
Diploma Thesis Expose

Merging ETL Processes

Karsten Draba
kdraba@informatik.hu-berlin.de

Supervisors:

Prof. Dr. Ulf Leser
Humboldt Universität zu Berlin

Prof. Dr. Felix Naumann
Hasso-Plattner-Institute at the University of Potsdam

Adviser:

Alexander Albrecht
Hasso-Plattner-Institute at the University of Potsdam

submitted:
Berlin, on 20th May 2008

Faculty of Mathematics and Natural Sciences II
Department of Computer Science
Knowledge Management in Bioinformatics



Introduction

The specific processes and workflows of an organi-
zation are as much a part of their economic and
functional basis, as the data these processes work
on. But in contrast to data integration, the inte-
gration of processes has not gained much attention
in information science research so far. This the-
sis proposes and develops the Merge operator as
a fundamental operator for the integration of mul-
tiple processes. The focus is on data integration
processes, commonly designed by use of ETL tools
and applied in data warehouse environments.

Data integration processes can be described as
sequences of activities transforming heterogenous
data into a unified (integrated) representation. In
the data warehouse context, these processes are
called ETL processes, as they imply the extrac-
tion, transformation and loading of data. With the
broad acceptance and usage of ETL tools, these
ETL processes are given in a form that makes
them available not only for (semi-) automatic ex-
ecution, but also for further processing and opti-
mization. The optimization of ETL processes is re-
cently getting some attention within the database
community (e.g. [1, 2]) and can greatly benefit
from the research on query optimization for rela-
tional databases. Some techniques for relational
databases can even be applied directly to ETL pro-
cesses, due to the fact that some ETL activities can
be expressed directly by use of relational algebra [3].
But a direct translation from ETL processes to rela-
tional algebra expressions is only possible in minor
cases [1]. Nevertheless, the commonalities between
the query optimization problem and the problem
of ETL process optimization suggest the transfer of
rule and cost based approaches for query optimiza-
tion to the ETL process optimization problem.

So far only single ETL processes have been con-
sidered for optimization. The Merge operator
goes beyond that, by aiming at the consolidation
of multiple, often independent designed, ETL pro-
cesses. Such a consolidation promises a gain in per-
formance for the merged process, in contrast to the
single processes, as common sub-processes can be
exploited and data of a common domain can be pro-
cessed together. Furthermore the merged process,
as a single process, is open for further optimiza-
tion using approaches for single process optimiza-
tion. Equally important, the consolidated process
represents a unified view of the merged processes
and supports the definition of components and the
reuse of sub-processes by the identification of com-
mon sub-processes.

The importance of a global optimization of ETL
processes gets even clearer if one takes into ac-

count that ETL processes generally do not only ac-
cess different, physically distributed data sources,
but also execute their activities on different, physi-
cally distributed systems. In contrast to a batch of
queries in traditional relational database systems, a
batch of ETL processes can acquire many different
resources for equal tasks, e.g. each ETL process
in a batch may acquire its own local database to
store intermediate results. Merging a batch of ETL
processes therefore allows a better control and ex-
ploitation of the resources acquired by the batch,
as common and functional equivalent resources are
identified by common sub-processes.

Besides the semantic of the Merge operator,
the following aspects of the thesis are introduced in
the following sections of the expose.

• a systematic description of ETL processes
supporting the definition of transformation
rules

• the definition of common equivalent sub-
processes and their identification via trans-
formation rules

• the merge of multiple processes based on the
identified common equivalent sub-processes

The expose concludes with a short remark to the
implementation and a description of optional top-
ics, not to be necessarily included in the final thesis.

1 Merge semantic

The aim of the Merge operator is to consolidate
two or more processes. To ensure that the Merge
operator does not change the semantics of the orig-
inal processes, the intensions and extensions of all
data sources and data targets involved in the pro-
cess, have to be the same, whether the merged pro-
cess has been executed or the batch of processes to
merge. Furthermore, the data lineage for all dates
has to be the same, whether the merged process or
the batch has been executed. Besides lineage trac-
ing through merged processes, this allows the cor-
rect application of operators like Invert on merged
sub-processes. While lineage tracing is not actu-
ally implemented for the Merge operator in the
context of this thesis, enforcing the correct lineage
stresses the fact that, according to the proposed se-
mantic, the Merge operator is consolidating only
processes and not data in any way.

