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Abstract. Entries in biomolecular databases are often annotated with
concepts from different ontologies and thereby establish links between
pairs of concepts. Such links may reveal meaningful relationships between
linked concepts, however they could as well relate concepts by chance.
In this work we present InterOnto, a methodology that allows us to rank
concept pairs to identify the most meaningful associations. The novelty
of our approach compared to previous works is that we take the entire
structure of the involved ontologies into account. This way, our method
even finds links that are not present in the annotated data, but may be
inferred through subsumed concept pairs.

We have evaluated our methodology both quantitatively and qualita-
tively. Using real-life data from TAIR we show that our proposed scoring
function is able to identify the most representative concept pairs while
preventing overgeneralization. In comparison to prior work our method
generally yields rankings of equivalent or better quality.

1 Introduction

Entities in many biological databases are frequently annotated with ontology
concepts to facilitate researchers in searching, comparing, and browsing the
data. Consider for instance the Arabidopsis Information Resource (TAIR) [20].
In TAIR genes are annotated with concepts from the Gene Ontology (GO) [1]
and the Plant Ontology (PO) [7]. These annotations are complementary, as GO
is a structured vocabulary for the functional description of genes and gene prod-
ucts, while PO concepts are used to describe plant structures and developmental
stages.

A side effect of annotating database entries with ontology concepts is that
data curators implicitly create links between concepts from different ontologies.
Figure 1 shows such implicit links created by GO and PO annotations for the
TAIR entry AT1G15550GA4 (gibberellin 3 S-hydroxylase). Considering these links
between concepts of GO and PO a scientist may for example infer that a certain
biological process is located in a specific tissue of a plant, or is active in a
certain developmental stage. Take the TAIR entry for gibberellin 3 5-hydroxylase
in Figure 1. Gibberellins are a family of phytohormones involved in various



developmental processes such as germination, flowering, and stem elongation in
Arabidopsis thaliana and other vascular plants. Gibberellin 3 S-hydroxylase is
an enzyme that catalyses the final biosynthetic reaction to produce bioactive
gibberellin 3, an essential step in the signal cascade stimulating germination
after exposure to red light [22]. This semantic relationship red light stimulates
germination could be inferred automatically in Figure 1 by considering the link
between the concepts ’response to red light’ and ’germination’. The problem
with ontology links as a means to find associated concepts is that many links are
artifacts. Consider again Figure 1. This TAIR entry also links the GO concepts
transcription factor binding and cytoplasm to the PO concepts root, leaf, and
stem. None of the six concept pairs derivable from these links is a meaningful
association.

Without further preprocessing a researcher would have to look at a vast
amount of ontology links to find those that are meaningful. Our sample TAIR
entry is annotated with eight terms from GO and 19 terms from PO, creating
152 ontology links. In their daily work, researchers often deal with sets of dozens
of genes or other biomolecular entities such as gene families, co-clustered genes
in microarray experiments, or interacting proteins in PPI networks. In such a
set each gene or protein may contribute unique annotations to the overall set
of annotations. The resulting amount of ontology links becomes cumbersome to
explore. In this work, we therefore present InterOnto, a method to rank and thus
identify meaningful ontology links established by a set of database entries in an
automated manner.
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Fig. 1: Sample TAIR entry linking concepts in the Gene and Plant Ontology.

The first idea to rank concept pairs that comes to mind is to count links
connecting the same concepts. Certainly, the more database entries link the same
concepts, the more confident we are that these links represent a meaningful
relationship. The problem with this approach is that data curators describe
database entries as precisely as possible, using very specific concepts. Database
entries may therefore be similar and yet not share a single annotation. In these



cases, the simple counting approach fails. Consider the situation depicted in
Figure 2a. The three selected entries are annotated with terms from two different
ontologies O and O,. These annotations establish 12 ontology links connecting
8 distinct pairs of concepts. The pairs (e,i), (9,i), (9,7) and (f,1) are linked twice,
while the other pairs are linked once.

(a) Linked Concepts (b) Linked Subgraphs

Fig. 2: Set of database entries linking concepts from two ontologies O; and Os.

