
Ulf Leser

Maschinelle Sprachverarbeitung
Retrieval Models and Implementation

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 2

Content of this Lecture

• Information Retrieval Models
– Boolean Model
– Vector Space Model

• Inverted Files

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 3

Information Retrieval Core

• The core question in IR:
Which of a given set of (normalized) documents is relevant
for a given query?

• Ranking: How relevant for a given query is each
document?

Query Normalization

Normalization Document base

Match /
Relevance

Scoring
Result

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 4

How can Relevance be Judged?

Non-Overlapping Lists
Proximal Nodes

 Structured Models

 Retrieval:
 Adhoc
 Filtering

 Browsing

 U
 s
 e
 r

 T
 a
 s
 k

 Classic Models

 Boolean
 Vector-Space
 Probabilistic

 Set Theoretic

 Fuzzy
 Extended Boolean

 Probabilistic

 Inference Network
 Belief Network

 Algebraic

 Generalized Vector
 Lat. Semantic Index
 Neural Networks

 Browsing

 Flat
 Structure Guided
 Hypertext [BYRN99]

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 5

Notation

• All of the models we discuss use the “Bag of Words” view
• Definition

– Let D be the set of all normalized documents, d∈D is a document
– Let K be the set of all terms in D, ki∈K is a term

• Can as well be tokens
– Let w be the function that maps a given d to its set of distinct

terms in K (its bag-of-words)
– Let vd by a vector of size |K| for d (or a query q) with

• vd[i]=0 iff ki ∉ w(d)
• vd[i]=1 iff ki ∈ w(d)

– Often, we use weights instead of a Boolean membership function
• Let wij≥0 be the weight of term ki in document dj (wij=vj[i])

• wij=0 if ki∉dj

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 6

Boolean Model

• Simple model based on set theory
• Queries are specified as Boolean expressions over terms

– Terms connected by AND, OR, NOT, (XOR, ...)
– Parenthesis are possible (but ignored here)

• Relevance of a document is either 0 or 1
– Let q contain the atoms (terms) <k1, k2, …>
– An atom ki evaluates to true for a document d iff vd[ki]=1
– Compute truth values of all atoms for each d
– Compute truth of q for d as logical expression over atom values

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 7

Properties

• Simple, clear semantics, widely used in (early) systems
• Disadvantages

– No partial matching
• Suppose query k1∧k2∧… ∧k9
• A doc d with k1∧k2…k8 is as irrelevant as one with none of the terms

– No ranking
– Terms cannot be weighted

• But some are more important than others

– Lay users don’t understand Boolean expressions

• Results: Often unsatisfactory
– Too many documents (too few restrictions, many OR)
– Too few documents (too many restrictions, many AND)

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 8

A Note on Implementation

• One should not iterate over D, but use a term index

– Assume we have an index with fast operation find: K→ΡD

– Search each atom ki of the query, resulting in a set Di⊆D
– Evaluate query in given order of atoms using set operations on Di’s

• ki ∧ kj : Di ∩ Dj
• ki ∨ kj : Di ∪ Dj
• NOT ki: D\Di

• Improvements: Cost-based evaluation
– Evaluate sub-expressions first that result in smaller intermediate

results
– Less memory requirements, faster intersections, …

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 9

Content of this Lecture

• Information Retrieval Models
– Boolean Model
– Vector Space Model

• Inverted Files

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 10

Vector Space Model

• Salton, G., Wong, A. and Yang, C. S. (1975). "A Vector
Space Model for Automatic Indexing." Communications of
the ACM 18(11): 613-620.
– A breakthrough in IR
– Still most popular model today

• General idea
– Fix vocabulary K (the dictionary)
– View each doc (and the query) as point in a |K|-dimensional space
– Rank docs according to distance from the query in that space

• Main advantages
– Inherent ranking (according to distance)
– Naturally supports partial matching (increases distance)

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 11

Vector Space

• Each term is one dimension
– Different suggestions for

determining co-ordinates, i.e.,
term weights

• The closest docs are the
most relevant ones
– Rationale: Vectors correspond

to themes which are loosely
related to sets of terms

– Distance between vectors ~
distance between themes

– Different suggestions for
defining distance

Star

Diet

Astronomy Movie stars

Mammals

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 12

The Angle between Two Vectors

• Recall: The scalar product between two vectors v and w of
equal dimension is defined as

