1 and <2+2
M¥=M3xM UM3xM2 UM3xM%¥, lengths <4+1, <4+2, <4+3/4

Mr'=... U MrixMet
— [We will implement it differently]

e Trick: We can stop much earlier

— The longest shortest path can have length at most n
— Thus, it suffices to compute Mles'= | & Mlog(n)*xMlog(n)

Ulf Leser: Algorithms and Data Structures

17

Algorithm Improved

G = (V, E);
M := adjacency matrix(G);
n VI

for z := 0..ceil(log(n)) do

for i = 1..n do
for j =1..n do
if M[i,j]=1 then
for k=1 to n do
if M[j,k]=1 then
M[i,k] :=1;
end if;
end for;
end if;
end for;
end for;
end for;

Ulf Leser: Algorithms and Data Structures

We use only one matrix M
We “add” to M matrices M?, M3 ...

In the extension, we see if a path
of length <27 (stored in M) can be
extended by a path of length <27
(stored in M)

— Computes all paths <274-22=27+1
Analysis: O(n3*log(n))
But ... we can be even faster

18

Example — After z=1, 2, 3

A|B|C|D|E A|B|C|D|E A|B|C|D|E
A 1 Al [1]|1]1 Al1|1|1]1]1
B 1 B 11| (Bl1]|1]|1|1]|1
C 1 C 11| (Cl1]|1]|1|1]|1
D 1/|D|1 1| [D[1]1]|1|1]1
E|1 El1]1]1 E(1]1]1|11
Path length: <2 <4 Done

Ulf Leser: Algorithms and Data Structures 19

Further Improvement

—
=== O

m| O|O| | >
=
m O|lO|®| >

e Note: Connection A—D is found twice: A~B—D / A-C—D
e (Can we stop “searching” A—D once we found A—»B—D?

e Can we enumerate paths such that redundant connections
are discovered less often?
— I.e., less connections are tested

Ulf Leser: Algorithms and Data Structures 20

Warshall, S. (1962). A theorem on Boolean
Wa rsha”’s AlgOrithm matrices. Journal of the ACM 9{1).' 11-12.

e Preparations

— Fix an arbitrary order on nodes and assign each node its rank as ID

— Let P, be the set of all paths that contain only nodes with ID<t+1
e Applies to inner nodes of a path, not start and end

— t gives the highest allowed node ID inside a path

e Idea: Compute P, inductively
— We start with P,
— Suppose we know P,

— If we increase t by one, we admit one additional node, i.e., ID t

P Ps_
— Now, every additional path must have the form j Aty P2t

o All paths with all IDs <t are already known

e Node t is the only new player, must be in all new paths
— We are done once t=n

e This guarantees correctness — all connections found

Ulf Leser: Algorithms and Data Structures 21

Warshall, S. (1962). A theorem on Boolean
Wa rsha”’s AlgOrithm matrices. Journal of the ACM 9(1).' 11-12.

e Enumerate paths by the IDs of the nodes they are allowed
to contain

e t gives the highest allowed node ID inside a path

path p using nodes with IDs {1, ... t}

path p; from fromito t path p, from t to k
using nodes with IDs {1, ... t-1} using nodes with IDs {1, ... t-1}

Ulf Leser: Algorithms and Data Structures 22

Algorithm

e Enumerate paths by the
IDs of the nodes they are
allowed to contain

e t gives the highest allowed
node ID inside a path

. G= (V, E);

. M := adjacency matrix(G);

. n:=|V|;

for i = 1..n do
;5> if M[i,t]=1 then

e Thus, node t mustle—m

for k=1 to n do

any new path

o We find all pairs i,k with
i—t and t—k

e For every such pair, we set
the path i—k to 1

Ulf Leser: Algorithms and Data Structures

1
2
3
4. for t :=1..n do
5
[
7
8

-3 if M[t,k]=1 then

9. M[i,k] := 1;
10. end if;

11. end for;

12. end if;

13. end for;

14. end for;

