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Content of this Lecture 

 
 
 

• Information Retrieval Models 
– Boolean Model 
– Vector Space Model 

• Inverted Files 
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Information Retrieval Core 

• The core question in IR:  
Which of a given set of (normalized) documents is relevant 
for a given query? 

• Ranking: How relevant for a given query is each 
document? 

Query Normalization 

Normalization Document base 

Match /  
Relevance  

Scoring 
Result 
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How can Relevance be Judged? 

Non-Overlapping Lists 
Proximal Nodes 

   Structured Models 

 Retrieval:  
     Adhoc 
     Filtering 

 Browsing 
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 k 

 Classic Models 

 Boolean 
 Vector-Space 
 Probabilistic 

 Set Theoretic 

 Fuzzy 
 Extended Boolean 

 Probabilistic 

 Inference Network  
 Belief Network 

 Algebraic 

 Generalized Vector 
 Lat. Semantic Index 
 Neural Networks 

  Browsing 

 Flat 
 Structure Guided 
 Hypertext [BYRN99] 
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Notation 

• All of the models we discuss use the “Bag of Words” view 
• Definition 

– Let D be the set of all normalized documents, d∈D is a document 
– Let K be the set of all terms in D, ki∈K is a term 

• Can as well be tokens 
– Let w be the function that maps a given d to its set of distinct 

terms in K (its bag-of-words) 
– Let vd by a vector of size |K| for d (or a query q) with 

• vd[i]=0 iff  ki ∉ w(d) 
• vd[i]=1 iff  ki ∈ w(d) 

– Often, we use weights instead of a Boolean membership function 
• Let wij≥0 be the weight of term ki in document dj (wij=vj[i])  

• wij=0 if ki∉dj 
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Boolean Model 

 
• Simple model based on set theory 
• Queries are specified as Boolean expressions over terms 

– Terms connected by AND, OR, NOT, (XOR, ...) 
– Parenthesis are possible (but ignored here) 

• Relevance of a document is either 0 or 1 
– Let q contain the atoms (terms) <k1, k2, …> 
– An atom ki evaluates to true for a document d iff vd[ki]=1 
– Compute truth values of all atoms for each d 
– Compute truth of q for d as logical expression over atom values 
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Properties 

• Simple, clear semantics, widely used in (early) systems 
• Disadvantages 

– No partial matching 
• Suppose query k1∧k2∧… ∧k9 
• A doc d with k1∧k2…k8 is as irrelevant as one with none of the terms 

– No ranking 
– Terms cannot be weighted  

• But some are more important than others 

– Lay users don’t understand Boolean expressions 

• Results: Often unsatisfactory 
– Too many documents (too few restrictions, many OR)  
– Too few documents (too many restrictions, many AND) 
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A Note on Implementation   

 
• One should not iterate over D, but use a term index 

– Assume we have an index with fast operation find: K→ΡD 

– Search each atom ki of the query, resulting in a set Di⊆D 
– Evaluate query in given order of atoms using set operations on Di’s 

• ki ∧ kj  : Di ∩ Dj 
• ki ∨ kj : Di ∪ Dj 
• NOT ki: D\Di   

• Improvements: Cost-based evaluation 
– Evaluate sub-expressions first that result in smaller intermediate 

results 
– Less memory requirements, faster intersections, … 
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Content of this Lecture 

 
 
 

• Information Retrieval Models 
– Boolean Model 
– Vector Space Model 

• Inverted Files 
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Vector Space Model 

• Salton, G., Wong, A. and Yang, C. S. (1975). "A Vector 
Space Model for Automatic Indexing." Communications of 
the ACM 18(11): 613-620. 
– A breakthrough in IR 
– Still most popular model today 

• General idea 
– Fix vocabulary K (the dictionary) 
– View each doc (and the query) as point in a |K|-dimensional space 
– Rank docs according to distance from the query in that space 

• Main advantages 
– Inherent ranking (according to distance) 
– Naturally supports partial matching (increases distance) 
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Vector Space 

• Each term is one dimension 
– Different suggestions for 

determining co-ordinates, i.e., 
term weights 

• The closest docs are the 
most relevant ones 
– Rationale: Vectors correspond 

to themes which are loosely 
related to sets of terms 

– Distance between vectors ~ 
distance between themes 

– Different suggestions for 
defining distance 

Star 

Diet 

Astronomy Movie stars 

Mammals 



Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016                              12 

The Angle between Two Vectors 

• Recall: The scalar product between two vectors v and w of 
equal dimension is defined as 