However, the picture changes once we take not only the frequency of links, but
also the relationships between ontology concepts into account. Figure 2b shows
the same data plus ancestor concepts in the respective ontologies. It is evident
that almost all links connect the same subgraphs in O; and Os. The goal of our
work is to find such pairs of strongly interlinked subgraphs and represent them
with a single concept pair, i.e., the root concepts of the subgraphs. Identifying
these root concepts is a challenging task. Just counting the number of links
originating in a subgraph may result in overgeneralization. In Figure 2b the
subgraph induced by the more general concept a contains two additional links
compared to the subgraph induced by e. As result, contrary to our intuition, a
would be selected as representative concept. Intuitively, the method to identify
root concepts of strongly interlinked subgraphs should find a balance between
the number of links in a subgraph and the generality of the root concept. One
option would be to count the number of edges between the concept and the root
of the ontology, i.e., the depth of a concept. This measure would assume that
each edge in the ontology has the same semantic distance. As this is usually not
the case, we propose to use the information content of a concept for our newly
developed method InterOnto.

The remainder of this work is composed as follows. We present in Section 2
related work on identifying concept pairs from ontologies. In Section 3 we estab-
lish the basics required for our method InterOnto, which we present in Section 4.
In Section 5 we present and discuss the results produced by InterOnto. Finally,
in Section 6 we conclude the paper.



2 Related Work

In the first step of InterOnto we identify ontology concepts that represent a set
of biological entries best. This is related to identifying significant GO concepts
for a set of genes. For a review on that topic see Huang et al. [5]. In a different
application field Brauer et al. [3] assign ontology concepts to text documents for
ontology-supported document retrieval. To identify the most relevant concepts
for a document they also consider the ontology structure and propagate scores
from successor concepts upwards, which significantly improves the performance.

Extensive work has been done on finding mappings between concepts in
different ontologies. Two surveys [4,9] present an overview on ontology map-
ping. Several approaches rely merely on concept properties, such as concept
names, synonyms, or parent and child relationships [14,16]. Other approaches
use instance-based ontology mapping to identify semantically equivalent con-
cepts in different ontologies. [2,15] use association rule mining to find pairs of
related GO terms given a set of entries in a database annotated with GO terms.
Both approaches ignore the structure of the ontologies.

Several paper present functions to compute a similarity score for a concept
pair (01,02) based on the number of instances with which o1, or o2, or both
together are annotated with. In [10] Kirsten et al. present four different functions.
They propagate scores to parent and grandparent concepts. In contrast to our
method this approach does not consider the information loss caused through
subsumption and arbitrarily limits the propagation of ontology links to only
two levels. Isaac et al. [6] present and experimentally compare five different
functions. Tan et al. [21] present another function to find mappings between
ontology concepts based on co-occurance in text documents. The functions in
both studies may be extended to also account for ontology structure by adding
the number of instances with which a descendant concept of 01 or o5 is annotated
with.

The most similar work to our approach is LSLink [13]. LSLink uses the
measures support and confidence to rank concept pairs based on links induced
by selected database entries. Intuitively, the support for a concept pair (o1, 02)
is a measure that gives an estimate if the number of links between o; and oo
in the selected subset is statistically significant with respect to the underlying
data. The confidence provides a measure to estimate if the number of links
between 0; and o0- in the selected subset occurs by chance with respect to the
annotations frequencies of both individual terms in the subset. Both scores are
highest for a link whose concepts are annotated just once to the underlying data.
In [12] the authors extend their approach from [13] by boosting the score of a
parent concept by the scores of their child concepts to improve the ranking. This
extended version of LSLink is similar to our approach InterOnto, but we do not
restrict the score propagation to only one level.

In [18] Saha et al. mine the tripartite graph induced by selected database
entries and their annotated ontology concepts for the densest subgraphs. To
compute these subgraphs they not only consider the links themselves, but also
the distance, i.e., the number of edges between concepts in an ontology, up to



a certain threshold. This approach has two drawbacks. First, the edge count
approach assumes that each edge represents the same semantic distance, which
may not be true in many ontologies. Thus, we use the information content of
a concept. Second, all relationships in a mined densest subgraph are equally
important, which may still leave a researcher with a huge amount of links to
explore. In contrast, we present a ranked list of links.

3 Basic Concepts

Our scoring function for mining meaningful associations from ontology links
incorporates information on annotation frequencies as well as ontology structure.
In this section, we briefly introduce the data and ontology model. In addition,
we present a measure for semantic similarity of ontology concepts. Finally, we
formalize the notion of ontology links.