To merge processes, common sub-processes have
to be identified. These processes can occur at the
beginning, the end or in the middle of the pro-
cesses to merge. This results in different patterns
for merged processes, as shown in figure 1. (Some of

1



these patterns are identified as frequent ETL pro-
cess pattern in [4].) Naturally the common sub-
processes can occur at different locations within dif-
ferent processes. And neither has a common sub-
process to be shared by all processes, nor is the
number of common sub-processes per process re-
stricted to one.

2 Description of ETL pro-
cesses

The possibility to merge processes, designed inde-
pendently of each other, requires a common level of
description. The architecture graph for ETL pro-
cesses, proposed in [5], is used as a starting point
for such a description. But to allow for an easy
definition of transformation rules, some of the in-
formations implicitly contained in the functionality
description of activities have to be made explicit.
Some of these informations are the functionality
schema, the generated schema and the projected-
out schema as suggested in [1]. By defining trans-
formation rules and applying them to ETL pro-
cesses the optimization problem can be transformed
into a state-space based search problem [1]. The
same holds true for the problem of finding equiv-
alent sub-processes, where transformations can be
used to span the search space too.

In the context of this thesis a selection of typical
ETL stages is taken into account. All other stages
are considered to be black boxes. Therefore it is as-
sumed that an ETL process only consists of known
stages and black boxes. While transformation rules
for known ETL stages are defined, this is not possi-
ble for black boxes. Although some transformation
rules for the relational algebra are used, new trans-
formation rules are introduced to account for stages
that are not expressible via relational algebra.

3 Equivalent sub-processes
and search space generation

Two processes are considered to share a common
sub-process whenever they contain an identical se-
quence of equivalent stages. Stages are consid-
ered to be equivalent whenever they have identi-
cal in- and out-schemas and the same functional-
ity. The identification of common sub-processes
requires therefore mappings between the different
stages and their schemas. The thesis presupposes
the existence and identification of these mappings
by taking the validity of the naming principle for
granted [1]. This means that all attributes with the

same name are known to be identical while all at-
tributes with different names are known to be differ-
ent. Even if these mappings can be created by the
known (semi-) automatic techniques, creating these
mappings goes far beyond the scope of this thesis
as the number and complexity of possible mappings
increases drastically with the number of processes,
their stages and the complexity of their schemas.

The validity of the naming principle is also
taken for granted in regard to the functionality of
stages. Therefore it can be assumed that all equally
named stages implement the same functionality, in-
dependent of their actual schema attributes. This
assumption is especially important to account for
stages which functionality nothing is known about,
i.e. black boxes. If the validity of the naming prin-
ciple is not taken for granted, again a mapping has
to be created. But as with schemas, creating such a
mapping goes beyond the scope of this thesis. Cre-
ating such a mapping in a fully automatic fashion
will not work in most of the cases. However, devel-
oping a sampling based semi-automatic approach
may provide a good starting point for further re-
search.

The smallest possible common sub-process of
two or more ETL processes consists of a single
common ETL stage. Starting from these com-
mon stages, transformation rules are used to create
equivalent processes having sequences of equivalent
stages in common. If these common stages are in
the same order, a common sub-process is identified
(see the example in figure 2).

The problem of common sub-expression identi-
fication is also addressed by research on query con-
tainment and multiple query optimization in rela-
tional databases. But while these provide a good
starting point, there is a significant difference be-
tween the aims of these approaches and the one put
forward in this thesis. Multiple query optimization
is mainly interested in the identification, creation
and exploitation of sharable intermediate results.
In regard to the patterns shown in figure 1, this
means that multiple query optimization is only in-
terested in sub-processes at the beginning, i.e. sub-
processes sharing the same data sources. This can
be clearly seen on the table signatures, proposed
for sub-process identification in [6], that mainly
consist of the sources involved in a query. There-
fore the main optimization question is, whether an
identified common intermediate result should be ex-
ploited by materialisation [7], pipelining [8] or not
at all.