 
 
 

• This gives us the angle 
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Distance as Angle  

Distance = cosine of the angle between doc d and query q 
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Example 

Text verkauf haus italien gart miet blüh woll 

1 Wir verkaufen Häuser in 
Italien 

1 1 1 

2 Häuser mit Gärten zu 
vermieten 

1 1 1 

3 Häuser: In Italien, um 
Italien, um Italien herum 

1 1 

4 Die italienschen Gärtner 
sind im Garten 

1 1 

5 Der Garten in unserem 
italienschen Haus blüht 

1 1 1 1 

Q Wir wollen ein Haus mit 
Garten in Italien mieten 

1 1 1 1 1 

• Assume stop word removal, stemming, and binary weights 
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Ranking 

• sim(d1,q) = (1*0+1*1+1*1+0*1+0*1+0*0+0*1) / √3  ~ 1.15 
• sim(d2,q) = (1+1+1) / √3      ~ 1.73 
• sim(d3,q) = (1+1)  / √2      ~ 1.41 
• sim(d4,q) = (1+1)  / √2      ~ 1.41 
• sim(d5,q) = (1+1+1)  / √4      ~ 1.5 

1 1 1 1 

2 1 1 1 

3 1 1 

4 1 1 

5 1 1 1 1 

Q 1 1 1 1 1 

Rg Q: Wir wollen ein Haus mit Garten in Italien mieten 

1 d2: Häuser mit Gärten zu vermieten 

2 d5: Der Garten in unserem italienschen Haus blüht 

3 
d4: Die italienschen Gärtner sind im Garten 

d3: Häuser: In Italien, um Italien, um Italien herum 

5 d1: Wir verkaufen Häuser in Italien 
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Introducing Term Weights 

 
• Definition 

Let D be a document collection, K be the set of all terms in D, 
d∈D and k∈K 
– The term frequency tfdk is the frequency of k in d 
– The document frequency dfk is the frequency of docs in D containing k 

• This should rather be called “corpus frequency” 
• May also be defined as the frequency of occurrences of k in D 
• Both definitions are valid and both are used 

– The inverse document frequency is defined as idfk = |D| / dfk 
• In practice, one usually uses idfk = log(|D| / dfk) 
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Ranking with TF scoring 

• sim(d1,q) = (1*0+1*1+1*1+0*1+0*1+0*0+0*1) / √3  ~ 1.15 
• sim(d2,q) = (1+1+1) / √3      ~ 1.73 
• sim(d3,q) = (1+3)  / √10      ~ 1.26 
• sim(d4,q) = (1+2)  / √5      ~ 1.34 
• sim(d5,q) = (1+1+1)  / √4      ~ 1.5 

1 1 1 1 

2 1 1 1 

3 1 3 

4 1 2 

5 1 1 1 1 

Q 1 1 1 1 1 

Rg Q: Wir wollen ein Haus mit Garten in Italien mieten 

1 d2: Häuser mit Gärten zu vermieten 

2 d5: Der Garten in unserem italienschen Haus blüht 

3 d4: Die italienschen Gärtner sind im Garten 

4 d3: Häuser: In Italien, um Italien, um Italien herum 

5 d1: Wir verkaufen Häuser in Italien 
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Alternative Scoring: TF*IDF 

• 1st problem: The longer a doc, the higher the probability of 
matching query terms by pure chance (it has more terms) 
– Solution: Normalize TF values on document length (yields 0≤wdk≤1) 

 
 

 
– Note: Longer docs also get down-ranked by normalization on doc-

length in similarity function. Use only one measure!  

• 2nd problem: Some terms are everywhere in D, don’t help 
to discriminate, and should be scored less 
– Solution: Also use IDF scores 
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TF*IDF in Short 

 
• Give terms in a doc d high weights which are … 

– frequent in d and 
– infrequent in D 

• IDF deals with the consequences of Zipf’s law 
– The few very frequent (and unspecific) terms get lower scores 
– The many infrequent (and specific) terms get higher scores 

• Interferes with stop word removal 
– If stop words are removed, IDF might not be necessary any more  
– If IDF is used, stop word removal might not be necessary any more  
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Shortcomings 

• No treatment of synonyms (query expansion, …) 
• No treatment of homonyms 

– Different senses = different dimensions 
– We would need to disambiguate terms into their senses (later) 

• Term-order independent 
– But order carries semantic meaning 

• Assumes that all terms are independent  
– Clearly wrong: some terms are semantically closer than others 

• Their co-appearance doesn’t mean more than only one appearance 
• The appearance of “red” in a doc with “wine” doesn’t mean much 

– Extension: Topic-based Vector Space Model  
• Latent Semantic Indexing (see IR lecture) 
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Content of this Lecture 

 
 
 

• Information Retrieval Models 
– Boolean Model 
– Vector Space Model 

• Inverted Files 
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Full-Text Indexing 

 
• Fundamental operation for all IR models: find( k, D) 

– Given a query term k, find all docs from D containing it 

• Can be implemented using online search 
– Boyer-Moore, Keyword-Trees, etc. 