23

Example — Warshall’s Algorithm

A|B|C|D|E

A 1

B 1 B

C 1 C 1

D 1 D 1

E|1 El1]1]1
A allowed
Connect
E-A with
A-B, A-C

Ulf Leser: Algorithms and Data Structures 24

Example — After t=A,B,C,D,E

t=,A" t=,B" t=,C"

| JEREEE » e BEEIE 2 & cBE

F1 1 Iy [1]1]1 Iy [1|1]1

B 1 B 1 B 1

C 1 C 1 C 1

D 1| |D 1/|D 1

E|1]1]1 E|1]|1]1]1 E|1|1]1]1
B allowed C allowed D alloﬁ E allowed
Connect Connect Connect Connect
A-B/E-B A-C/E-C A-D, B-D, everything
with B-D with C-D C-D,E-D with

No news with D-E everything

Ulf Leser: Algorithms and Data Structures 25

Little change — Notable Consequences

G = (V, E);

M := adjacency matrix(G);
n := |V]|;

for z :=1..n do

for i = 1..n do
for j =1..n do
if M[i,j]=1 then
for k=1 to n do
if M[j,k]=1 then
M[i,k] := 1;
end if;
end for;
end if;
end for;
end for;
end for;

O(n%)

Ulf Leser: Algorithms and Data Structures

)

Drop z-
Loop
Swap i and
j loop
Rename j
into t

© 0 Jd o U1 d WIDN R

B R R
N B O

13.
14.

G = (V, E);
M := adjacency matrix(G);
n := |V|;
for t :=1..n do
for i = 1..n do
if M[i,t]=1 then
for k=1 to n do
if M[t,k]=1 then
M[i,k] :=1;
end if;
end for;
end if;
end for;
end for;

O(n3)

26

Content of this Lecture

e All-Pairs Shortest Paths

— Transitive closure: Warshall’s algorithm
— Shortest paths: Floyd’s algorithm

e Reachability in Trees

Ulf Leser: Algorithms and Data Structures 27

Floyd, R. W. (1963). Algorithm 97: Shortest
Shortest Paths Paths. Communications of the ACM 5(6): 345.

e Shortest paths: We need to compute the distance between
all pairs of reachable nodes

e We use the same idea as Warshall: Enumerate paths using
only nodes with IDs smaller than t inside a path

— Invariant: Before step t, M[i,j] contains the length of the shortest
path that uses no node with ID higher than t

— When increasing t, we find new paths i—t—k and look at their
lengths

— Thus: M[i,k]:=min(M[i k] U { M[i,t]+M[t,Kk] | i=>t A t=k})

Ulf Leser: Algorithms and Data Structures 28

Example 1/3

A D F

A 1

B | -2

C

D

E 4

F 1

G 6 -1

\ 4

D F
1

B | -2 -1

C

D

E 4

F 1 2

G

Example 2/3

B C D E F G D E F G
A 1 3 1 3
B -1 1 -1 1
C
D 1 3 2 2 4 2 4
E 4 1 4 1
F 0 2 5 1 3 1 3
G 6 -1 -1

Example 3/3

Ulf Leser: Algorithms and Data Structures

Summary (n=|V|, m=|E|)

e Warshall's algorithm computes the transitive closure of any
unweighted digraph G in O(n3)

e Floyd's algorithm computes the distances between any pair
of nodes in a digraph without negative cycles in O(n3)

e Johnson's alg. solves the problem in O(n%*log(n)+n*m)
— Which is faster for sparse graphs

e Storing both information requires O(n?2)

e Problem is easier for ...
— Undirected graphs: Connected components
— Graphs with only positive edge weights: All-pairs Dijkstra
— Trees: Test for reachability in O(1) after O(n) preprocessing

Ulf Leser: Algorithms and Data Structures 32

Content of this Lecture

e All-Pairs Shortest Paths

— Transitive closure: Warshall’s algorithm
— Shortest paths: Floyd’s algorithm

e Reachability in Trees

Ulf Leser: Algorithms and Data Structures 33

Gene Ontology — Describing Gene Function

[Gene Ontology]

———"———————————'"‘i-.----~““--

[Molecular Function] [Biological Process]

/ Physiological Process }
[Catalytic Activity]

f

[Transferase Activity]

[Cellular Process] f
[Metabolism]

f [Nucleotide Binding} [Protein Metabolism]
{Cell Communication] T

/

[Signal Transduction]

Kinase Activity

[Protein Modification]