• This gives us the angle

– With

),cos(** wvwvwv =

∑
=

=
ni

ii wvwv
..1

*∑= 2
ivv

wv
wvwv

*
),cos(
=

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 13

Distance as Angle

Distance = cosine of the angle between doc d and query q

()
22][*][

][*][
*

),cos(),(
∑∑

∑===
iviv

iviv
vv
vv

vvqdsim
qd

dq

qd

qd
qd



Can be dropped
for ranking

Length
normalization

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 14

Example

Text verkauf haus italien gart miet blüh woll

1 Wir verkaufen Häuser in
Italien

1 1 1

2 Häuser mit Gärten zu
vermieten

1 1 1

3 Häuser: In Italien, um
Italien, um Italien herum

1 1

4 Die italienschen Gärtner
sind im Garten

1 1

5 Der Garten in unserem
italienschen Haus blüht

1 1 1 1

Q Wir wollen ein Haus mit
Garten in Italien mieten

1 1 1 1 1

• Assume stop word removal, stemming, and binary weights

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 15

Ranking

• sim(d1,q) = (1*0+1*1+1*1+0*1+0*1+0*0+0*1) / √3 ~ 1.15
• sim(d2,q) = (1+1+1) / √3 ~ 1.73
• sim(d3,q) = (1+1) / √2 ~ 1.41
• sim(d4,q) = (1+1) / √2 ~ 1.41
• sim(d5,q) = (1+1+1) / √4 ~ 1.5

1 1 1 1

2 1 1 1

3 1 1

4 1 1

5 1 1 1 1

Q 1 1 1 1 1

Rg Q: Wir wollen ein Haus mit Garten in Italien mieten

1 d2: Häuser mit Gärten zu vermieten

2 d5: Der Garten in unserem italienschen Haus blüht

3
d4: Die italienschen Gärtner sind im Garten

d3: Häuser: In Italien, um Italien, um Italien herum

5 d1: Wir verkaufen Häuser in Italien

()
2][

][*][
),(

∑
∑=

iv

iviv
qdsim

d

dq

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 16

Introducing Term Weights

• Definition

Let D be a document collection, K be the set of all terms in D,
d∈D and k∈K
– The term frequency tfdk is the frequency of k in d
– The document frequency dfk is the frequency of docs in D containing k

• This should rather be called “corpus frequency”
• May also be defined as the frequency of occurrences of k in D
• Both definitions are valid and both are used

– The inverse document frequency is defined as idfk = |D| / dfk
• In practice, one usually uses idfk = log(|D| / dfk)

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 17

Ranking with TF scoring

• sim(d1,q) = (1*0+1*1+1*1+0*1+0*1+0*0+0*1) / √3 ~ 1.15
• sim(d2,q) = (1+1+1) / √3 ~ 1.73
• sim(d3,q) = (1+3) / √10 ~ 1.26
• sim(d4,q) = (1+2) / √5 ~ 1.34
• sim(d5,q) = (1+1+1) / √4 ~ 1.5

1 1 1 1

2 1 1 1

3 1 3

4 1 2

5 1 1 1 1

Q 1 1 1 1 1

Rg Q: Wir wollen ein Haus mit Garten in Italien mieten

1 d2: Häuser mit Gärten zu vermieten

2 d5: Der Garten in unserem italienschen Haus blüht

3 d4: Die italienschen Gärtner sind im Garten

4 d3: Häuser: In Italien, um Italien, um Italien herum

5 d1: Wir verkaufen Häuser in Italien

()
2][

][*][
),(

∑
∑=

iv

iviv
qdsim

d

dq

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 18

Alternative Scoring: TF*IDF

• 1st problem: The longer a doc, the higher the probability of
matching query terms by pure chance (it has more terms)
– Solution: Normalize TF values on document length (yields 0≤wdk≤1)

– Note: Longer docs also get down-ranked by normalization on doc-

length in similarity function. Use only one measure!

• 2nd problem: Some terms are everywhere in D, don’t help
to discriminate, and should be scored less
– Solution: Also use IDF scores

∑
=

==

kj
dj

dkdk
dk tf

tf
d

tftf

..1
||

'

k
d

dk
dk idf

d
tfw *

||
=

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 19

TF*IDF in Short

• Give terms in a doc d high weights which are …

– frequent in d and
– infrequent in D

• IDF deals with the consequences of Zipf’s law
– The few very frequent (and unspecific) terms get lower scores
– The many infrequent (and specific) terms get higher scores

• Interferes with stop word removal
– If stop words are removed, IDF might not be necessary any more
– If IDF is used, stop word removal might not be necessary any more

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 20

Shortcomings

• No treatment of synonyms (query expansion, …)
• No treatment of homonyms

– Different senses = different dimensions
– We would need to disambiguate terms into their senses (later)

• Term-order independent
– But order carries semantic meaning

• Assumes that all terms are independent
– Clearly wrong: some terms are semantically closer than others

• Their co-appearance doesn’t mean more than only one appearance
• The appearance of “red” in a doc with “wine” doesn’t mean much

– Extension: Topic-based Vector Space Model
• Latent Semantic Indexing (see IR lecture)

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 21

Content of this Lecture

• Information Retrieval Models
– Boolean Model
– Vector Space Model

• Inverted Files

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 22

Full-Text Indexing

• Fundamental operation for all IR models: find(k, D)

– Given a query term k, find all docs from D containing it

• Can be implemented using online search
– Boyer-Moore, Keyword-Trees, etc.