• But 
– We generally assume that D is stable (compared to k) 
– We only search for discrete terms (after tokenization) 
– |K| does not grow much with growing D after a swing-in phase 

• Consequence: Better to pre-compute a term index over D 
– Also called “full-text index” 
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Inverted Files (or Inverted Index) 

• Simple and effective index structure for terms 
• Builds on the Bag of words approach 

– We give up the order of terms in docs (see positional index later) 
– We cannot reconstruct docs based on index only 

• Start from “docs containing terms” (~ “docs”) and invert to 
“terms appearing in docs” (~ “inverted docs”) 

t1: d1,d2,d4,d5,d6 
t2: d3,d5,d6,d7,d8 
t3: d1,d3,d5 

d1: t1,t3 
d2: t1 
d3: t2,t3 
d4: t1 
d5: t1,t2,t3 
d6: t1,t2 
d7: t2 
d8: t2 
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Building an Inverted File [Andreas Nürnberger, IR-2007]  

Doc1: 
Now is the time 
for all good men 
to come to the aid 
of their country. 

Doc2: 
It was a dark and 
stormy night in  
the country  
manor. The time  
was past midnight. 

Term Doc ID
now 1
is 1
the 1
time 1
for 1
all 1
good 1
men 1
to 1
come 1
to 1
the 1
aid 1
of 1
their 1
country 1
it 2
was 2
a 2
dark 2
and 2
stormy 2
night 2
in 2
the 2
country 2
manor 2
the 2
time 2
was 2
past 2
midnight 2

Term Doc ID
a 2
aid 1
all 1
and 2
come 1
country 1
country 2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1
the 1
the 2
the 2
their 1
time 1
time 2
to 1
to 1
was 2
was 2

a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 2
was 2

Sort Merge 
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Boolean Retrieval 

• For each query term ki, look-up doc-list Di containing ki 

• Evaluate query in the usual order 
– ki ∧ kj  : Di ∩ Dj 
– ki ∨ kj : Di ∪ Dj 
– NOT ki: D\Di  

• Example 
 
(time AND past AND the) OR (men) 
= (Dtime ∩ Dpast ∩ Dthe) ∪ Dmen 
= ({1,2} ∩ {2} ∩ {1,2}) ∪ {1} 
= {1,2} 
 

a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 2
was 2
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Necessary and Obvious Tricks 

 
• How do we efficiently look-up doc-list Di? 

– Bin-search on inverted file: O( log(|K|) ) 
– Inefficient: Random access on IO 
– Better solutions: Later 

• How do we support union and intersection efficiently? 
– Naïve algorithm requires O(|Di|*|Dj|) 
– Better: Keep doc-lists sorted 
– Intersection Di∩Dj : Sort-Merge in O(|Di| + |Dj|) 
– Union Di∪Dj : Sort-Merge in O(|Di| + |Dj|) 
– If |Di| << |Dj|, use binsearch in Dj for all terms in Di  

• Whenever |Di| + |Dj| > |Di|*log(|Dj|) 
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Adding Frequency 

• VSM with TF*IDF requires term frequencies 
• Split up inverted file into dictionary and posting list 

Dictionary            Postings Term docIDs DF
a 2 1
aid 1 1
all 1 1
and 2 1
come 1 1
country 1,2 2
dark 2 1
… … …
of 1 1
past 2 1
stormy 2 1
the 1,2 2
their 1 1
time 1,2 2
to 1 1
was 2 1

Term DF
a 1
aid 1
all 1
and 1
come 1
country 2
dark 1
… …
of 1
past 1
stormy 1
the 2
their 1
time 2
to 1
was 1

Posting
(2,1)
(1,1)
(1,1)
(2,1)
(1,1)

(1,1), (2,1)
(2,1)
…

(1,1)
(2,1)
(2,1)