3.1 Data Model and Ontology Structure

We view a data source as a comprehensive set of database entries that describe
the same kind of biological entity, e.g., genes, proteins, or diseases. We assume
that a particular subset of these entries, the user dataset, is of interest to a
researcher. A user data set may for example consist of genes that were over-
expressed in a microarray experiment, regulated by the same transcription factor,
or associated to the same disease. Entries may be annotated with concepts from
an ontology.

An ontology O(V, E) is a directed acyclic graph with vertex set V(O) and
edge set E(O). Each vertex represents a concept and edges represent is-a rela-
tionships between concepts. Given a concept ¢ we use the notation desc(c) and
anc(c) to denote the sets of descendant and ancestor concepts of ¢. The notations
desc’(¢) and anc’(c) are short forms for {c} U desc(c) and {c} U anc(c).

Given a data source S and an ontology O(V, E'). An annotation is an ordered
pair (s,c) € S x V(O) of a database entry and an ontology concept.

The goal of our work is to mine meaningful concept associations from sets
of ontology links. In the simplest case an ontology link is established by a single
entry s that is annotated with concepts from two different ontologies. Let us
assume ¢; € V(01) and ¢g € V(0O2) are two concepts from ontologies O and
0o, respectively. If annotations (s, ¢1) and (s, ¢a) exist, we say s establishes link
(c1, 8, c2) between the concepts ¢1 and cs.

Definition 1 (Ontology Link). Let S be a data source and O1(V,E) and
O2(V, E) be two ontologies. An ontology link (c1,s,c2) € V(01) x S x V(Os) is
a 3-tuple, with (c1,s) and (ca, ) being annotations.

3.2 Measure for Semantic Similarity

For various practical applications it is necessary to know how similar or dis-
similar two ontology concepts are [8]. Several measures have been developed to
determine the semantic similarity or distance between concepts in an ontology.



The simplest distance measure between two ontology concepts is the edge
count distance [11] where the distance is the minimum number of edges between
the two concepts. The implicit assumption underlying the edge count distance
is that edges in is-a ontologies are equidistant in terms of semantic distance. In
real-world ontologies this is usually not the case. Thus, several authors [8,17]
proposed to use the self-information of a concept to evaluate semantic similar-
ity. The self-information is quantified as the negative logarithm of the relative
annotation frequency f(¢).

Definition 2 (Self-information of a concept). Let S be a data source, O(V, E)
be an ontology, and A C SxV(O) be a set of annotations. The information con-
tent 1(¢) of ¢ € V(O) regarding S is given in Equation 1.

I(¢) = —logy(f(0)) 1)

f(&) is the relative annotation frequency of ¢ as given in Equation 2.

~_ Hse€S:3(s,c) € ANc e desc'(¢)}]

7(@) < 2)
The relative annotation frequency f(¢é) of a concept ¢ as given in Equation 2
is the relative frequency of entries with which the concept itself or one of its
sub-concepts c¢ is annotated.
Resnik [17] suggested to use the information content of the most informative
common ancestor of two ontology concepts c¢; and ¢z as measure of semantic

similarity of two concepts. This score is called shared information content.

Definition 3 (Shared information content). Let ¢1,c2 € V(O) be two con-
cepts in an ontology O. Let C = anc’(c1) Nand'(cz) denote the set of common
ancestor concepts of ¢1 and co. The shared information content o of ¢y and co
18:
o(er,c) = max 1(¢) (3)
Note, the measure ¢ does not produce values between 0 and 1. The scores
range from 0 for the root concept to a maximum value for a given set of an-
notations. A concept obtains this maximum value if it is present in the least
number of annotations, which usually means in exactly one annotation. This
fact is important for understanding the results. An advantage of this measure is
that it can naturally be extended to determine the similarity of concept sets of
arbitrary size, as long as these concepts share a common ancestor. In Section 4
we show how this property is particularly useful for our application.

4 InterOnto — Linking Ontologies Using Evidence

In the following sections we present InterOnto, a methodology to rank pairs of
ontology concepts based on how likely they represent meaningful information to



a researcher. We show how to incorporate information encoded in the structure
of is-a ontologies to improve the rankings.

