
Algorithms and Data Structures

Ulf Leser

All Pairs Shortest Paths

Ulf Leser: Algorithms and Data Structures 2

Content of this Lecture

• All-Pairs Shortest Paths
– Transitive closure: Warshall’s algorithm
– Shortest paths: Floyd’s algorithm

• Reachability in Trees

Ulf Leser: Algorithms and Data Structures 3

Recall: DFS

• We put every node exactly once
on the stack
– Once visited, never visited again

• We look at every edge exactly
once
– Outgoing edges of a visited node

are never considered again
• U can be implemented as bit-

array of size |V|, allowing O(1)
operations
– Add, remove, getNextUnseen

• Altogether: O(n+m)

func void traverse (G graph,
v node,
U set) {

t := new Stack();
t.put(v);
U := U \ {v};
while not t.isEmpty() do
n := t.pop();
print n;
c := n.outgoingNodes();
foreach x in c do
if x∈U then
U := U \ {x};
t.push(x);

end if;
end for;

end while;
}

Ulf Leser: Algorithms and Data Structures 4

Recall: Transitive Closure

• Definition
Let G=(V,E) be a digraph and vi,vj∈V. The transitive
closure of G is a graph G’=(V, E’) where (vi,vj)∈E’ iff G
contains a path from vi to vj.

• TC usually is dense and represented as adjacency matrix
• Compact encoding of reachability information

X

D

B

FE

A

G

C

Y

X

D

B

FE

A

G

C

Y

and many more

Ulf Leser: Algorithms and Data Structures 6

Shortest Path Problems

• Dijkstra finds shortest path between a given start node and
all other nodes assuming that all edge weights are positive

• All-pairs shortest paths: Given a digraph G with positive or
negative edge weights, find the (cycle-free) distance
between all pairs of nodes
– We will interpret “find” as “compute the distance matrix”

X

D

B

FE

A

G

C

Y

1

1

- 2
5

-3

2

14

3

2

6
3

3

→ A B C D E F G X Y
A - - - - - - - - -
B -3 - -2 - - - - - -
C - - - - - - - - -
D -2 1 -1 - 3 4 6 7 3
E … … …
F
G
X
Y

Ulf Leser: Algorithms and Data Structures 7

Why Negative Edge Weights?

• One application: Transportation company
– Every route incurs cost (for fuel, salary, etc.)
– Every route creates income (for carrying the freight)

• If cost>income, edge weights become negative
– But still important to find the best route
– Example: Best tour from X to C

X

B

FE

C4

53

24

66

X

B

FE

C1

56

18

13

-

X

B

FE

C3

0-3

1-4

53

=

Cost Incoming Shortest path =
max revenue

Ulf Leser: Algorithms and Data Structures 8

No Dijkstra

• Dijkstra’s algorithm does not work
– Recall that Dijkstra enumerates nodes by their shortest paths
– Now: Adding a subpath to a so-far shortest path may make it

“shorter” (by negative edge weights)

X

1

1
2

5
3

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8
3

X 0
K1 2
K2 2
K3 1
K4 4
K5
K6 5
K7 4
K8

-4

Ulf Leser: Algorithms and Data Structures 9

No Dijkstra

• Dijkstra’s algorithm does not work
– Recall that Dijkstra enumerates nodes by their shortest paths
– Now: Adding a subpath to a so-far shortest path may make it

“shorter” (by negative edge weights)

X

1

1
2

5
3

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8
3

X 0
K1 2
K2 2
K3 1
K4 4
K5
K6 5
K7 4
K8

-4

Ulf Leser: Algorithms and Data Structures 10

No Dijkstra

• Dijkstra’s algorithm does not work
– Recall that Dijkstra enumerates nodes by their shortest paths
– Now: Adding a subpath to a so-far shortest path may make it

“shorter” (by negative edge weights)

X

1

1
2

5
3

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8
3

X 0
K1 2
K2 2
K3 1
K4 4
K5
K6 5
K7 4
K8

-4

Ulf Leser: Algorithms and Data Structures 11

Negative Cycles

• Shortest path
between X and K5?
– X-K3-K4-K5: 5
– X-K3-K4-K5-X-K3-K4-K5: 4
– X-K3-K4-K5-X-K3-K4-K5-X-K3-K4-K5: 3
– …

• SP-Problem undefined if G contains a negative cycle

X

1

1

2

5

3

2

14

3

2

6
3

K1

K2

K3

K4
K5

K7

K6

K8

3

-2

-6

Ulf Leser: Algorithms and Data Structures 12

All-Pairs: First Approach

• We start with a simpler problem: Computing the transitive
closure of a digraph G without edge weights