In contrast, the identification of common sub-
processes in ETL processes, as proposed here, is
concerned with the identification of all common
sequences of activities, whether they share data

2



sources or not. This is due to the fact that on a
higher abstraction level, e.g. the design, mainte-
nance or administration level, recurring stage pat-
terns are of a particular interest for re-use and re-
source management. Nevertheless, ETL process
optimization and the Merge operator can greatly
benefit from multiple query optimization research,
whenever common sub-processes with shared data
sources are identified.

4 Merging ETL processes

The identified common sub-processes are the basis
for the actual merge of the processes. One prob-
lem that arises at this point is to choose the ap-
propriate sub-processes. Different equivalent repre-
sentations of different processes can have different
sub-process in common that exclude one another.
Another problem is that not all identified common
sub-processes may be promising candidates for a
merge. For an example consider a projection on a
specific set of attributes. Such a projection may
occur in many processes. But as a projection is a
simple, low cost and semantically not very signifi-
cant operation, a merge based on a single common
projection may not be of much use in most cases. A
way to address these problems is to choose only the
longest common sub-processes of a set of exclud-
ing sub-processes and to choose only sub-processes
with a minimum length, or at least containing one
stage of a specified set of stages. More generally,
the Merge operator has to support some kind of
cost model, enabling the user to set up the sub-
process selection according to her needs. This cost
model has to be much broader than cost models in
traditional or even distributed database systems, as
it has to include different aspects of resource man-
agement too.

When actually merging the processes, new
stages have to be inserted and existing stages have
to be adapted to ensure the correct semantic of the
Merge operator and to uphold the semantics of
the original processes. In the merged process, data
processed by a common sub-process may originate
from different original processes and therefore from
different sources. To avoid an amalgamation and
to ensure the correct forwarding of the data, its
lineage may have to be traced. How exactly the
common sub-processes have to be altered and in-
tegrated into the merged process, depends on the
stages the sub-process consists of and its location
in the original processes (see figure 1).

If the common sub-process is located at the be-
ginning of the processes to merge, i.e. the pro-
cesses have common sources, the merge of the

sub-processes is simply the sub-process itself and
its output can be simply forwarded to the sub-
processes not to be merged (figure 3). This is the
case multiple query optimization is based on and
merging such processes can bring a direct perfor-
mance gain. But if the sub-process is located in
the middle or at the end of the processes to merge,
a stage annotating the data with its lineage may
have to be inserted (for annotation based lineage
tracing in relational database systems see [9]). The
lineage information is needed to control the data
processing within the common sub-process and to
divide the data at its end if necessary (figure 4, 5,
6, 7).

The disjunction of the data streams by their
data lineage, in cases where the merged sub-process
operates on data from different sources, may ques-
tion the benefit of the Merge operator in these
cases. Processing the different data streams apart
from each other within one process provides no per-
formance gain if compared to the separate execu-
tion of the original processes. Therefore, it is im-
portant to stress that in these cases an increase in
performance is not the overall goal of a merge, al-
though it is possible in some cases (see figure 8).
Rather, the benefits can be found in the optimiza-
tion of resources, administration and maintenance
and in re-usability (figure 9).

5 Implementation

The Merge operator will be implemented in Java.
An ETL process execution platform is provided by
the Clover.ETL framework [10].

6 Optional and further re-
search topics

To accentuate the core topics of the thesis, this sec-
tions lists some topics that are without a question
connected to the realization of the Merge, but may
not be addressed in depth within the thesis, due to
lack of time and space.

• Consider different Merge semantics. For ex-
ample the semantic of a Merge that is not
just consolidating processes but also integrat-
ing the data of these processes. In this case,
data in common sub-processes is not to be
divided. Rather, data with the same schema
and processed by the same sub-process is as-
sumed to be semantically equivalent and com-
plementing one another. The extensions of
the data targets are therefore not only de-
pendent on the data sources they where in

3



the original processes but on all data sources
contributing to the common sub-process.

• A (semi-) automatic schema mapping tech-
nique is needed to map schemas between dif-
ferent processes as well as in a single process.
Such a technique should not create all possi-
ble combinations of mappings as some of the
already established mappings can be propa-
gated through the process if mappings be-
tween the input and the output of stages are
known.