• But
– We generally assume that D is stable (compared to k)
– We only search for discrete terms (after tokenization)
– |K| does not grow much with growing D after a swing-in phase

• Consequence: Better to pre-compute a term index over D
– Also called “full-text index”

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 23

Inverted Files (or Inverted Index)

• Simple and effective index structure for terms
• Builds on the Bag of words approach

– We give up the order of terms in docs (see positional index later)
– We cannot reconstruct docs based on index only

• Start from “docs containing terms” (~ “docs”) and invert to
“terms appearing in docs” (~ “inverted docs”)

t1: d1,d2,d4,d5,d6
t2: d3,d5,d6,d7,d8
t3: d1,d3,d5

d1: t1,t3
d2: t1
d3: t2,t3
d4: t1
d5: t1,t2,t3
d6: t1,t2
d7: t2
d8: t2

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 24

Building an Inverted File [Andreas Nürnberger, IR-2007]

Doc1:
Now is the time
for all good men
to come to the aid
of their country.

Doc2:
It was a dark and
stormy night in
the country
manor. The time
was past midnight.

Term Doc ID
now 1
is 1
the 1
time 1
for 1
all 1
good 1
men 1
to 1
come 1
to 1
the 1
aid 1
of 1
their 1
country 1
it 2
was 2
a 2
dark 2
and 2
stormy 2
night 2
in 2
the 2
country 2
manor 2
the 2
time 2
was 2
past 2
midnight 2

Term Doc ID
a 2
aid 1
all 1
and 2
come 1
country 1
country 2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1
the 1
the 2
the 2
their 1
time 1
time 2
to 1
to 1
was 2
was 2

a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 2
was 2

Sort Merge

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 25

Boolean Retrieval

• For each query term ki, look-up doc-list Di containing ki

• Evaluate query in the usual order
– ki ∧ kj : Di ∩ Dj
– ki ∨ kj : Di ∪ Dj
– NOT ki: D\Di

• Example

(time AND past AND the) OR (men)
= (Dtime ∩ Dpast ∩ Dthe) ∪ Dmen
= ({1,2} ∩ {2} ∩ {1,2}) ∪ {1}
= {1,2}

a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 2
was 2

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 26

Necessary and Obvious Tricks

• How do we efficiently look-up doc-list Di?

– Bin-search on inverted file: O(log(|K|))
– Inefficient: Random access on IO
– Better solutions: Later

• How do we support union and intersection efficiently?
– Naïve algorithm requires O(|Di|*|Dj|)
– Better: Keep doc-lists sorted
– Intersection Di∩Dj : Sort-Merge in O(|Di| + |Dj|)
– Union Di∪Dj : Sort-Merge in O(|Di| + |Dj|)
– If |Di| << |Dj|, use binsearch in Dj for all terms in Di

• Whenever |Di| + |Dj| > |Di|*log(|Dj|)

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 27

Adding Frequency

• VSM with TF*IDF requires term frequencies
• Split up inverted file into dictionary and posting list

Dictionary Postings Term docIDs DF
a 2 1
aid 1 1
all 1 1
and 2 1
come 1 1
country 1,2 2
dark 2 1
… … …
of 1 1
past 2 1
stormy 2 1
the 1,2 2
their 1 1
time 1,2 2
to 1 1
was 2 1

Term DF
a 1
aid 1
all 1
and 1
come 1
country 2
dark 1
… …
of 1
past 1
stormy 1
the 2
their 1
time 2
to 1
was 1

Posting
(2,1)
(1,1)
(1,1)
(2,1)
(1,1)

(1,1), (2,1)
(2,1)
…

(1,1)
(2,1)
(2,1)

(1,2), (2,1)
(1,1)

(1,1), (2,1)
(1,2)
(2,2)

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 28

Searching in VSM

• Assume we want to retrieve the top-r docs
• Algorithm

– Initialize an empty doc-list S (as hash table or priority queue)
– Iterate through query terms ki

• Walk through posting list (elements (docID, TF))
– If docID∈S: S[docID] =+ IDF[ki]*TF
– else: S = S.append((docID, IDF[ki]*TF))

• Length-normalize value and compute cosine

– Return top-r docs in S

• S contains all and only those docs containing at least one ki

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 29

Space Usage

• Size of dictionary: O(|K|)
– Zipf’s law: From a certain corpus size on, new terms appear only

very infrequently
• But there are always new terms, no matter how large D
• Example: 1GB text (TREC-2) generates only 5MB dictionary

– Typically: <1 Million
• Many more in multi-lingual corpora, web corpora, etc.