• First idea
– Reachability is transitive: 𝑥𝑥→

𝑝𝑝1 𝑦𝑦 ∧ y →
𝑝𝑝2 z ⇒ 𝑥𝑥→

𝑝𝑝1 𝑦𝑦 →
𝑝𝑝2 z =x→z

– We may use this idea to iteratively build longer and longer paths
– First extend edges with edges – path of length 2
– Extend paths of length 2 with edges – paths of length 3
– …
– No necessary path can be longer then |V|

• Or it would contain a cycle

• In each step, we store “reachable by a path of length ≤k”
in a matrix

Ulf Leser: Algorithms and Data Structures 13

Example – After z=1, 2, 3, 4

A B C D E

A 1 1 1

B 1 1

C 1 1

D 1 1

E 1 1 1

A

B

C D

E

A B C D E

A 1 1 1 1

B 1 1 1

C 1 1 1

D 1 1 1 1

E 1 1 1 1

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E
A 1 1

B 1

C 1

D 1

E 1

Path length: ≤2 ≤3 ≤4 ≤5

Ulf Leser: Algorithms and Data Structures 14

Naïve Algorithm

• M is the adjacency matrix of G,
M’’ eventually the TC of G

• M’: Represents paths ≤z
• M’’: Represents paths ≤z+1
• Reachability is transitive:

𝑖𝑖 →
𝑝𝑝1 𝑗𝑗 ∧ j →

𝑝𝑝2 k ⇒ 𝑖𝑖 →
𝑝𝑝1 𝑗𝑗 →

𝑝𝑝2 k
• Loops i and j look at all pairs

reachable by a path of length
≤z+1

• Loop k extends path of length
≤z by all outgoing edges

• Obviously O(n4)

G = (V, E);
M := adjacency_matrix(G);
M’’ := M;
n := |V|;
for z := 1..n-1 do
M’ := M’’;
for i = 1..n do
for j = 1..n do
if M’[i,j]=1 then
for k=1 to n do
if M[j,k]=1 then
M’’[i,k] := 1;

end if;
end for;

end if;
end for;

end for;
end for;

z appears nowhere; it is
there to ensure that we
stop when the longest

possible shortest paths has
been found

Ulf Leser: Algorithms and Data Structures 15

Observation

• In the first step, we actually compute MxM, and then
replace each value ≥1 with 1
– We only state that there is a path; not how many and not how long

• Computing TC can be described as matrix operations

A B C D E

A 1 1 1

B 1 1

C 1 1

D 1 1

E 1 1 1

A B C D E
A 1 1

B 1

C 1

D 1

E 1

A B C D E
A 1 1

B 1

C 1

D 1

E 1

x

Ulf Leser: Algorithms and Data Structures 16

Paths in the Naïve Algorithm

• The naive algorithm always extends paths by one edge
– Computes MxM, M2xM, M3xM, … Mn-1xM

A B C D E

A 1 1 1

B 1 1

C 1 1

D 1 1

E 1 1 1

A B C D E

A 1 1 1 1

B 1 1 1

C 1 1 1

D 1 1 1 1

E 1 1 1 1

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E
A 1 1

B 1

C 1

D 1

E 1

Ulf Leser: Algorithms and Data Structures 17

Idea for Improvement

• Why not extend paths by all paths found so-far?
– We compute

M2’=MxM: Path of length ≤2
M3’=M2’xM∪M2’xM2’: Path of length ≤2+1 and ≤2+2
M4’=M3’xM ∪M3’xM2’ ∪M3’xM3’, lengths ≤4+1, ≤4+2, ≤4+3/4
…
Mn’=… ∪ Mn-1’xMn-1’

– [We will implement it differently]
• Trick: We can stop much earlier

– The longest shortest path can have length at most n
– Thus, it suffices to compute Mlog(n)’= … ∪ Mlog(n)’*xMlog(n)’

Ulf Leser: Algorithms and Data Structures 18

Algorithm Improved

• We use only one matrix M
• We “add” to M matrices M2’, M3’ …
• In the extension, we see if a path

of length ≤2z (stored in M) can be
extended by a path of length ≤2z

(stored in M)
– Computes all paths ≤2z+2z=2z+1

• Analysis: O(n3*log(n))
• But … we can be even faster

G = (V, E);
M := adjacency_matrix(G);
n := |V|;
for z := 0..ceil(log(n)) do
for i = 1..n do
for j = 1..n do
if M[i,j]=1 then
for k=1 to n do
if M[j,k]=1 then
M[i,k] := 1;

end if;
end for;

end if;
end for;

end for;
end for;

