

Maschinelle Sprachverarbeitung

Retrieval Models and Implementation

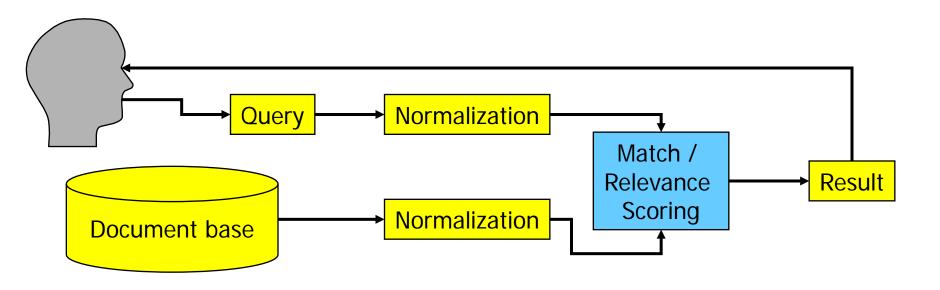
Ulf Leser

Content of this Lecture

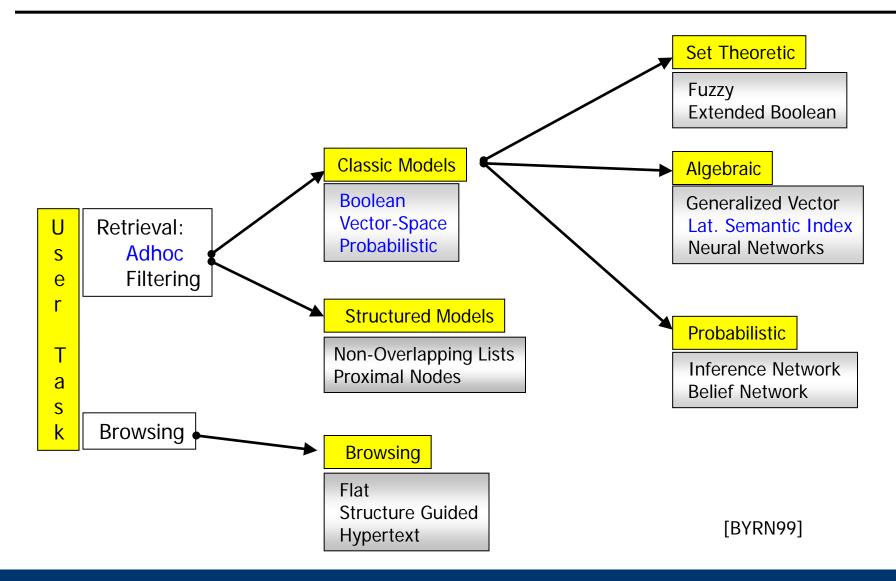
- Information Retrieval Models
 - Boolean Model
 - Vector Space Model
- Inverted Files

Information Retrieval Core

- The core question in IR:
 Which of a given set of (normalized) documents is relevant for a given query?
- Ranking: How relevant for a given query is each document?



How can Relevance be Judged?



Notation

- All of the models we discuss use the "Bag of Words" view
- Definition
 - Let D be the set of all normalized documents, $d \in D$ is a document
 - Let K be the set of all terms in D, $k_i \in K$ is a term
 - Can as well be tokens
 - Let w be the function that maps a given d to its set of distinct terms in K (its bag-of-words)
 - Let v_d by a vector of size |K| for d (or a query q) with
 - $V_d[i]=0$ iff $k_i \notin W(d)$
 - $V_d[i]=1$ iff $k_i \in W(d)$
 - Often, we use weights instead of a Boolean membership function
 - Let $w_{ij} \ge 0$ be the weight of term k_i in document d_i ($w_{ij} = v_j[i]$)
 - $W_{ij}=0$ if $k_i \notin d_i$

