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1 Introduction

One very exciting field that came along with a lot of potential for Al and machine learning
was the smart watch: during a study, researchers from the University of California in San
Francisco (UCSF) used a deep neural network, created by the company Cardiogram, to detect
early signs of diabetes in a patient’s heart rate and step count (both were measured through
smartwatches). In case of a detection, the device would alert the user to check in with a doctor.
During their study the researchers reached a success rate of 85% [I]. Eventhough an algorithm
has to be trained to forecast prediabetes (in the given example) the rising question is about
the interpretability of the results: e.g. which aspects of the analyzed data are responsible
for the final forecast? Approaching this research question by use of visualization will be the
thesis’ topic.

Two important concepts are that of time series (TS) and that of time series classification
(TSC). A TS is a series of values ordered in time, in our case, the given TS represents the
measured heart rate and step count. In [2] the TSC problem is defined as: “Given a concrete
TS, the task is to determine to which of a set of predefined classes this TS belongs to, the
classes typically being characterized by a set of training examples.” TSC is intuitively depicted
in Figure [1} which shows a person’s hands movement while drawing a gun. The TSC problem
consists of two classes: a person holding a gun or pointing its finger during the action. The
colorization describes how much the final categorization was affected by each measurement.
For instance, the radical incline (dark red) seems to be defining for some movements, while
the plateau (blue) is less considered [3].

TSC methods can be subdivided into the following categories [4]:

1. Whole Series. A point-wise comparison of entire time series which are often realized
through 1-Nearest Neighbour (1-NN) Euclidian Distance and 1-NN Dynamic Time Wrap-
ping. Due to their high time complexity (Dynamic Time Wrapping runs in O(n?) at a
time series length n) whole-series methods do not scale to longer TS. [2]

2. Intervals. Features over one (or more) random subsequences at fixed offsetsﬂ are selected
from the TS to then be used as input for classification.

3. Shapelets. Approaches in this group identify short subsequences of T'S that are represen-
tative for the entire class through a learning procedure. These subsequences are called
Shapelets and indicate the class by their presence or absence which is measured through
a distance function.

4. Bag-Of-Patterns. A class of methods that breaks the TS into a bag of subsequences
which are “translated” into discrete words. The similarity of two TS is measured by
their word frequency concordance.

5. Deep Learning. Here a deep neural network is built to learn a hierarchical representation
of the data. For each classification it returns a probability distribution of the possible
classes. Approaches in this category typically do not rely on manual feature extraction
(as part of preprocessing) but the classifier rather learns these as part of the classification
process. [3]
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Figure 1: The gun point dataset shows the hand’s y-position while drawing either a gun or
just imitating the movement with bear hand. The color represents the contribution of a value
to the classification result: blue meaning almost no importance while red representing a high
contribution. The radical incline at the start visualizes the hand movement to shoulder level,
while the blue plateau represents the action of steady pointing. (image taken from [3])

For this thesis we will be focusing on Bag-of-Patterns and Shapelets. WEASEL (Word Ex-
trAction for time SEries cLassification), a TSC model that uses linear regression to classify a
TS [2], will be used as the representative for the Bag-of-Patterns approach, while FSS (Fast
Shapelet Selection) [5] could be a candidate for a Shapelet-based approach. This thesis will
focus on visualizing the outcome of both models to comparatively highlight which segments
of a TS were crucial for classification (for each algorithm).

2 Background and Related Work

Next, we will present the state-of-the-art methods that will be used throughout the thesis.

2.1 Symbolic Fourier Approximation

SFA (Symbolic Fourier Approximation), as part of the BOSS transformation, transforms a
subsequence of length w of real-valued measurements into discrete words. The final result is
achieved through the following steps: [2]

1. The values of each sequence are normalized to have a standart deviation of 1.

2. SFA applies a truncated Fourier transformation on each window only keeping [ < w
Fourier Coefficients to low-pass filter the T'S and eliminate noise (top right image in

Figure .

!Definition: a sequence inside a time series bounded by an interval.




3. Breakpoints are learned from the data distribution using e.g. binning based on in-
formation gain. Using these breakpoints the features are discretized into a symbol of
a predefined alphabet for further noise cancellation (bottom images in Figure [2|) thus
building a word for each window.
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Figure 2: SFA decomposes all TS into a sum of basic functions which are represented by
Fourier Coefficients. Discretization breakpoints are learned using the multiple coefficient
binning (MCB) method which creates the discretization boundaries for each basis function
(Fourier coefficient) independently. Finally, based on those boundaries, SFA generates a sym-
bol for each basic function. [0]

2.2 WEASEL

WEASEL applies a sliding window approach and discretizes each subsequence into a word
using SFA. Nevertheless, depending on the window size, the applied discretization can lead
to overshadowing smaller, but still crucial, characteristics. Therefore, instead of extracting
subsequences of one fixed window length w, WEASEL repeatedly slides through the TS, each
time with a different w. Each window undergoes the SFA transformation and the computed
feature is concatenated with the window length. In addition, the feature frequency is counted
with every iteration.

With progressing window, bigrams are computed, then appended to a bag-of-patterns (Figure
. Once all defined window lengths have been processed, WEASEL applies the CHI-squared
test on the final bag-of-patterns. This test filters irrelevant words such as a word frequently
occurring among all classes.