Consider Figure 2b again. When we simply count the links we get scores
for the leaf concept pairs (f,j) and (g,j) of 1 and 2, respectively. However, an
entry annotated with a particular ontology concept is implicitly also annotated
with all its ancestor concepts. Thus, the scores for concept pairs (f,4), (g,1),
and (e, j) are 3, 4, and 4 when counting the number of links in the subgraphs.
The pair (e, i) outscores these pairs with 10 supporting links. Eventually, this
approach would choose the concept pair (a,i) as it has the highest score of
12. This is counterintuitive as from a users perspective the concept pair (e, )
would represent the selected subset best. The reason for choosing (a,%) over
(e,4) is, that the counting approach does not take the loss of specificity caused
by subsumption into account.

4.1 Finding Representative Concepts

Consider the situation depicted on the left side of Figure 3. Intuitively, we can
identify two distinct groups of two and three annotations, as highlighted in grey.
To represent these groups, one would probably choose the concepts a and d as
representative concepts. Counting the number of annotations of a concept and
its successor concepts would rank concept a highest, as it has five annotations.
The counting approach does not consider the loss of specificity when moving up
the ontology. To model this loss, we propose Equation 4 to assign a similarity
based score to a concept ¢ with respect to the set of annotations A present in
the user dataset.

Definition 4 (Similarity based scoring function). Let S’ be the user se-
lected dataset of data source S, O(V, E) an ontology, and A" C S’ x V(O) a set
of annotations. The similarity based score of a concept é € V(O) is given by:

score, (¢) = Z H{(s,c): (s,c) € A} -o(c, @) (4)

cedesc’(¢)

If we omit factor o(c,¢) in Equation 4 we obtain the number of annotations
in the subgraph of ¢é. The factor o(c, ¢) describes the similarity between concepts
c and ¢, i.e., the more similar the concepts are the higher the similarity value.

In Equation 4 the contribution of a specific annotation ¢ to the overall score
of a concept ¢ is the shared information content of ¢ and é, o(c,é). According
to Definition 3 this score equals maxascc I(¢). Since ¢ is per definition the most
specific common ancestor of all ¢ we may simply use the self-information of ¢,
I(¢). This allows us to transform Equation 4 to Equation 5.

score, (¢) = |{(s,c) : (s,¢) € A Ac € desc(¢)}] - 1(¢) (5)

In Equation 5 the score of a given concept depends on its self-information
and the number of annotations in which it is present in the user dataset. Con-
sider the example in Figure 3 again. Let us assume that each depicted concept



is annotated to one entry in the underlying data source and the total number of
annotations for Ontology 1 and 2 is 50 each. Thus, for concepts d and a we have
an information content of I(d) = —log, 25 = 4.06 and I(a) = —log, +5 = 1.84.
Calculating score(é) for all concepts results in the highest score for concept d
with 3 -4.06 = 12.2, followed by ¢ with 3-3.64 = 10.9 and a with 5-1.84 = 9.2.
This example as well as our experimental evaluation shows that score, allows
us to identify representative concepts, but overcomes the problem of overgen-
eralization; the more general a representative concept is, the more annotations
must support it to yield a good score, as per definition I(¢) < I(c),Vé € anc(c).

scoreo(a,w) =7+ 1.8« 4.1
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Fig. 3: Scores score,(¢1,¢) for concept pairs. The numbers on nodes represent
the information content I(¢) of a concept, while the numbers in brackets repre-
sent score,(¢).

4.2 Scoring Representative Concept Pairs

We now get back to the original problem of mining meaningful associations
from ontology links. An initial idea would be to produce the cartesian product
of concepts in O and O, and rank the concept pairs based on the product of
score,(¢1) and score,(¢z). However, this approach does not yield a meaningful
result as it does not consider the number of links established through entries
in the user dataset. Consider the example shown in Figure 3. The three most
informative concepts are d, s, and w. The cartesian product would yield the same
score for concept pairs (d, s) and (d, w). However, intuitively we would rank (d, s)
higher as it is supported by nine links in total (one direct link over entry 8 and
eight through descendant concepts of d and s over ). In comparison, the for
concept pair (d, w) we find three supporting links, namely (d, 8, z), (f, 3, x), and
(e, B, x).

The example shows that simply multiplying the similarity scores does not
yield the desired result to find representative concept pairs. We may not just



consider annotations (s, c;) and (s, ca) separately, but we have to consider the
actual links between concepts in O; and O established through entries in the
user dataset. Equation 6 provides the similarity based scoring function for pairs
of ontology concepts (c1, ¢2).

