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Content of this Lecture

• All-Pairs Shortest Paths
– Transitive closure: Warshall’s algorithm
– Shortest paths: Floyd’s algorithm

• Reachability in Trees
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Recall: DFS

• We put every node exactly once 
on the stack
– Once visited, never visited again

• We look at every edge exactly 
once
– Outgoing edges of a visited node 

are never considered again
• U can be implemented as bit-

array of size |V|, allowing O(1) 
operations
– Add, remove, getNextUnseen

• Altogether: O(n+m)

func void traverse (G graph, 
v node, 
U set) {

t := new Stack();
t.put( v);
U := U \ {v};
while not t.isEmpty() do
n := t.pop();
print n;
c := n.outgoingNodes();
foreach x in c do
if x∈U then
U := U \ {x};
t.push( x);

end if;
end for;

end while;
}
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Recall: Transitive Closure

• Definition
Let G=(V,E) be a digraph and vi,vj∈V. The transitive 
closure of G is a graph G’=(V, E’) where (vi,vj)∈E’ iff G 
contains a path from vi to vj.

• TC usually is dense and represented as adjacency matrix
• Compact encoding of reachability information
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Shortest Path Problems

• Dijkstra finds shortest path between a given start node and 
all other nodes assuming that all edge weights are positive

• All-pairs shortest paths: Given a digraph G with positive or 
negative edge weights, find the (cycle-free) distance 
between all pairs of nodes
– We will interpret “find” as “compute the distance matrix”
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Why Negative Edge Weights?

• One application: Transportation company
– Every route incurs cost (for fuel, salary, etc.)
– Every route creates income (for carrying the freight)

• If cost>income, edge weights become negative
– But still important to find the best route
– Example: Best tour from X to C
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No Dijkstra

• Dijkstra’s algorithm does not work
– Recall that Dijkstra enumerates nodes by their shortest paths
– Now: Adding a subpath to a so-far shortest path may make it 

“shorter” (by negative edge weights)
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No Dijkstra
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Negative Cycles

• Shortest path 
between X and K5?
– X-K3-K4-K5: 5
– X-K3-K4-K5-X-K3-K4-K5: 4
– X-K3-K4-K5-X-K3-K4-K5-X-K3-K4-K5: 3
– …

• SP-Problem undefined if G contains a negative cycle
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All-Pairs: First Approach

• We start with a simpler problem: Computing the transitive 
closure of a digraph G without edge weights

• First idea
– Reachability is transitive: 𝑥𝑥→

𝑝𝑝1 𝑦𝑦 ∧ y →
𝑝𝑝2 z  ⇒ 𝑥𝑥→

𝑝𝑝1 𝑦𝑦 →
𝑝𝑝2 z =x→z

– We may use this idea to iteratively build longer and longer paths
– First extend edges with edges – path of length 2
– Extend paths of length 2 with edges – paths of length 3
– …
– No necessary path can be longer then |V| 

• Or it would contain a cycle

• In each step, we store “reachable by a path of length ≤k” 
in a matrix
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Example – After z=1, 2, 3, 4

A B C D E

A 1 1 1

B 1 1

C 1 1

D 1 1

E 1 1 1

A

B

C D

E

A B C D E

A 1 1 1 1

B 1 1 1

C 1 1 1

D 1 1 1 1

E 1 1 1 1

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E
A 1 1

B 1

C 1

D 1

E 1

Path length: ≤2                   ≤3                 ≤4                   ≤5
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Naïve Algorithm

• M is the adjacency matrix of G, 
M’’ eventually the TC of G

• M’: Represents paths ≤z
• M’’: Represents paths ≤z+1
• Reachability is transitive: 

𝑖𝑖 →
𝑝𝑝1 𝑗𝑗 ∧ j →

𝑝𝑝2 k  ⇒ 𝑖𝑖 →
𝑝𝑝1 𝑗𝑗 →

𝑝𝑝2 k
• Loops i and j look at all pairs 

reachable by a path of length 
≤z+1

• Loop k extends path of length 
≤z by all outgoing edges

• Obviously O(n4)