Ulf Leser: Algorithms and Data Structures 19

Example – After z=1, 2, 3

A B C D E

A 1 1 1

B 1 1

C 1 1

D 1 1

E 1 1 1

A

B

C D

E

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E
A 1 1

B 1

C 1

D 1

E 1

Path length: ≤2 ≤4 Done

Ulf Leser: Algorithms and Data Structures 20

Further Improvement

• Note: Connection A→D is found twice: A→B→D / A→C→D
• Can we stop “searching” A→D once we found A→B→D?
• Can we enumerate paths such that redundant connections

are discovered less often?
– I.e., less connections are tested

A B C D E

A 1 1 1

B 1 1

C 1 1

D 1 1

E 1 1 1

A

B

C D

E

A B C D E
A 1 1

B 1

C 1

D 1

E 1

Ulf Leser: Algorithms and Data Structures 21

Warshall’s Algorithm

• Preparations
– Fix an arbitrary order on nodes and assign each node its rank as ID
– Let Pt be the set of all paths that contain only nodes with ID<t+1

• Applies to inner nodes of a path, not start and end
– t gives the highest allowed node ID inside a path

• Idea: Compute Pt inductively
– We start with P1
– Suppose we know Pt-1
– If we increase t by one, we admit one additional node, i.e., ID t
– Now, every additional path must have the form 𝑖𝑖

𝑝𝑝1∈𝑃𝑃𝑡𝑡−1 𝑡𝑡
𝑝𝑝2∈𝑃𝑃𝑡𝑡−1 𝑘𝑘

• All paths with all IDs <t are already known
• Node t is the only new player, must be in all new paths

– We are done once t=n
• This guarantees correctness – all connections found

Warshall, S. (1962). A theorem on Boolean
matrices. Journal of the ACM 9(1): 11-12.

Ulf Leser: Algorithms and Data Structures 22

Warshall’s Algorithm

• Enumerate paths by the IDs of the nodes they are allowed
to contain

• t gives the highest allowed node ID inside a path

Warshall, S. (1962). A theorem on Boolean
matrices. Journal of the ACM 9(1): 11-12.

i t k

path p1 from from i to t
using nodes with IDs {1, ... t-1}

path p2 from t to k
using nodes with IDs {1, ... t-1}

path p using nodes with IDs {1, ... t}

𝑝𝑝1 ∈ 𝑃𝑃𝑡𝑡−1 𝑝𝑝2 ∈ 𝑃𝑃𝑡𝑡−1

Ulf Leser: Algorithms and Data Structures 23

Algorithm

• Enumerate paths by the
IDs of the nodes they are
allowed to contain

• t gives the highest allowed
node ID inside a path

• Thus, node t must be on
any new path

• We find all pairs i,k with
i→t and t→k

• For every such pair, we set
the path i→k to 1

1. G = (V, E);
2. M := adjacency_matrix(G);
3. n := |V|;
4. for t := 1..n do
5. for i = 1..n do
6. if M[i,t]=1 then
7. for k=1 to n do
8. if M[t,k]=1 then
9. M[i,k] := 1;
10. end if;
11. end for;
12. end if;
13. end for;
14.end for;

Ulf Leser: Algorithms and Data Structures 24

Example – Warshall’s Algorithm

A B C D E
A 1 1

B 1

C 1

D 1

E 1

A B C D E
A 1 1

B 1

C 1

D 1

E 1 1 1

A allowed
Connect
E-A with
A-B, A-C

A

B

C D

E

maxID=t=A

Ulf Leser: Algorithms and Data Structures 25

Example – After t=A,B,C,D,E
A

B

C D

E

A B C D E
A 1 1

B 1

C 1

D 1

E 1 1 1

A B C D E
A 1 1 1

B 1

C 1

D 1

E 1 1 1 1

A B C D E
A 1 1 1

B 1

C 1

D 1

E 1 1 1 1

A B C D E
A 1 1 1 1

B 1 1

C 1 1

D 1

E 1 1 1 1 1

A B C D E
A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

B allowed
Connect
A-B/E-B
with B-D

C allowed
Connect
A-C/E-C
with C-D

No news

D allowed
Connect
A-D, B-D,
C-D,E-D
with D-E

E allowed
Connect
everything
with
everything

t=„A“ t=„B“ t=„C“

Ulf Leser: Algorithms and Data Structures 26

Little change – Notable Consequences

1. G = (V, E);
2. M := adjacency_matrix(G);
3. n := |V|;
4. for t := 1..n do
5. for i = 1..n do
6. if M[i,t]=1 then
7. for k=1 to n do
8. if M[t,k]=1 then
9. M[i,k] := 1;
10. end if;
11. end for;
12. end if;
13. end for;
14.end for;