Boolean Model

- Simple model based on set theory
- Queries are specified as Boolean expressions over terms
 - Terms connected by AND, OR, NOT, (XOR, ...)
 - Parenthesis are possible (but ignored here)
- Relevance of a document is either 0 or 1
 - Let q contain the atoms (terms) $< k_1, k_2, ...>$
 - An atom k_i evaluates to true for a document d iff $v_d[k_i]=1$
 - Compute truth values of all atoms for each d
 - Compute truth of q for d as logical expression over atom values

Properties

- Simple, clear semantics, widely used in (early) systems
- Disadvantages
 - No partial matching
 - Suppose query k₁ \(k₂ \)... \(\lambda k₉ \)
 - A doc d with $k_1 \wedge k_2 \dots k_8$ is as irrelevant as one with none of the terms
 - No ranking
 - Terms cannot be weighted
 - But some are more important than others
 - Lay users don't understand Boolean expressions
- Results: Often unsatisfactory
 - Too many documents (too few restrictions, many OR)
 - Too few documents (too many restrictions, many AND)

A Note on Implementation

- One should not iterate over D, but use a term index
 - Assume we have an index with fast operation find: $K \rightarrow P^D$
 - Search each atom k_i of the query, resulting in a set D_i⊆D
 - Evaluate query in given order of atoms using set operations on D_i's
 - $k_i \wedge k_j$: $D_i \cap D_j$
 - $k_i \vee k_j$: $D_i \cup D_j$
 - NOT k_i: D\D_i
- Improvements: Cost-based evaluation
 - Evaluate sub-expressions first that result in smaller intermediate results
 - Less memory requirements, faster intersections, ...

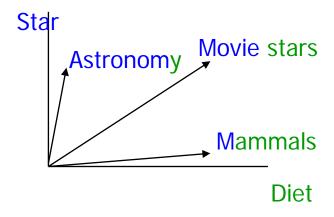
Content of this Lecture

- Information Retrieval Models
 - Boolean Model
 - Vector Space Model
- Inverted Files

Vector Space Model

- Salton, G., Wong, A. and Yang, C. S. (1975). "A Vector Space Model for Automatic Indexing." *Communications of the ACM* **18**(11): 613-620.
 - A breakthrough in IR
 - Still most popular model today
- General idea
 - Fix vocabulary K (the dictionary)
 - View each doc (and the query) as point in a |K|-dimensional space
 - Rank docs according to distance from the query in that space
- Main advantages
 - Inherent ranking (according to distance)
 - Naturally supports partial matching (increases distance)

Vector Space



- Each term is one dimension
 - Different suggestions for determining co-ordinates, i.e., term weights
- The closest docs are the most relevant ones
 - Rationale: Vectors correspond to themes which are loosely related to sets of terms
 - Distance between vectors ~
 distance between themes
 - Different suggestions for defining distance

The Angle between Two Vectors

 Recall: The scalar product between two vectors v and w of equal dimension is defined as

$$v \circ w = |v| * |w| * \cos(v, w)$$

This gives us the angle

$$\cos(v, w) = \frac{v \circ w}{|v| * |w|}$$

With

$$|v| = \sqrt{\sum v_i^2} \qquad v \circ w = \sum_{i=1..n} v_i * w_i$$

Distance as Angle

Distance = cosine of the angle between doc d and query q

$$sim(d,q) = \cos(v_d,v_q) = \frac{v_d \circ v_q}{\left|v_d\right|*\left|v_q\right|} = \frac{\sum \left(v_q[i]*v_d[i]\right)}{\sqrt{\sum v_d[i]^2}*\sqrt{\sum v_q[i]^2}}$$
Can be dropped for ranking

Example

Assume stop word removal, stemming, and binary weights

	Text	verkauf	haus	italien	gart	miet	blüh	woll
1	Wir verkaufen Häuser in Italien	1	1	1				
2	Häuser mit Gärten zu vermieten		1		1	1		
3	Häuser: In Italien, um Italien, um Italien herum		1	1				
4	Die italienschen Gärtner sind im Garten			1	1			
5	Der Garten in unserem italienschen Haus blüht		1	1	1		1	
Q	Wir wollen ein Haus mit Garten in Italien mieten		1	1	1	1		1