Definition 5 (Similarity based scoring function). Let S’ be the user se-
lected datset of data source S and Op and Oy two ontologies. Let furthermore
L CV(01) x 8 xV(0O2) denote a set of ontology links between them. The sim-
ilarity based score of a concept pair (¢1,¢2) with ¢, € V(01) and éo € V(02) is
given by Fquation 6.

score,(¢1,¢2) =|{(c1,s,¢2) : (c1,8,¢2) € L Ny € desc’ (61) A ca € desc’ ()}
() - 1(cz)
(6)

4.3 Eliminating Redundant Representative Concept Pairs

While incorporating hierarchy information may improve the result set, it may
also introduce a significant number of redundant concept pairs. Consider for
example the concept pair (¢, s) in Figure 3. This pair represents the same set of
links as the pair (d, s), but is less specific and therefore receives a lower score.
When evaluating score,(c1,c2) in Section 5 we thus eliminate pairs that do not
add information to the overall set of concept pairs. For every set of links we only
keep the most informative representative concept pair, i.e., the pair that receives
the highest score.

5 Evaluation

We tested our methodology on several real world data sets, which we present
in Section 5.1. We compare the top-k concept pairs produced by our method
InterOnto with the top-k concept pairs resulting from the LSLink measures
support and confidence.

5.1 Input Data

In the following subsections we give an overview of the ontologies, biological data
sources, and data sets used for evaluation purposes.

Ontologies. In our experiments we used the Gene Ontology (GO) [1] and
the Plant Ontology (PO)[7]. The Gene Ontology contains three different sub-
ontologies, namely ’Molecular Function’, ’Biological Process’, and ’Cellular Com-
ponent’. The Plant Ontology contains two different sub-ontologies, which are
"Plant Structure’ and ’Plant Growth and Development Stage’. In our experi-
ments we consider these different sub-ontologies as independent ontologies, as
no ’is-a’ relationships between concepts in these sub-ontologies exist.



Biological Data Sources. We used TAIR [20] as data source. In TAIR an
entry may be annotated with concepts from GO and PO. We found that 52,766
entries in TAIR are annotated with GO concepts and 19,883 entries with PO
concepts. In total we found 145,627 GO-TAIR annotations and 514,567 PO-
TAIR annotations, resulting in 3,361,887 distinct GO-PO concept pairs.

Test Data Sets. For our quantitative evaluation we selected 20 gene sets from
TAIR that constitute gene families, shown in Table 1. The genes in these gene
families fulfill a similar role in the organism. Thus, for manual inspection we are
able to evaluate if high ranked concepts and concept pairs are meaningful.

id|Gene Family Name Genes|Annotated[%] | Annotations|Unique
1|Core Cell Cycle Genes 61 98 303 102
2|basic Helix-Loop-Helix (bHLH) Transcription Factor| 162 98 565 103
3|Plant Cell Wall Biosynthesis Families 31 97 167 36
4|Cytoplasmic ribosomal protein gene family 248 95 1090 48
5|Lipid Metabolism Gene Families 98 94 280 98
6|Chloroplast and Mitochondria gene families 50 94 222 53
7|Primary Pumps (ATPases) Gene Families 81 89 253 104
8| Monosaccharide transporter-like gene family 53 100 222 40
9| Acyl Lipid Metabolism Family 610 92 1802 425
10| Kinesins 61 98 122 40
11|zinc finger-homeobox gene family 17 94 45 14
12| Glycosyltransferase Gene Families 280 98 1032 171
13|ABC Superfamily 126 97 307 96
14|Heat Shock Transcription Factors 21 100 7 20
15|Protein synthesis factors 95 99 321 64
16|Inorganic Solute Cotransporters 83 100 323 86
17|Ion Channel Families 59 100 240 58
18|Phosphoribosyltransferases (PRT) 15 100 58 23
19| Glycoside Hydrolase Gene Families 307 98 664 158
20|Response Regulator 32 100 197 38

Table 1: Selected gene families from the TAIR database.