G = (V, E);
M := adjacency_matrix( G);
M’’ := M;
n := |V|;
for z := 1..n-1 do
M’ := M’’;
for i = 1..n do
for j = 1..n do
if M’[i,j]=1 then
for k=1 to n do
if M[j,k]=1 then
M’’[i,k] := 1;

end if;
end for;

end if;
end for;

end for;
end for;

z appears nowhere; it is 
there to ensure that we 
stop when the longest 

possible shortest paths has 
been found
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Observation

• In the first step, we actually compute MxM, and then 
replace each value ≥1 with 1 
– We only state that there is a path; not how many and not how long

• Computing TC can be described as matrix operations
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Paths in the Naïve Algorithm

• The naive algorithm always extends paths by one edge
– Computes MxM, M2xM, M3xM, … Mn-1xM
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A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E
A 1 1

B 1

C 1
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Idea for Improvement

• Why not extend paths by all paths found so-far?
– We compute 

M2’=MxM: Path of length ≤2
M3’=M2’xM∪M2’xM2’: Path of length ≤2+1 and ≤2+2
M4’=M3’xM ∪M3’xM2’ ∪M3’xM3’, lengths ≤4+1, ≤4+2, ≤4+3/4
… 
Mn’=… ∪ Mn-1’xMn-1’

– [We will implement it differently]
• Trick: We can stop much earlier

– The longest shortest path can have length at most n
– Thus, it suffices to compute Mlog(n)’= … ∪ Mlog(n)’*xMlog(n)’
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Algorithm Improved

• We use only one matrix M
• We “add” to M matrices M2’, M3’ … 
• In the extension, we see if a path 

of length ≤2z (stored in M) can be 
extended by a path of length ≤2z

(stored in M)
– Computes all paths ≤2z+2z=2z+1

• Analysis: O(n3*log(n))
• But … we can be even faster 

G = (V, E);
M := adjacency_matrix( G);
n := |V|;
for z := 0..ceil(log(n)) do
for i = 1..n do
for j = 1..n do
if M[i,j]=1 then
for k=1 to n do
if M[j,k]=1 then
M[i,k] := 1;

end if;
end for;

end if;
end for;

end for;
end for;
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Example – After z=1, 2, 3

A B C D E

A 1 1 1

B 1 1

C 1 1

D 1 1

E 1 1 1

A

B

C D

E

A B C D E

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

A B C D E
A 1 1

B 1

C 1

D 1

E 1

Path length: ≤2                   ≤4                 Done



Ulf Leser: Algorithms and Data Structures 20

Further Improvement

• Note: Connection A→D is found twice: A→B→D / A→C→D
• Can we stop “searching” A→D once we found A→B→D?
• Can we enumerate paths such that redundant connections 

are discovered less often? 
– I.e., less connections are tested
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Warshall’s Algorithm

• Preparations
– Fix an arbitrary order on nodes and assign each node its rank as ID
– Let Pt be the set of all paths that contain only nodes with ID<t+1

• Applies to inner nodes of a path, not start and end
– t gives the highest allowed node ID inside a path

• Idea: Compute Pt inductively
– We start with P1
– Suppose we know Pt-1
– If we increase t by one, we admit one additional node, i.e., ID t
– Now, every additional path must have the form 𝑖𝑖

𝑝𝑝1∈𝑃𝑃𝑡𝑡−1 𝑡𝑡
𝑝𝑝2∈𝑃𝑃𝑡𝑡−1 𝑘𝑘

• All paths with all IDs <t are already known
• Node t is the only new player, must be in all new paths

– We are done once t=n
• This guarantees correctness – all connections found

Warshall, S. (1962). A theorem on Boolean 
matrices. Journal of the ACM 9(1): 11-12.



Ulf Leser: Algorithms and Data Structures 22

Warshall’s Algorithm

• Enumerate paths by the IDs of the nodes they are allowed 
to contain

• t gives the highest allowed node ID inside a path

Warshall, S. (1962). A theorem on Boolean 
matrices. Journal of the ACM 9(1): 11-12.

i t k

path p1 from from i to t
using nodes with IDs {1, ... t-1}

path p2 from t to k
using nodes with IDs {1, ... t-1}

path p using nodes with IDs {1, ... t}

𝑝𝑝1 ∈ 𝑃𝑃𝑡𝑡−1 𝑝𝑝2 ∈ 𝑃𝑃𝑡𝑡−1
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Algorithm