Ranking

$$sim(d,q) = \frac{\sum (v_q[i] * v_d[i])}{\sqrt{\sum v_d[i]^2}}$$

1	1	1	1				
2		1		1	1		
3		1	1				
4			1	1			
5		1	1	1		1	
Q		1	1	1	1		1

•
$$sim(d_1,q) = (1*0+1*1+1*1+0*1+0*1+0*0+0*1) / \sqrt{3}$$

•
$$sim(d_2,q) = (1+1+1) / \sqrt{3}$$

•
$$sim(d_3,q) = (1+1) / \sqrt{2}$$

•
$$sim(d_4,q) = (1+1) / \sqrt{2}$$

•
$$sim(d_5,q) = (1+1+1) / \sqrt{4}$$

Rg	Q: Wir wollen ein Haus mit Garten in Italien mieten			
1	d ₂ : Häuser mit Gärten zu vermieten			
2	d ₅ : Der Garten in unserem italienschen Haus blüht			
2	d ₄ : Die italienschen Gärtner sind im Garten			
3	d ₃ : Häuser: In Italien, um Italien, um Italien herum			
5	d ₁ : Wir verkaufen Häuser in Italien			

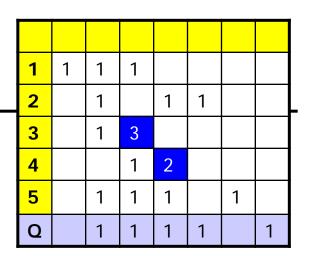
Introducing Term Weights

 $d \in D$ and $k \in K$

- Definition
 Let D be a document collection, K be the set of all terms in D,
 - The term frequency tf_{dk} is the frequency of k in d
 - The document frequency df_k is the frequency of docs in D containing k
 - This should rather be called "corpus frequency"
 - May also be defined as the frequency of occurrences of k in D
 - Both definitions are valid and both are used
 - The inverse document frequency is defined as $idf_k = |D| / df_k$
 - In practice, one usually uses $idf_k = log(|D| / df_k)$

Ranking with TF scoring

$$sim(d,q) = \frac{\sum (v_q[i] * v_d[i])}{\sqrt{\sum v_d[i]^2}}$$



•
$$sim(d_1,q) = (1*0+1*1+1*1+0*1+0*1+0*0+0*1) / \sqrt{3}$$

~ 1.15

•
$$sim(d_3,q) = (1+3) / \sqrt{10}$$

 $sim(d_2,q) = (1+1+1) / \sqrt{3}$

•
$$sim(d_4,q) = (1+2) / \sqrt{5}$$

•
$$sim(d_5,q) = (1+1+1) / \sqrt{4}$$

Rg	Q: Wir wollen ein Haus mit Garten in Italien mieten			
1	d ₂ : Häuser mit Gärten zu vermieten			
2	d ₅ : Der Garten in unserem italienschen Haus blüht			
3	d ₄ : Die italienschen Gärtner sind im Garten			
4	d ₃ : Häuser: In Italien, um Italien, um Italien herum			
5	d ₁ : Wir verkaufen Häuser in Italien			

Alternative Scoring: TF*IDF

- 1st problem: The longer a doc, the higher the probability of matching query terms by pure chance (it has more terms)
 - Solution: Normalize TF values on document length (yields 0≤w_{dk}≤1)

$$tf'_{dk} = \frac{tf_{dk}}{|d|} = \frac{tf_{dk}}{\sum_{j=1..k} tf_{dj}}$$

- Note: Longer docs also get down-ranked by normalization on doclength in similarity function. Use only one measure!
- 2nd problem: Some terms are everywhere in D, don't help to discriminate, and should be scored less
 - Solution: Also use IDF scores $w_{dk} = \frac{tf_{dk}}{|d_d|} * idf_k$

TF*IDF in Short

- Give terms in a doc d high weights which are ...
 - frequent in d and
 - infrequent in D
- IDF deals with the consequences of Zipf's law
 - The few very frequent (and unspecific) terms get lower scores
 - The many infrequent (and specific) terms get higher scores
- Interferes with stop word removal
 - If stop words are removed, IDF might not be necessary any more
 - If IDF is used, stop word removal might not be necessary any more