5.2 Evaluation Method

Relating concepts from orthogonal ontologies is a relatively new research area.
To our knowledge no gold standard exists, with which we could compare our
results. One option to assess the quality of our ranking is by domain experts.
But this assessment is very time consuming and may be subjective. We thus
decided to use existing inter-ontology mappings as basis for our evaluation.
The problem with existing inter-ontology mappings is that they are usu-
ally not very comprehensive. For instance, the mapping between PO and GO
provided by the OBO Foundry [19] consists of only 137 relationships between
the sub-ontologies Biological Process and Plant Structure. A notable exception
to this lack of coverage are the inter-ontology mappings in GO itself, where the
sub-ontologies Molecular Function and Biological Process are richly inter-linked.
In our snapshot of GO we found 517 relationships of type biological process regu-
lates molecular function and 206 relationships of type molecular function is part



of biological process. At first glance, this number seems sufficient for assessing
the ability of methods to rediscover those links.

Despite these numbers we still face the problem that many established map-
pings are fairly generic. Consider for example the term pair (’transferase activity,
transferring glycosyl groups’, 'polysaccharide biosynthetic process’). In fact glyco-
syl transferases are key enzymes in the synthesis of polysaccharides, but no valid
path in GO confirms this fact. The closest established relationship, as depicted
in Figure 4, is the fairly generic association ’‘catalytic activity’ part-of 'metabolic
process’.

G0:0003674: molecular_function ) (G0:0008152: metabolic process )
T'\s»a T is-a
— — part-of -
(G0:0003824: catalytic activity G0:0008152: metabolic process )
Tisa 1 isa
G0:0016740: transferase activity ) (G0O:0009058:  biosynthetic process )

is-a 1 isa
. (G0:0016051: carbohydrate biosynthetic process )
\\\ i is-a

Molecular Function Biological Process

Fig.4: Example for a potentially true positive association, PTP (dotted line).

To also use such generic relationships for assessing more specific concept
pairs, we introduce Potentially True Positive associations (PTPs). A potentially
true positive association between two ontology concepts exists, if the concepts
themselves or any of their ancestor concepts have an established inter-ontology

mapping.

5.3 Ranking Representative Concept Pairs

We now evaluate the quality of proposed inter-ontology concept pairs. We val-
idate the top-k concept pairs found by our method InterOnto and by LSLink
against existing inter-ontology mappings. This allows us to compare both meth-
ods quantitatively.

We used the 20 gene families from TAIR to compute sets of inter-ontology
links using our own scoring function score, and the confidence and support scores
defined by the LSLink methodology [13]. As baseline we used randomly ordered
ontology links of each set. To compare the different result sets we partitioned
each ranking into 10 equally sized sublists and extracted the first 10 entries from
each sublist, starting with the top-10 concept pairs. Figure 5 shows the average
number of PTPs for each of the 10 sublists averaged over all 20 gene families.

The most notable finding is that on average the top-10 lists for all three
scoring functions contain considerably more PTPs than subsequent or random
samples. This effect is stronger for score, and confidence than for the support
score. Since the PTP heuristic is based on well known relationships the different



results for support and confidence are actually in accordance with our expecta-
tions. The overall correlation of rank and number of PTPs is clearly the strongest
for score,. Using linear regression we yield a fit line with an incline of —0.5 and
a regression factor of 0.97. For confidence and support we measure an incline of
—0.242 and —0.236 and regression factors of 0.77 and 0.74, respectively.
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Fig.5: Number of PTPs in top-10 concept pairs from 10 equally sized partitions.
Samples are numbered in ascending order of partition by rank. Values are av-
eraged over 20 different sets of links between GO Molecular Function and GO
Biological Process, corresponding to the 20 TAIR gene families. Dotted lines
mark the average number of PTPs among random concept pairs.

The plots in Figure 5 do in principle confirm our expectations, although we
would have expected a higher drop between the top-10 links and subsequent or
random samples. One reason for not observing that drop are overly general map-
pings in the Gene Ontology, e.g., ’enzyme regulator activity’ regqulates catalytic
activity’. Those mappings may detect meaningless PTPs and thus increase the
score for subequent or random samples. Another factor influencing the results is
that some meaningful relationships are not modeled at all. Considering the re-
sults for the different gene families from TAIR depicted in Figure 6 confirms our
assumption. The plots show a strong variation in number of PTPs, with some
top-10 lists not containing a single PTP for all three scores. Take for example
the gene family ‘4 - Kinesins’. Kinesins are motor proteins that move along mi-
crotubules. Our top-10 list contains meaningful term pairs such as (“microtubule
motor activity’, ‘microtubule based movement’). Yet, none of these pairs is a PTP.