G = (V, E);
M := adjacency_matrix(G);
n := |V|;
for z := 1..n do
for i = 1..n do
for j = 1..n do
if M[i,j]=1 then
for k=1 to n do
if M[j,k]=1 then
M[i,k] := 1;

end if;
end for;

end if;
end for;

end for;
end for;

Drop z-
Loop

Swap i and
j loop

Rename j
into t

O(n4) O(n3)

Ulf Leser: Algorithms and Data Structures 27

Content of this Lecture

• All-Pairs Shortest Paths
– Transitive closure: Warshall’s algorithm
– Shortest paths: Floyd’s algorithm

• Reachability in Trees

Ulf Leser: Algorithms and Data Structures 28

Shortest Paths

• Shortest paths: We need to compute the distance between
all pairs of reachable nodes

• We use the same idea as Warshall: Enumerate paths using
only nodes with IDs smaller than t inside a path
– Invariant: Before step t, M[i,j] contains the length of the shortest

path that uses no node with ID higher than t
– When increasing t, we find new paths i→t→k and look at their

lengths
– Thus: M[i,k]:=min(M[i,k] ∪ { M[i,t]+M[t,k] | i→t ∧ t→k})

Floyd, R. W. (1963). Algorithm 97: Shortest
Paths. Communications of the ACM 5(6): 345.

Ulf Leser: Algorithms and Data Structures 29

Example 1/3

F

1

1

2
5

3

2

14

6

B

D

A

E
G

C

3

-2

-1

A B C D E F G
A 1 3
B -2
C
D 3 2
E 4 1
F 1 2 5
G 6 -1

A B C D E F G
A 1 3
B -2 -1 1
C
D 3 2
E 4 1
F 1 2 5 2 4
G 6 -1

A B C D E F G
A 1 3
B -2 -1 1
C
D 1 3 2 2 4
E 4 1
F 0 2 5 1 3
G 6 -1

Ulf Leser: Algorithms and Data Structures 30

Example 2/3
A B C D E F G

A 1 3
B -2 -1 1
C
D 1 3 2 2 4
E 4 1
F 0 2 5 1 3
G 6 -1

A B C D E F G
A 1 3
B -2 -1 1
C
D 1 3 2 2 4
E 4 1
F 0 2 5 1 3
G 6 -1

A B C D E F G
A 2 4 3 1 3
B -2 2 1 -1 1
C
D 1 3 2 2 4
E 4 1
F 0 2 3 1 3
G 6 -1

A B C D E F G
A 2 4 3 1 3 7 4
B -2 2 1 -1 1 5 2
C
D 1 3 2 2 4 8 5
E 4 1
F 0 2 3 1 3 7 4
G 6 -1

Ulf Leser: Algorithms and Data Structures 31

Example 3/3
A B C D E F G

A 2 4 3 1 3 7 4
B -2 2 1 -1 1 5 2
C
D 1 3 2 2 4 8 5
E 4 6 7 5 7 4 1
F 0 2 3 1 3 7 4
G -1 1 2 0 2 -1 3

A B C D E F G
A 2 4 3 1 3 3 4
B -2 2 1 -1 1 1 2
C
D 1 3 2 2 4 4 5
E 0 2 3 1 3 0 1
F 0 2 3 1 3 3 4
G -1 1 2 0 2 -1 3

A B C D E F G
A 2 4 3 1 3 7 4
B -2 2 1 -1 1 5 2
C
D 1 3 2 2 4 8 5
E 4 1
F 0 2 3 1 3 7 4
G 6 -1

F

1

1

2
5

3

2

14

6

B

D

A

E
G

C

3

-2

-1

Ulf Leser: Algorithms and Data Structures 32

Summary (n=|V|, m=|E|)

• Warshall‘s algorithm computes the transitive closure of any
unweighted digraph G in O(n3)

• Floyd‘s algorithm computes the distances between any pair
of nodes in a digraph without negative cycles in O(n3)