• Enumerate paths by the 
IDs of the nodes they are 
allowed to contain

• t gives the highest allowed 
node ID inside a path

• Thus, node t must be on 
any new path

• We find all pairs i,k with 
i→t and t→k

• For every such pair, we set 
the path i→k to 1

1. G = (V, E);
2. M := adjacency_matrix( G);
3. n := |V|;
4. for t := 1..n do
5. for i = 1..n do
6. if M[i,t]=1 then
7. for k=1 to n do
8. if M[t,k]=1 then
9. M[i,k] := 1;
10. end if;
11. end for;
12. end if;
13. end for;
14.end for;
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Example – Warshall’s Algorithm

A B C D E
A 1 1

B 1

C 1

D 1

E 1

A B C D E
A 1 1

B 1

C 1

D 1

E 1 1 1

A allowed
Connect 
E-A with 
A-B, A-C

A

B

C D

E

maxID=t=A
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Example – After t=A,B,C,D,E
A

B

C D

E

A B C D E
A 1 1

B 1

C 1

D 1

E 1 1 1

A B C D E
A 1 1 1

B 1

C 1

D 1

E 1 1 1 1

A B C D E
A 1 1 1

B 1

C 1

D 1

E 1 1 1 1

A B C D E
A 1 1 1 1

B 1 1

C 1 1

D 1

E 1 1 1 1 1

A B C D E
A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 1 1 1 1 1

B allowed
Connect 
A-B/E-B 
with B-D

C allowed
Connect 
A-C/E-C 
with C-D

No news

D allowed
Connect 
A-D, B-D, 
C-D,E-D 
with D-E

E allowed
Connect 
everything 
with 
everything

t=„A“ t=„B“ t=„C“
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Little change – Notable Consequences 

1. G = (V, E);
2. M := adjacency_matrix( G);
3. n := |V|;
4. for t := 1..n do
5. for i = 1..n do
6. if M[i,t]=1 then
7. for k=1 to n do
8. if M[t,k]=1 then
9. M[i,k] := 1;
10. end if;
11. end for;
12. end if;
13. end for;
14.end for;

G = (V, E);
M := adjacency_matrix( G);
n := |V|;
for z := 1..n do
for i = 1..n do
for j = 1..n do
if M[i,j]=1 then
for k=1 to n do
if M[j,k]=1 then
M[i,k] := 1;

end if;
end for;

end if;
end for;

end for;
end for;

Drop z-
Loop

Swap i and 
j loop

Rename j 
into t

O(n4) O(n3)
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Content of this Lecture

• All-Pairs Shortest Paths
– Transitive closure: Warshall’s algorithm
– Shortest paths: Floyd’s algorithm

• Reachability in Trees
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Shortest Paths

• Shortest paths: We need to compute the distance between 
all pairs of reachable nodes

• We use the same idea as Warshall: Enumerate paths using 
only nodes with IDs smaller than t inside a path
– Invariant: Before step t, M[i,j] contains the length of the shortest 

path that uses no node with ID higher than t
– When increasing t, we find new paths i→t→k and look at their 

lengths
– Thus: M[i,k]:=min( M[i,k] ∪ { M[i,t]+M[t,k] | i→t ∧ t→k} )

Floyd, R. W. (1963). Algorithm 97: Shortest 
Paths. Communications of the ACM 5(6): 345.
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Example 1/3

F

1

1

2
5

3

2

14

6

B

D

A

E
G

C

3

-2

-1

A B C D E F G
A 1 3
B -2
C
D 3 2
E 4 1
F 1 2 5
G 6 -1

A B C D E F G
A 1 3
B -2 -1 1
C
D 3 2
E 4 1
F 1 2 5 2 4
G 6 -1

A B C D E F G
A 1 3
B -2 -1 1
C
D 1 3 2 2 4
E 4 1
F 0 2 5 1 3
G 6 -1
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Example 2/3
A B C D E F G

A 1 3
B -2 -1 1
C
D 1 3 2 2 4
E 4 1
F 0 2 5 1 3
G 6 -1

A B C D E F G
A 1 3
B -2 -1 1
C
D 1 3 2 2 4
E 4 1
F 0 2 5 1 3
G 6 -1

A B C D E F G
A 2 4 3 1 3
B -2 2 1 -1 1
C
D 1 3 2 2 4
E 4 1
F 0 2 3 1 3
G 6 -1

A B C D E F G
A 2 4 3 1 3 7 4
B -2 2 1 -1 1 5 2
C
D 1 3 2 2 4 8 5
E 4 1
F 0 2 3 1 3 7 4
G 6 -1
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Example 3/3
A B C D E F G