(1,2), (2,1)
(1,1)

(1,1), (2,1)
(1,2)
(2,2)
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Searching in VSM 

 
• Assume we want to retrieve the top-r docs 
• Algorithm 

– Initialize an empty doc-list S (as hash table or priority queue) 
– Iterate through query terms ki 

• Walk through posting list (elements (docID, TF)) 
– If docID∈S: S[docID] =+ IDF[ki]*TF 
– else: S = S.append( (docID, IDF[ki]*TF)) 

• Length-normalize value and compute cosine 

– Return top-r docs in S 

• S contains all and only those docs containing at least one ki 
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Space Usage 

• Size of dictionary: O(|K|) 
– Zipf’s law: From a certain corpus size on, new terms appear only 

very infrequently  
• But there are always new terms, no matter how large D 
• Example: 1GB text (TREC-2) generates only 5MB dictionary 

– Typically: <1 Million 
• Many more in multi-lingual corpora, web corpora, etc. 

• Size of posting list 
– Theoretic worst case: O(|K|*|D|) 
– Practical: O( avg(|di|) * |D|) 

• Implementation 
– Dictionary kept in main memory 
– Posting lists remains on disk 
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Dictionary as Array 

 
• Dictionary as array (keyword, DF, ptr) 
• Since keywords have different lengths: 

Implementation will be (ptr1, DF, ptr2) 
– ptr1: To string (the keyword) 
– ptr2: To posting list 

• Search: Compute log(|K|) memory 
addresses, follow ptr1, compare strings: 
O(log(|K|)*|k|) 

• Construction: Essentially for free 

Term DF
a 1 ptr
aid 1 ptr
all 1 ptr
and 1 ptr
come 1 ptr
country 2 ptr
dark 1 ptr
for 1 ptr
good 1 ptr
in 1 ptr
is 1 ptr
it 1 ptr
manor 1 ptr
men 1 ptr
midnight 1 ptr
night 1 ptr
now 1 ptr
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Prefix Tree (or  Information ReTRIEval) 

c 

a 

dark 

all and 

come 

… 

Posting file 

country 

aid 

a d o 
m 

e 
u 

n 

y 

Term IDF
a 1
aid 1
all 1
and 1
come 1
country 2
dark 1
for 1
good 1
in 1
is 1
it 1
manor 1
men 1
midnight 1
night 1
now 1
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Storing the Posting File 

• Posting file is usually kept on disk 
• Thus, we need an IO-optimized data structure 
• Static 

– Store posting lists one after the other in large file 
– Posting-ptr is (large) offset in this file 

• Prepare for inserts 
– Reserve additional space per posting  

• Good idea: Large initial posting lists get large extra space 
• Many inserts can be handled internally 

– Upon overflow, append entire posting list at the end of the file 
• Place pointer at old position – at most two access per posting list 

– Can lead to many holes – requires regular reorganization  
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Doc2: 
It was a dark and 
stormy night in  
the country  
manor. The time  
was past midnight. 

Positional Information 

• What if we search for phrases: “Bill Clinton”, “Ulf Leser” 
– ~10% of web searches are phrase queries 

• What if we search by proximity “car AND rent/5” 
– “We rent cars”, “cars for rent”, “special care rent”, “if you want to 

rent a car, click here”, “Cars and motorcycles for rent”, … 

• We need positional information 

Doc1: 
Now is the time 
for all good men 
to come to the aid 
of their country. 

night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 1,2
was 1,2

Doc # TF Pos
2 1 6
1 1 1
1 1 14
2 1 15
1 1 6
1 2 3
1 2 12
2 2 9
2 2 12
1 1 15
1 1 4
2 1 13
1 2 9
1 2 11
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Answering Phrase Queries 

 
 
 

• Search posting lists of all query terms 
• During intersection, also positions must fit 
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Effects  

 
 

• Dictionary is not affected 
• Posting lists get much larger 

– Store many <<docID, pos>,TF> instead of few <docID,TF> 
– Index with positional information typically 30-50% larger than the 

corpus itself 
– Especially frequent words require excessive storage 

• Use compression 
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Self Assessment 

• Explain the vector space model 
• How is the size of K (vocabulary) influenced by pre-

processing? 
• Describe some variations of deducing term weights 
• How could we extend the VSM to also consider the order of 

terms (to a certain degree)? 
• Explain idea and structure of inverted files? 
• What are possible data structures for the dictionary? 

Advantages / disadvantages? 
• What decisions influence the size of posting lists? 
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