The results of our analysis suggest that our approach generally yields rank-
ings of higher quality than those produced by LSLink. We further studied how
the actual top-k concept pairs differ. We determined the relative overlap of top-
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Fig. 6: Number of potential true positive (PTP) associations in top-10 concept
pairs for different link sets, generated using different scoring functions.

5 and top-10 lists for all three functions. We found that the lists produced by
LSLink’s confidence and support scores overlap to a much higher degree with
each other than with results produced using score, (data not shown).

Manual analysis of sample results showed that we may attribute these dif-
ferences to the impact of hierarchy information. To quantify the differences we
determined the information content of associated concepts and visualized them
in Figure 7 in separate 2-dimensional plots for the top-k concept pairs computed
by each of the three scoring functions (plot for confidence similar to plot for
support and thus omitted). For easier interpretation we added dashed lines to
depict the maximum values for self-information. Note, a concept obtains the
maximum value only if it is annotated in this scenario to exactly one database
entry. The plots for the top-5 concept pairs produced by the measures confidence
and support (Figure 7b) show that many of the top-ranked pairs contain at least
one concept with maximum self-information. This is counter intuitive, since such
associations are based only on a single ontology link, which may be an artifact or
an error in annotated data. In contrast, Figure 7a shows that our approach does
not yield such low evidence concept pairs. We may assume though that if such
associations are indeed meaningful, several similar links exist. In this case, our
method should return a more general concept pair with lower self-information
score that subsumes these highly specific links. Our analysis shows that in In-
terOnto on average 54% of the top-5 and 62% of top-10 concept pairs are inferred
through subsumption and have thus not been present in the original links or can
be detected without hierarchy-aware methods. This way, InterOnto may be more
robust to errors in annotations compared to LSLink. Another desirable property
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Fig. 7: Self-Information of paired GO and PO concepts in top-5 lists generated
using different measures. Evaluation was performed on 20 distinct sets of links
corresponding to the 20 TAIR gene families listed in Table 1.

of InterOnto is that it is more likely to associate concepts of similar specificity,
as the majority of points are distributed along the graphs main diagonal.

As concrete example we use the TAIR gene family 16 ‘Inorganic Solute Co-
transporters’. Table 2 shows the top-5 concept pairs for all three functions. No-
tably, all top-5 lists contain only biologically valid associations. The crucial differ-
ence is that the pairs ranked high by LSLink methods all refer to the transport of
specific substances through the cell membrane, while our approach returns pairs
that refer to ion transport through the cell membrane in general. In other words,
LSLink returns specific examples of the information contained in the link sets,
while InterOnto summarizes this information, characterizing the overall dataset
based on evidence provided by a large number of similar links.

6 Conclusion

We introduced a new scoring function to rank concept associations from a set
of ontology links. In contrast to existing work our approach considers not only
ontology concepts linked directly, but also the hierarchy of ontologies in a system-
atic manner. Our results show that incorporating hierarchy information allows
the identification of more descriptive, yet not overgeneral, concept pairs com-
pared to methods that do not incorporate hierarchy information, such as LSLink.
Based on our experiments we believe that our method performs well and should
be useful for researchers. For a thorough evaluation of our and other methods
linking ontology concepts a gold standard for the quality of concept pairs would
be useful.



# [ Molecular Function [Biological Process

Top-5 pairs for score,

1|ion transmembrane transporter activity ion transport

5|metal ion transmembrane transporter activity cation transport

Top-5 pairs for support

1|molybdate ion transmembrane transporter activity molybdate ion transport

2
“3|high™ “affinity ~secondary ~active ammonium transmembrane|ammonium transport
transporter activity

5|ammonium transmembrane transporter activity methylammonium transport

Top-5 pairs for confidence

1|molybdate ion transmembrane transporter activity molybdate ion transport

2
“3|high™ “affinity ~secondary ~active ammonium ~transmembrane|ammonium transport
transporter activity

5lammonium transmembrane transporter activity ammonium transport

Table 2: Top-5 concept pairs for TAIR gene family 16 - ’Inorganic Solute Co-
transporters’.
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