Shortcomings

- No treatment of synonyms (query expansion, ...)
- No treatment of homonyms
 - Different senses = different dimensions
 - We would need to disambiguate terms into their senses (later)
- Term-order independent
 - But order carries semantic meaning
- Assumes that all terms are independent
 - Clearly wrong: some terms are semantically closer than others
 - Their co-appearance doesn't mean more than only one appearance
 - The appearance of "red" in a doc with "wine" doesn't mean much
 - Extension: Topic-based Vector Space Model
 - Latent Semantic Indexing (see IR lecture)

Content of this Lecture

- Information Retrieval Models
 - Boolean Model
 - Vector Space Model
- Inverted Files

Full-Text Indexing

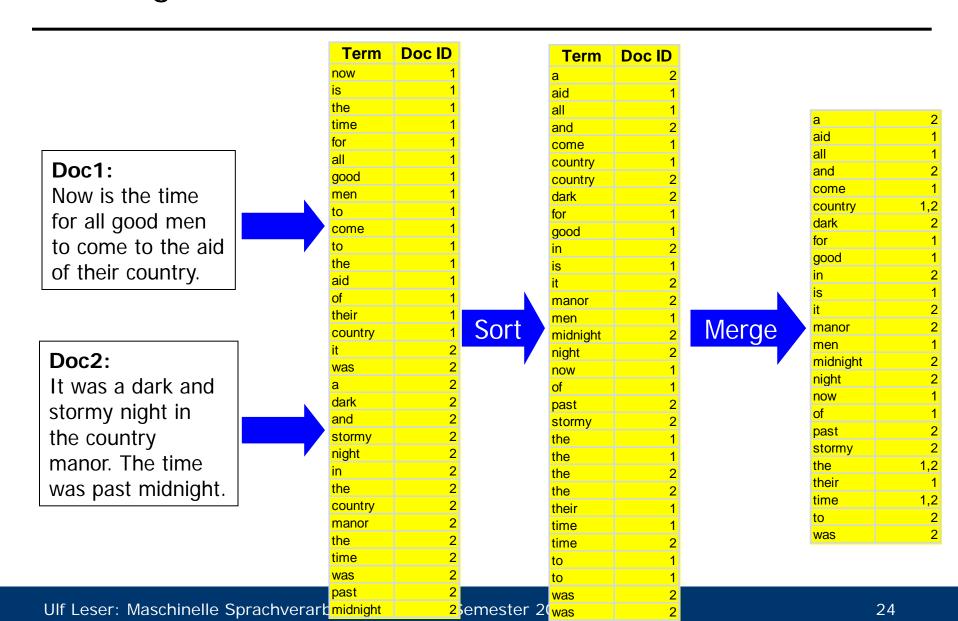
- Fundamental operation for all IR models: find(k, D)
 - Given a query term k, find all docs from D containing it
- Can be implemented using online search
 - Boyer-Moore, Keyword-Trees, etc.
- But
 - We generally assume that D is stable (compared to k)
 - We only search for discrete terms (after tokenization)
 - K does not grow much with growing D after a swing-in phase
- Consequence: Better to pre-compute a term index over D
 - Also called "full-text index"

Inverted Files (or Inverted Index)

- Simple and effective index structure for terms
- Builds on the Bag of words approach
 - We give up the order of terms in docs (see positional index later)
 - We cannot reconstruct docs based on index only
- Start from "docs containing terms" (~ "docs") and invert to "terms appearing in docs" (~ "inverted docs")

```
d1: t1,t3
d2: t1
d3: t2,t3
d4: t1
d5: t1,t2,t3
d6: t1,t2
d7: t2
d8: t2
```

Building an Inverted File [Andreas Nürnberger, IR-2007]



Boolean Retrieval

- For each query term k_i, look-up doc-list D_i containing k_i
- Evaluate query in the usual order

```
- k_{i} \wedge k_{j} : D_{i} \cap D_{j}
- k_{i} \vee k_{j} : D_{i} \cup D_{j}
- NOT k_{i} : D \setminus D_{i}
```