• (Semi-) automatic techniques for mapping
ETL stages are needed. Besides techniques
based on stage names or ontologies, sampling
based techniques seem to be promising. If the
different stages are sampled by appropriate
data sets, it will be possible to make state-
ments about the probability of their func-
tional equality.

• Furthermore, techniques are needed that al-
low an easy addition of new stages without
making it necessary to define new transfor-
mation rules. Object oriented techniques, as
of course used in the implementation of the
Merge operator, are one way to achieve this.
But other techniques should be considered
too. If, for example, new stages are described
by already known stages, the known transfor-
mation rules can also be used for these new
stages.

• Another important point is the optimization
of the merged process. Although the Merge
operator has to support some kind of cost
model, the implemented cost model will only
be sufficient to decide which common sub-
processes to use. Clearly, better cost mod-
els can be found and there may be much un-
used optimization potential after the merge.
But as the cost model will typically have
more dimensions than in traditional relational
databases (e.g. administration and mainte-
nance cost, data transfer volume, connection
cost) developing one is not a trivial task.

References

[1] A. Simitsis, P. Vassiliadis, and T. K. Sel-
lis. Optimizing ETL Processes in Data Ware-

houses. Proceedings of the 21st International
Conference on Data Engineering, pages 564–
575, 2005.

[2] M. V., H. S., O. S., B. M., V. M., A. M., and
T. K. An Approach to Optimize Data Pro-
cessing in Business Processes. In C. Koch,
J. Gehrke, M. N. Garofalakis, D. Srivastava,
K. Aberer, A. Deshpande, D. Florescu, C. Y.
Chan, V. Ganti, C.-C. Kanne, W. Klas, and
E. J. Neuhold, editors, VLDB, pages 615–626,
2007.

[3] S. Dessloch, M. A. Hernández, R. Wisnesky,
A. Radwan, and J. Zhou. Orchid: Integrating
Schema Mapping and ETL. 24th International
Conference on Data Engineering, April 7-12,
2008, Cancún, México, 2008.

[4] P. Vassiliadis, A. Karagiannis, V. Tziovara,
and A. Simitsis. Towards a Benchmark for
ETL Workflows. In V. Ganti and F. Naumann,
editors, QDB, pages 49–60, 2007.

[5] P. Vassiliadis, A. Simitsis, P. Georgantas,
M. Terrovitis, and S. Skiadopoulos. A generic
and customizable framework for the design of
ETL scenarios. Inf. Syst., 30:492–525, 2005.

[6] J. Z., P.-A. Larson, J. C. Freytag, and
W. Lehner. Efficient exploitation of similar
subexpressions for query processing. In C. Y.
Chan, B. C. Ooi, and A. Zhou, editors, SIG-
MOD Conference, pages 533–544, 2007.

[7] P. Roy, S. Seshadri, S. Sudarshan, and
S. Bhobe. Efficient and Extensible Algorithms
for Multi Query Optimization. In SIGMOD
Conference, pages 249–260, 2000.

[8] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Su-
darshan. Pipelining in Multi-Query Optimiza-
tion. In PODS, 2001.

[9] D. Bhagwat, L. Chiticariu, W. C. Tan, and
G. Vijayvargiya. An Annotation Management
System for Relational Databases. In M. A.
Nascimento, M. T. Özsu, D. Kossmann, R. J.
Miller, J. A. Blakeley, and K. B. Schiefer, edi-
tors, VLDB, pages 900–911, 2004.

[10] Clover.ETL. http://www.cloveretl.org/.

4

http://www.cloveretl.org/


Appendix

Figure 1: Different process patterns as they appear after a successful merge using common sub-processes
at different locations in the processes to merge. In real processes mixtures of these patterns appear.

5



Figure 2: The figure shows two processes. The upper process identifies premium customers, i.e. cus-
tomers with more than 100 orders, while the lower process identifies customers that are in a delay of
payment, i.e. customers with unpaid bills older than four months. First, the two processes only have two
sources, Customer and Orders, in common (the joins differ in their schemas). By reordering the joins in
the lower process, a larger common sub-process emerges consisting of the two sources and a join. The
merge of the two processes can be found in figure 3.