Finally, the linear classifier assigns each word a weight component to define its importance for



separating classes. These weights are trained on labeled train samples. Linear classifiers use
the dot-product of the feature vector and its correspondent weight vector for their prediction.
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Figure 3: A WEASEL histogram showing frequencies of words. The number on the x-axis
prior to the word describes the window length. (taken from [7])

2.3 Shapelets

The Shapelet-approach is based on the idea of identifying the most discriminative subsequences
(Shapelets) for each class and computing their smallest distance to a time series. Based on
the obtained distance and a learned threshold, a TS can be assigned to a class.

First, Shapelets need to be identified during a brute force learning procedure: all subsequences
of all possible lengths are stored in a list and inspected in terms of how well the distance to
the Shapelet separates the samples of the classes. After iterating through the entire list the
Shapelet with the highest discriminative power is returned.

One Shapelet-approach is based on a decision tree as shown in Figure [dl Each node stores
a single shapelet and a distance threshold used for branching to the left or right subtree
classifier while the leaf nodes contain the predicted class. Starting from the root we compute
the distance from a given TS to the Shapelet in that node. A split point reveals whether to
branch to the right or left subtree depending on the distance. This procedure is recursively
repeated until the algorithm reaches a leaf node. [§]

Figure [4] shows a dataset with two types of leaves: Verbena urticifolia and Urtica dioica. Since
the most discriminative feature is the angle between stem and leaf the algorithm learns that
subsection as a Shapelet. The resulting decision tree predicts Verbena urticifolia for all TS
with a distance no bigger than 5.1 and Urtica dioica for the rest.
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Figure 4: The Figure displays two types of leaves and the subsequence chosen to be the
Shapelet. On the bottom we see the correspondent decision tree. (image taken from [8])

3 Aims and Objectives

The main motivation of this thesis is the analysis of the interpretability of TSC models based
on features and feature weighing using visualization. First, we extract data from WEASEL’s
model. This data contains the values of the selected TS, the feature weights assigned by lib-
linear and the features for each window size.

The goal is to build a visualization tool to understand which segments of a TS are crucial
for the final classification. There have been approaches in this area, a commonly used visu-
alization is the heat map (as also used in [3]). Since the classification decision is created by
a (black-box) classifier it is not always obvious or easy to interpret the outcome. Considering
that SFA is in concept similar to a discretized Short-time Fourier transform (STFT) [9], we
can use methods for visualizing STFTs such as spectrograms of WEASEL’s words. We will
also implement a heat map.

The heat map will map the values and their weights through color and line thickness. Finally,
we will study several examples to interpret the visual outcome. E.g. Figure [5| shows how a
heat map of a gunpoint TS could look like. The gunpoint dataset measures a person’s hand
position while either drawing a gun or imitating the movement with the hand. The little
bump in the bottom left, just before the radical incline (Figure , indicates that the person
was holding a gun, since the gun has to be taken out of the holster. WEASEL considered the
bump as important indicated by the red color, which means that the feature weight was high
in that area.
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Figure 5: An example of what the tool could look like. The heat map shows a sample from
the GunPoint dataset computed in WEASEL, specifically the action of drawing a gun.

Since each dataset contains many different samples we will enable the user to scroll through
all the available ones. A specific sample can also be selected from a collection view where
each TS could be pictured as a bitmap (bitmap-method described in [I0]). Lastly, to showcase
how the heatmap of each label approximately looks like, we will compute an average over all
samples (of the same label).

For comparison to WEASEL we will use a Shapelet-model such as FSS [5] or FS [11] since
the identification of Shapelets using brute force has a cubic time complexity in terms of TS
lengths [8]. We have to access the Shapelets and their distance to each T'S which we consider
like the weight of a feature (learned by WEASEL). Therefore, the model can be implemented
using the same visualization.

Additionally, we will implement a spectrogram, similar to the ones used in STF'T, to visualize
features. Our approach is depicted in Figure [6]

Furthermore, we plan to identify frequent occurrences of subwords within the same basis
function over time to detect if certain patterns appear more often than others. Frequent
subwords could for example be identified using a suffix tree. These patterns can be illustrated
inside the spectrogram and the heatmap (see the thin blue line in Figure |§| right).

Based on the final software we will analyze a few examples to (i) examine if we can rely on
the visualized outcome based on previous literature, (ii) get a better understanding of why
WEASEL perceives certain subsequences as crucial to the classification and compare it to a
Shapelet-based model and last (iii) further study the STFTs to find helpful patterns.

Based on the available information we will use the p5.js library to implement a visualization
tool. The project will be available on Github for everybody accessible.



(1)

Figure 6: Image on the left (1) shows how we can generate a spectrogram: let the word length
be 4 and the used alphabet A = {a,b,c,d}. Each symbol is assigned to an individual color,
for example on a color spectrum from yellow to red (e.g. a = yellow, b = light orange, ¢ =
dark orange, d = red). If we vertically align all words in sequential order next to each other
we get a spectogram. Evidently, the features need to be of one fixed window length. The final
result could look like image (2) (taken from [12]).
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