Example

```
(time AND past AND the) OR (men) = (D_{\text{time}} \cap D_{\text{past}} \cap D_{\text{the}}) \cup D_{\text{men}} = (\{1,2\} \cap \{2\} \cap \{1,2\}) \cup \{1\} = \{1,2\}
```

а	2
aid	
all	1
and	2
come	1 1 2 1
country	1,2
dark	2
for	1
good	1 1 2 1 2 2 1 1 2 2 1 1 1 2 2 2 2 2 2 2
in	2
is	1
it	2
manor	2
men	1
midnight	2
night	2
now	1
of	1
past	2
stormy	2
the	1,2
their	1
time	1,2
to	2
was	2

Necessary and Obvious Tricks

- How do we efficiently look-up doc-list D_i?
 - Bin-search on inverted file: O(log(|K|))
 - Inefficient: Random access on IO
 - Better solutions: Later
- How do we support union and intersection efficiently?
 - Naïve algorithm requires O(|D_i|*|D_j|)
 - Better: Keep doc-lists sorted
 - Intersection $\mathbf{D_i} \cap \mathbf{D_i}$: Sort-Merge in $O(|D_i| + |D_i|)$
 - Union $D_i \cup D_j$: Sort-Merge in $O(|D_i| + |D_j|)$
 - If $|D_i| \ll |D_j|$, use binsearch in D_j for all terms in D_i
 - Whenever $|D_i| + |D_j| > |D_i| * log(|D_j|)$

Adding Frequency

- VSM with TF*IDF requires term frequencies
- Split up inverted file into dictionary and posting list

			Dict	ionar	V	ŀ
Term	docIDs	DF	Diot	ioriai į	,	
a	2	1	Term	DF		
aid	1	1	a	1		>
ll	1	1	aid	1		•
ınd	2	1	all	1		•
ome	1	1	and	1		•
ountry	1,2		come	1		•
lark	2	1	country	2		•
			dark	1		•
f	1	1				
ast	2		of	1		
stormy	2		past	1		•
he	1,2		stormy	1	-	>
heir	1	1	the	2	>	•
ime	1,2	2	their	1		•
0	1	1	time	2	 	•
vas	2	1	to	1	 	•
			was	1	 	٠

Searching in VSM

- Assume we want to retrieve the top-r docs
- Algorithm
 - Initialize an empty doc-list S (as hash table or priority queue)
 - Iterate through query terms k_i
 - Walk through posting list (elements (docID, TF))
 - If $docID \in S$: $S[docID] = + IDF[k_i] * TF$
 - else: $S = S.append((docID, IDF[k_i]*TF))$
 - Length-normalize value and compute cosine
 - Return top-r docs in S
- S contains all and only those docs containing at least one k_i

Space Usage

- Size of dictionary: O(|K|)
 - Zipf's law: From a certain corpus size on, new terms appear only very infrequently
 - But there are always new terms, no matter how large D
 - Example: 1GB text (TREC-2) generates only 5MB dictionary
 - Typically: <1 Million
 - Many more in multi-lingual corpora, web corpora, etc.
- Size of posting list
 - Theoretic worst case: O(|K|*|D|)
 - Practical: O(avg(|d_i|) * |D|)
- Implementation
 - Dictionary kept in main memory
 - Posting lists remains on disk