Figure 3: The figure shows the merge of the two processes depicted in figure 2. The grey highlighted
sub-process is created by the Merge operator, while the dashed sub-process is the common sub-process
of the original processes. To forward the common processed data to the distinct sub-processes a Clone
operator, duplicating the data stream, has been inserted.

6



Figure 4: Assume a poll in different towns, surveying the incomes of their citizens. The two processes
make anonymous the income of the different citizens and load it into the same data target. The existence
of each citizen is checked by an appropriate town office. This way it is made sure that each person is
uniquely identified within a town. But a person can not be uniquely identified among different towns.
After checking her existence, the average income of a person is calculated and a new key is assigned to
her, based on the already existing keys. Both processes differ in their sources as well as in the Join used
to check for the existence of a citizen.

Figure 5: Here, the merge of the two processes shown in figure 4 is depicted. The inserted Lineage
operator accumulates the data with its lineage, while the Union operator pools them together for
common processing. The accumulation with lineage is necessary, because persons are not uniquely
identified among different sources. At the end of the common sub-process a Projection is inserted
to remove the lineage information from the data, before loading it into the data target. Note that the
Aggregation properties had to be changed to prevent data from different sources to be aggregated. Also
the schemas of the common sub-process had to be altered to account for the added lineage information.

7



Figure 6: The two processes depicted here, first normalize the names of new customers and afterwards
check whether a customer exists in a known customer database or not. If the new customer is not present
in one of the known databases, it is added to the own customer database. Both processes differ in their
sources as well as in their targets. Therefore the common sub-process is located in the middle.

Figure 7: To merge the two processes shown in figure 6 it is necessary to accumulate the data about
new customers with its lineage. After the common processing of the data, the lineage information is used
to split and forward the processing results accordingly. Before actually loading the results, the lineage
information has to be removed. In this example, only the schemas of the common sub-process have to
be adjusted to account for the data lineage.

8



Figure 8: This figure shows again the merge of the two processes depicted in figure 6. This time, in
contrast to figure 7, the merge aims at an increase in performance. To achieve this, all common new
customers are identified using a Semi-Join. This way, common new customers have to be processed
only once. At the end of the common sub-process, the common new customers have to be duplicated
and forwarded towards the non common sub-processes, i.e. the different sources. Obviously, this kind
of merge is restricted to special cases. For instance there must not be any aggregation within the sub-
process and duplicates within a source must not have any influence on the result. Furthermore, an
increase in performance can only be achieved if the number of common tuples and the cost for processing
them multiple times is so high that the cost for identifying the duplicates is exceeded.

9



Figure 9: This figure shows how the merged process in figure 7 can be modeled as a component. While
component specification itself is not part of this thesis, the figure exemplifies how the Merge operator can
support re-usability and resource management, especially when merging processes that have no common
sources. The common sub-process is embedded in Merge stages providing the necessary interfaces to
embed this component into other ETL processes. This way the component can be considered as just
another stage. Other processes can be connected to the component using ports, reflecting the data linieage
used by the merged process. The important aspect of this component is that all processes using this
component are using the same resources. To get an idea of the advantages of this approach, lets consider
the case where each process requests its own resources. On the one hand this surely may improve the
processing speed, but on the other hand requiring multiple resources may not only significantly increase
cost but also bring with it an additional overhead in administering and maintaining these resources. But
sharing resources can have its drawbacks too. Conflicts may arise and make a sequential execution of
processes inevitable. The Merge operator allows to circumvent this problem by exploiting the data
lineage. If for example one of the processes using the shared component blocks, this does not necessarily
block the whole component. Because the data flows are independent of each other, due to their lineage,
the resources of the blocked process (e.g. processing time, bandwidth, disk space etc.) can now be
used by the other processes until the blocked process continues. Of course, this behavior can not be
guaranteed in all cases and depends on the degree of independence of the merged processes. But as the
processes get more dependent on one another, the possibilities rise for an increase in performance using
the Merge operator.

10


	Merge semantic
	Description of ETL processes
	Equivalent sub-processes and search space generation
	Merging ETL processes
	Implementation
	Optional and further research topics