A 2 4 3 1 3 7 4
B -2 2 1 -1 1 5 2
C
D 1 3 2 2 4 8 5
E 4 6 7 5 7 4 1
F 0 2 3 1 3 7 4
G -1 1 2 0 2 -1 3

A B C D E F G
A 2 4 3 1 3 3 4
B -2 2 1 -1 1 1 2
C
D 1 3 2 2 4 4 5
E 0 2 3 1 3 0 1
F 0 2 3 1 3 3 4
G -1 1 2 0 2 -1 3

A B C D E F G
A 2 4 3 1 3 7 4
B -2 2 1 -1 1 5 2
C
D 1 3 2 2 4 8 5
E 4 1
F 0 2 3 1 3 7 4
G 6 -1

F

1

1

2
5

3

2

14

6

B

D

A

E
G

C

3

-2

-1
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Summary (n=|V|, m=|E|)

• Warshall‘s algorithm computes the transitive closure of any 
unweighted digraph G in O(n3)

• Floyd‘s algorithm computes the distances between any pair 
of nodes in a digraph without negative cycles in O(n3)

• Johnson’s alg. solves the problem in O(n2*log(n)+n*m)
– Which is faster for sparse graphs

• Storing both information requires O(n2)
• Problem is easier for …

– Undirected graphs: Connected components
– Graphs with only positive edge weights: All-pairs Dijkstra
– Trees: Test for reachability in O(1) after O(n) preprocessing
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Content of this Lecture

• All-Pairs Shortest Paths
– Transitive closure: Warshall’s algorithm
– Shortest paths: Floyd’s algorithm

• Reachability in Trees
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Gene Ontology – Describing Gene Function

Gene Ontology

Biological ProcessMolecular Function

Cellular Process

Cell Communication

Signal Transduction

Physiological Process

Metabolism

Protein Metabolism

Protein Modification

Binding

Nucleotide Binding

Catalytic Activity

Transferase Activity

Kinase Activity
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Database Annotation InterPro

• Used by many databases
• Allows cross-database search
• Provides fixed meaning of terms

• As informal textual description, not as formal definitions
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A Large Ontology

• As of 7.7.2021
– 43917 terms
– In three subontologies

• Biological processs
• Cellular components
• Molecular functions

– 3295 obsolete terms
– Source: 

http://geneontology.org/stats.html

• Depth: >30
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Problem

• To see whether a term X IS_A term Y, we need to check 
whether Y lies on the path from root to X

• Reachability problem
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Reachability in Trees

• Let T be a directed tree. A node v is reachable from a node 
w iff there is a path from w to v

• Testing reachability requires finding paths
– Which is simple in trees

• Path length is bound by the length of the longest path, i.e., 
the depth of the tree

• This means O(n) in worst-case
• Let’s see whether we can preprocess the data to do this in 

constant time
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Pre-/Postorder Numbers

• Assume a DFS-traversal
• Build an array assigning each 

node two numbers
• Preorder numbers

– Keep a counter pre
– Whenever a node is entered the 

first time, assign it the current 
value of pre and increment pre

• Postorder numbers
– Keep a counter post
– Whenever a node is left the last 

time, assign it the current value 
of post and increment post

A

B D

HE F G

R[0

C

[1

[2

[3 [4,0] ,1]

,2] [5,3]
[6 ,6]

[7 ,4] [8 ,5]

,7]

,8]

Examples from S. Trissl, 2007
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Ancestry and Pre-/Postorder Numbers

• Trick: A node v is reachable from a node w iff
pre(v)>pre(w) ∧ post(v)<post(w)

• Explanation
– v can only be reached from w, if w is “higher” in the tree, i.e., 

v was traversed after w and hence 
has a higher preorder number

– v can only be reached from w, 
if v is “lower” in the tree, i.e., 
v was left before w and hence 
has a lower postorder number

• Analysis: Test is O(1)

A

B D

HE F G

R[0

C

[1

[2

[3 [4,0] ,1]

,2] [5,3]
[6 ,6]

[7 ,4] [8 ,5]

,7]

,8]
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