Ulf Leser: Algorithms and Data Structures 34

Database Annotation InterPro

Feset I vieu | [|nterProE i =1
This entry is from: [Glucose-methanol-choline oxidoreductase
IMTEEFRO IPRO0O0OL72; { SMAC_omred) matches 174 proteins
Sawe Glicose-methanol-choline oxidoreductase
Link Farnily
Printer Friendly PROSITE: P200623 Ghss OXRED T

PROSITE: PE00624 SASCT OXRED 2
PFan: PFOOY i

arsport (SO:0006a1 18

electsd

electron transfer flavoigtein (SGOL000824 6%

The glucose-rmethanol-choline (GIIC) oxidoreductase oxidoreductases are FAD flavoproteins
oxidoreductases [1, 5]. These enzymes include a wvariety of proteins, choline dehydrogenase (CHD),
methanol oxidase (WOZD and cellobiose dehydrogenase [EC:1.1.5.1] [d6] which share a munber of

the FAT ATOP- hinding dormain. The function of the other conserved dotnains is not yet known,

= PRIAGET Cholesterol oxidase (CHODY (O firom Brevibacteriam sterolicum and Streptornsrces strain
SA-CO0.

= P13006 Glucose oxidase (O (GO0 from Aspergillus niger.

= 050045 (F-mandelonitrile Iyase (O Chydrozmynitrile Iyase) from plants [PUBO000G524].

= P54235 Choline dehydrogenase (O (CHD) from bacteria

= PI18175 Glucose dehwdrogenase ((GLIDY (O from Drosophila.

<

regions of sequence sitnilarities. One of these regions, located in the M-terrminal section, corresponds to

| B

=Hiee £k L EX] @ | Document: Done (2,794 secs) |

| =

=

e Used by many databases
e Allows cross-database search

e Provides fixed meaning of terms
e As informal textual description, not as formal definitions

Ulf Leser: Algorithms and Data Structures

y
A Large Ontology a % y @
% [%‘ﬂm S\ : "2
T,T,E bran: O Iumen rnonuck cor ulzs; m;;;m o

orga 1 men ml@omr

! il
nrgan m aa
o ralw mnmhﬂrle‘hu.l anelle ™
*J .. maun nucl a’ rmen
S e, Htral:t |:u|

p|1m\&’%nunp I'bpr 1n|1a|:ell T non- mz Duund n(uam!ll

integral to q@ membran utel nacepus %a{ellul ar mipt 5.,;;2; -"' [
organglle mémbrane nueleglus L
chr oﬁinme 1

interceliia} junction

memhranq k com ples

fnem *. N extrac Pu space
c-,mplam vesicle intracellular {nnmhram nd organclie i
I
endoplasmic r eﬁémm membrane | a@le small rl'bu mal i Bnkt
n-tRANSporting m@nnr ATPase mmplex ('ﬂﬂ
vesicle éﬂhlane lnH: menth = unu v!sf{: !5 .«a ,QEE %Mu Eukaryota) |
. AS Of ; ; 2 O 2 1 proton- POt ng P-synthase complex Enlgl SEpprat t?
[]] rugleal efvelope mhc—rha pl Betin ci !Hﬂ" qtqsollc large rl Iﬁ:-‘:b!al subunit

cytoplasmic m e mibra recoat 5H:Ie % ntunuln! skmemn
mitechon embrang \
43 9 1 7 te rl I IS coated vesi@iFrembrane SN @ad vesicle o ondhal e Tgotuhult a'ﬁ'& jated complex

subaunit

[owltsm] ihn;orni bunit {sensu Eukanyota]
mitochondrigal | membrane
AuClen

In three subontologies Sl ”}'m i
e Biological processs
Changes in GO terms between releases
¢ Cellular components
e Molecular functions

3295 obsolete terms

— Source: 150 |

http://geneontology.org/stats.html

.) il
e Depth: >30 st
0»\& qp’\“' o \w qp’\“’ ngS) 19’“% ,15{19' P

B #created [# merged # obsoleted

UIf Leser: Algorithms and Data Structures 36

A \Q“:}

Problem

Homaolog annotations

SsearchGo[] @ terms O genes or proteins [lexact match

Tree Browser

¥ Filter tree view B
Filter by ontology
ontalogy

Filter Gene Product Count:
Data source

Species

Tree view & Full OCompact

"wew Option:

»
biclogical process SAP rabidapsis thaliana

cellular component spGD Bacillus anthraci...

molecular function CGD V| [Bacillus subtilis b

[all @ all [463884 gene products]

Actions.,
B 50:0003674 : molecular_function [380430 gene products] Lhast action: Reset
the tree
B co:0003824 1 catalytic activity [150131 gene products) Graphical View
B G0:0016491 : oxidoreductase activity [29474 gene products] Permla“r;k
Download...
B G0:0016651 : oxidoreductase activity, acting on NADH or NADPH [1876 gene products] oBO
B Go:0016657 : oxidoreductase activity, acting on NADH or MADPH, nitrogenous group as acceptor [73 gene RDF-2ML
Graphviz dot
products]
B B 50:0033729 @ preQl synthase activity [2 gene products]

B c0:0018645 : oxidoreductase activity, acting on the CH-MH group of donors [1104 gene products]
B Go:0016646 : oxidoreductase activity, acting on the CH-MH group of donars, MAD or NADP as acceptor [791 gene products]
B B 50:0033729 @ preQl synthase activity [2 gene products]

AmiGO version: 1,8

Try AMIGO Labs

G0 database relesse 2011-06-11
Gite this data » Terms of use + G0 helpdesk
Copyright @ 1599-2010 th

e To see whether a term X IS_A term Y, we need to check
whether Y lies on the path from root to X

e Reachability problem

UIf Leser: Algorithms and Data Structures

Reachability in Trees

e Let T be a directed tree. A node v is reachable from a node
w iff there is a path from w to v

e Testing reachability requires finding paths
— Which is simple in trees

e Path length is bound by the length of the longest path, i.e.,
the depth of the tree

e This means O(n) in worst-case

o |et's see whether we can preprocess the data to do this in
constant time

Ulf Leser: Algorithms and Data Structures 38

Pre-/Postorder Numbers

e Assume a DFS-traversal

e Build an array assigning each
node two numbers

e Preorder numbers
— Keep a counter pre

— Whenever a node is entered the
first time, assign it the current
value of pre and increment pre

e Postorder numbers

[3,0] [4,1] [7 4] [8 ,5]
— Keep a counter post
— Whenever a node is left the last
time, assign it the current value
of post and increment post Examples from S. Trissl, 2007

Ulf Leser: Algorithms and Data Structures 39

Ancestry and Pre-/Postorder Numbers

e Trick: A node v is reachable from a node w iff
pre(v)>pre(w) A post(v)<post(w)
e Explanation

— v can only be reached from w, if w is “higher” in the tree, i.e.,
v was traversed after w and hence
has a higher preorder number

— v can only be reached from w,
if v is “lower” in the tree, i.e.,
v was left before w and hence
has a lower postorder number

e Analysis: Test is O(1)

[3,0] [4,1] [7 ,4] [8 ,9]

Ulf Leser: Algorithms and Data Structures 40

	Foliennummer 1
	Content of this Lecture
	Recall: DFS
	Recall: Transitive Closure
	Shortest Path Problems
	Why Negative Edge Weights?
	No Dijkstra
	No Dijkstra
	No Dijkstra
	Negative Cycles
	All-Pairs: First Approach
	Example – After z=1, 2, 3, 4
	Naïve Algorithm
	Observation
	Paths in the Naïve Algorithm
	Idea for Improvement
	Algorithm Improved
	Example – After z=1, 2, 3
	Further Improvement
	Warshall’s Algorithm
	Warshall’s Algorithm
	Algorithm
	Example – Warshall’s Algorithm
	Example – After t=A,B,C,D,E
	Little change – Notable Consequences
	Content of this Lecture
	Shortest Paths
	Example 1/3
	Example 2/3
	Example 3/3
	Summary (n=|V|, m=|E|)
	Content of this Lecture
	Gene Ontology – Describing Gene Function
	Database Annotation InterPro
	A Large Ontology
	Problem
	Reachability in Trees
	Pre-/Postorder Numbers
	Ancestry and Pre-/Postorder Numbers