• Size of posting list
– Theoretic worst case: O(|K|*|D|)
– Practical: O(avg(|di|) * |D|)

• Implementation
– Dictionary kept in main memory
– Posting lists remains on disk

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 30

Dictionary as Array

• Dictionary as array (keyword, DF, ptr)
• Since keywords have different lengths:

Implementation will be (ptr1, DF, ptr2)
– ptr1: To string (the keyword)
– ptr2: To posting list

• Search: Compute log(|K|) memory
addresses, follow ptr1, compare strings:
O(log(|K|)*|k|)

• Construction: Essentially for free

Term DF
a 1 ptr
aid 1 ptr
all 1 ptr
and 1 ptr
come 1 ptr
country 2 ptr
dark 1 ptr
for 1 ptr
good 1 ptr
in 1 ptr
is 1 ptr
it 1 ptr
manor 1 ptr
men 1 ptr
midnight 1 ptr
night 1 ptr
now 1 ptr

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 31

Prefix Tree (or Information ReTRIEval)

c

a

dark

all and

come

…

Posting file

country

aid

a d o
m

e
u

n

y

Term IDF
a 1
aid 1
all 1
and 1
come 1
country 2
dark 1
for 1
good 1
in 1
is 1
it 1
manor 1
men 1
midnight 1
night 1
now 1

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 32

Storing the Posting File

• Posting file is usually kept on disk
• Thus, we need an IO-optimized data structure
• Static

– Store posting lists one after the other in large file
– Posting-ptr is (large) offset in this file

• Prepare for inserts
– Reserve additional space per posting

• Good idea: Large initial posting lists get large extra space
• Many inserts can be handled internally

– Upon overflow, append entire posting list at the end of the file
• Place pointer at old position – at most two access per posting list

– Can lead to many holes – requires regular reorganization

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 33

Doc2:
It was a dark and
stormy night in
the country
manor. The time
was past midnight.

Positional Information

• What if we search for phrases: “Bill Clinton”, “Ulf Leser”
– ~10% of web searches are phrase queries

• What if we search by proximity “car AND rent/5”
– “We rent cars”, “cars for rent”, “special care rent”, “if you want to

rent a car, click here”, “Cars and motorcycles for rent”, …

• We need positional information

Doc1:
Now is the time
for all good men
to come to the aid
of their country.

night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 1,2
was 1,2

Doc # TF Pos
2 1 6
1 1 1
1 1 14
2 1 15
1 1 6
1 2 3
1 2 12
2 2 9
2 2 12
1 1 15
1 1 4
2 1 13
1 2 9
1 2 11

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 34

Answering Phrase Queries

• Search posting lists of all query terms
• During intersection, also positions must fit

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 35

Effects

• Dictionary is not affected
• Posting lists get much larger

– Store many <<docID, pos>,TF> instead of few <docID,TF>
– Index with positional information typically 30-50% larger than the

corpus itself
– Especially frequent words require excessive storage

• Use compression

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016 36

Self Assessment

• Explain the vector space model
• How is the size of K (vocabulary) influenced by pre-

processing?
• Describe some variations of deducing term weights
• How could we extend the VSM to also consider the order of

terms (to a certain degree)?
• Explain idea and structure of inverted files?
• What are possible data structures for the dictionary?

Advantages / disadvantages?
• What decisions influence the size of posting lists?

	Foliennummer 1
	Content of this Lecture
	Information Retrieval Core
	How can Relevance be Judged?
	Notation
	Boolean Model
	Properties
	A Note on Implementation
	Content of this Lecture
	Vector Space Model
	Vector Space
	The Angle between Two Vectors
	Distance as Angle
	Example
	Ranking
	Introducing Term Weights
	Ranking with TF scoring
	Alternative Scoring: TF*IDF
	TF*IDF in Short
	Shortcomings
	Content of this Lecture
	Full-Text Indexing
	Inverted Files (or Inverted Index)
	Building an Inverted File [Andreas Nürnberger, IR-2007]
	Boolean Retrieval
	Necessary and Obvious Tricks
	Adding Frequency
	Searching in VSM
	Space Usage
	Dictionary as Array
	Prefix Tree (or Information ReTRIEval)
	Storing the Posting File
	Positional Information
	Answering Phrase Queries
	Effects
	Self Assessment