• Johnson’s alg. solves the problem in O(n2*log(n)+n*m)
– Which is faster for sparse graphs

• Storing both information requires O(n2)
• Problem is easier for …

– Undirected graphs: Connected components
– Graphs with only positive edge weights: All-pairs Dijkstra
– Trees: Test for reachability in O(1) after O(n) preprocessing

Ulf Leser: Algorithms and Data Structures 33

Content of this Lecture

• All-Pairs Shortest Paths
– Transitive closure: Warshall’s algorithm
– Shortest paths: Floyd’s algorithm

• Reachability in Trees

Ulf Leser: Algorithms and Data Structures 34

Gene Ontology – Describing Gene Function

Gene Ontology

Biological ProcessMolecular Function

Cellular Process

Cell Communication

Signal Transduction

Physiological Process

Metabolism

Protein Metabolism

Protein Modification

Binding

Nucleotide Binding

Catalytic Activity

Transferase Activity

Kinase Activity

Ulf Leser: Algorithms and Data Structures 35

Database Annotation InterPro

• Used by many databases
• Allows cross-database search
• Provides fixed meaning of terms

• As informal textual description, not as formal definitions

Ulf Leser: Algorithms and Data Structures 36

A Large Ontology

• As of 7.7.2021
– 43917 terms
– In three subontologies

• Biological processs
• Cellular components
• Molecular functions

– 3295 obsolete terms
– Source:

http://geneontology.org/stats.html

• Depth: >30

Ulf Leser: Algorithms and Data Structures 37

Problem

• To see whether a term X IS_A term Y, we need to check
whether Y lies on the path from root to X

• Reachability problem

Ulf Leser: Algorithms and Data Structures 38

Reachability in Trees

• Let T be a directed tree. A node v is reachable from a node
w iff there is a path from w to v

• Testing reachability requires finding paths
– Which is simple in trees

• Path length is bound by the length of the longest path, i.e.,
the depth of the tree

• This means O(n) in worst-case
• Let’s see whether we can preprocess the data to do this in

constant time

Ulf Leser: Algorithms and Data Structures 39

Pre-/Postorder Numbers

• Assume a DFS-traversal
• Build an array assigning each

node two numbers
• Preorder numbers

– Keep a counter pre
– Whenever a node is entered the

first time, assign it the current
value of pre and increment pre

• Postorder numbers
– Keep a counter post
– Whenever a node is left the last

time, assign it the current value
of post and increment post

A

B D

HE F G

R[0

C

[1

[2

[3 [4,0] ,1]

,2] [5,3]
[6 ,6]

[7 ,4] [8 ,5]

,7]

,8]

Examples from S. Trissl, 2007

Ulf Leser: Algorithms and Data Structures 40

Ancestry and Pre-/Postorder Numbers

• Trick: A node v is reachable from a node w iff
pre(v)>pre(w) ∧ post(v)<post(w)

• Explanation
– v can only be reached from w, if w is “higher” in the tree, i.e.,

v was traversed after w and hence
has a higher preorder number

– v can only be reached from w,
if v is “lower” in the tree, i.e.,
v was left before w and hence
has a lower postorder number

• Analysis: Test is O(1)

A

B D

HE F G

R[0

C

[1

[2

[3 [4,0] ,1]

,2] [5,3]
[6 ,6]

[7 ,4] [8 ,5]

,7]

,8]

	Foliennummer 1
	Content of this Lecture
	Recall: DFS
	Recall: Transitive Closure
	Shortest Path Problems
	Why Negative Edge Weights?
	No Dijkstra
	No Dijkstra
	No Dijkstra
	Negative Cycles
	All-Pairs: First Approach
	Example – After z=1, 2, 3, 4
	Naïve Algorithm
	Observation
	Paths in the Naïve Algorithm
	Idea for Improvement
	Algorithm Improved
	Example – After z=1, 2, 3
	Further Improvement
	Warshall’s Algorithm
	Warshall’s Algorithm
	Algorithm
	Example – Warshall’s Algorithm
	Example – After t=A,B,C,D,E
	Little change – Notable Consequences
	Content of this Lecture
	Shortest Paths
	Example 1/3
	Example 2/3
	Example 3/3
	Summary (n=|V|, m=|E|)
	Content of this Lecture
	Gene Ontology – Describing Gene Function
	Database Annotation InterPro
	A Large Ontology
	Problem
	Reachability in Trees
	Pre-/Postorder Numbers
	Ancestry and Pre-/Postorder Numbers