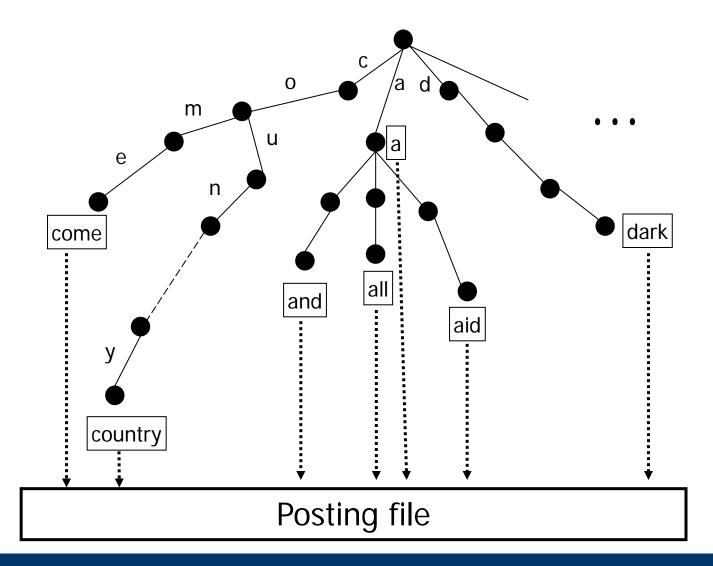
Dictionary as Array

- Dictionary as array (keyword, DF, ptr)
- Since keywords have different lengths: Implementation will be (ptr1, DF, ptr2)
 - ptr1: To string (the keyword)
 - ptr2: To posting list
- Search: Compute log(|K|) memory addresses, follow ptr1, compare strings: O(log(|K|)*|k|)
- Construction: Essentially for free

Term	DF	
a	1	ptr
aid	1	ptr
all	1	ptr
and	1	ptr
come	1	ptr
country	2	ptr
dark	1	ptr
for	1	ptr
good	1	ptr
in	1	ptr
is	1	ptr
it	1	ptr
manor	1	ptr
men	1	ptr
midnight	1	ptr
night	1	ptr
now	1	ptr

Prefix Tree (or Information ReTRIEval)

Term	IDF
a	1
aid	1
all	1
and	1
come	1
country	2
dark	1
for	1
good	1
in	1
is	1
it	1
manor	1
men	1
midnight	1
night	1
now	1

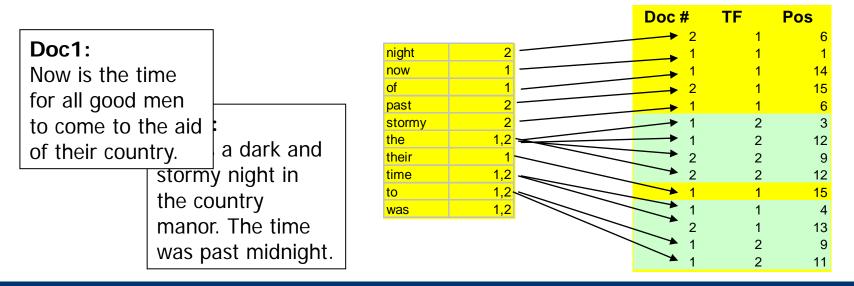


Storing the Posting File

- Posting file is usually kept on disk
- Thus, we need an IO-optimized data structure
- Static
 - Store posting lists one after the other in large file
 - Posting-ptr is (large) offset in this file
- Prepare for inserts
 - Reserve additional space per posting
 - Good idea: Large initial posting lists get large extra space
 - Many inserts can be handled internally
 - Upon overflow, append entire posting list at the end of the file
 - Place pointer at old position at most two access per posting list
 - Can lead to many holes requires regular reorganization

Positional Information

- What if we search for phrases: "Bill Clinton", "Ulf Leser"
 - ~10% of web searches are phrase queries
- What if we search by proximity "car AND rent/5"
 - "We rent cars", "cars for rent", "special care rent", "if you want to rent a car, click here", "Cars and motorcycles for rent", ...
- We need positional information



Answering Phrase Queries

- Search posting lists of all query terms
- During intersection, also positions must fit

Effects

- Dictionary is not affected
- Posting lists get much larger
 - Store many <<docID, pos>,TF> instead of few <docID,TF>
 - Index with positional information typically 30-50% larger than the corpus itself
 - Especially frequent words require excessive storage
- Use compression

Self Assessment

- Explain the vector space model
- How is the size of K (vocabulary) influenced by preprocessing?
- Describe some variations of deducing term weights
- How could we extend the VSM to also consider the order of terms (to a certain degree)?
- Explain idea and structure of inverted files?
- What are possible data structures for the dictionary?
 Advantages / disadvantages?
- What decisions influence the size of posting lists?