
Ulf Leser 

Datenbanksysteme II: 
Storage, Discs, and Raid 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 2 

Tasks 

Query optimization 
Access control  
Integrity constraints 

Physical record manager  
Index manager  
Lock manager 
Log / Recovery 

Sort 
Transaction processing 

Cursor management 

Block management 
Caching 

External memory 

Data Model 

Logical Access 

Data Structures 

Buffer Management 

Operating System 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 3 

Content of this Lecture 

 
 
 
 

• Discs 
• RAID level 
• Some guidelines 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4 

Magnetic Discs 

• Preferred mass-storage since ~1970 
– Multiple rotating discs, each with a separate head 
– Discs: Tracks, sectors (blocks) 
– Formatting: Determining (fixed) block size 
– Blocks with constant size, tracks do not have constant number of 

blocks 

• Blocks use error-correcting codes: Single bit errors can be 
corrected 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5 

Reading from Discs 

 
• Seek time: ts 

– 5-20ms: Move head to right track 

• Latency time: tr 
– 3-10ms: Wait for sector to rotate to head 
– On average: ½ rotation  
– Typical speed: 6000 - 10000 rotations / minute 

• Reading blocks: At rotation speed 
– Beware caching within disc controller 

• Transfer rate: u 
– Data volume read per time and put into main memory 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6 

Development 

Quelle: Wikipedia 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7 

Random versus Sequential IO 

• Task: Read 1000 blocks each 4KB (=4MB) 
• Parameter: Ts= 5ms, Tr = 3ms, u = 15 MB/s 
• Random I/O 

– For each block: seek + latency 
– t = 1000 * (5 ms + 3 ms) + 1000*4KB/15MB*1000 ms 
– t= 8000 ms + 300ms ~ 8s 

• Sequential I/O 
– Once seek+latency 
– 5 ms + 3ms + 4MB/15MB*1000 ms 
–  8ms + 300 ms ~ 1/3 s  

• One can read a lot sequentially before RA makes sense 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8 

How to get Faster? 

• Fast IO is vital for an DBMS 
– Do not use SAN, NFS, HDFS, … 

• Parallelize storage access (read and write) 
– Distribute files over multiple disks  
– Needs proper in-between infrastructure: disc controller, memory 

access channels 

• RAID: Redundant Array of Independent Discs 
– Or: „Redundant array of inexpensive discs“ 
– Idea: Buy many yet cheap disks 

• In contrast to more expensive disk with faster rotations and less errors 

– Allows faster access (parallelization) 
– Allows higher fault tolerance (redundancy) 

• Which requires disks to be independent 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 9 

Architectures 

Software-Raid  

Hardware-Raid  



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10 

Measuring Fault Tolerance 

 
• One disc: If a head crashes, disk is gone 
• With n non-redundant disks 

– Let p be the average number of day until a disk crashes 
• When will a disk fail (one is enough for data loss)? 
• If bought at the same time - after ~p days – all “at once” 

– Let p be the probability per day that a disk crashes 
• What is the probability per day that at least one disk chrashes?  
• 1-(1-p)n 

• If we introduce redundancy, probability of faults changes 
• So does latency, read throughput, write throughput, and 

net space 
 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11 

Content of this Lecture 

 
 
 

• Discs 
• RAID level 
• Some guidelines 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12 

• Doubled throughput for sequential file reads and writes 
– Assuming files being perfectly distributed 

• Short files are not accelerated much 
– Seek+latency times dominate  

• Decreased fault tolerance 

A 

C 

B 

D 

A B C D 
File 

RAID 0: Striping 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 13 

• 50% space lost 
• Doubled throughput for sequential file reads 
• Writes are not accelerated  
• Single block read might be slightly better 

– Read form both disks, faster disk wins 

• Increased fault tolerance  

A 

C 

B 

D 

A 

C 

B 

D 

RAID 1: Mirroring 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 14 

RAID0 versus RAID1 

 
• Some concepts 

– MTTF = Mean time to failure 
– MTTDL = Mean time to data loss (fatal crash) 

• Data needs to be restored from backup 

• Example: MTTF = 3650 days 
– RAID0 with 2 disks bought at arbitrary points in time 

• MTTDL1 = 3650/2 = 1825 days 

– RAID1 with 2 disks bought at arbitrary points in time 
• MTTDL2 = MTTDL1*MTTDL1 ~ 9.000 years 

– Assuming statistical independence of events (disks) 
– But: Shared room (fire, flood), shared power (outage), shared 

building (earthquake), shared age, … 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 15 

 
• Quadruple speed for sequential read 
• Doubled speed for sequential writes 
• 50% space loss 
• Increased fault tolerance 

A 

C 

A 

C 

B 

D 

B 

D 

RAID 0+1: Striping and Mirroring 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16 

RAID 2: Striping Bits (not Blocks) 

 
• On block devices, no advantage compared to RAID0  

– Reading a byte is as expensive as reading a block 

• But more complex management 
– OS / DBs cache blocks, not parts of blocks 

• Practically irrelevant 
 

1010 1101 1011 0110 0011 1100.... 

111001... 010101... 101110... 011010... 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17 

RAID 3: RAID2 + Parity 

• Parity: bit-wise XOR of bits at each position 
• Increased fault tolerance: One disk crash can be tolerated 

– Crashed data can be restored from other disks 
– At much better space utilization than RAID1 

• (n-1) times faster throughput for sequential reads 
• Writes may become even slower 

– If multiple processes write, parity disk becomes bottleneck 

1010 1101 1011 0110 0011 1100.... 

111001... 010101... 101110... 011010... 011000... 

⊕ 

Parity 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18 

RAID 4: Block Striping + Parity 

• Similar to RAID 3 
• Easier management  
• Parity still potential bottleneck 

– Writes must by synchronized: Write A,B,C,D,PA-D, then B,F, … 
– Difficult if multiple processes perform disk accesses 

• Practically irrelevant 

A E B F C G D H PA-D PE-H 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19 

RAID 5: RAID4 with distributed Parity 

• Parity blocks are evenly spread over disks 
• Writes not slowed down any more 
• Many benefits 

– Much faster reads 
– Writes not affected 
– Not much space wasted 
– Disk crash can be masked 

A E B F C G D H PA-D PE-H 

I M J O L N K P PI-L PM-P 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20 

Summary 

• Further RAID Level defined, e.g.: 6=5+1, … 
• Typical scenarios 

– Increase write speed needs striping (e.g. RAID 0) 
– RAID1: Simple, fast, safe, but needs lots of space 
– RAID5: More complex, safe, fast, requires more space, requires at 

last three disks 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21 

Oracle: Options without RAID 

• Parallelization by distributing  
tablespaces 
– System tablespace on  

separate disk 
– Or: Tablespace-managed data dict. 
– Separate tablespaces for data / index 
– Separate disk for REDO Logs 

• Parallelization by distributing one tablespace 
• Parallelization by distributing a single table 

– Distribution of extends 
– Partitioning – value-based distribution of data 

• All sales prior to 2005 on one disk, all sales this year on another disk 
• One disk for sales in 2005, 2004, 2003, … 

Database 

Tablespace 

Segment 

Extent 

Block OS Block 

Data file 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22 

Interference with RAID 

 
• File layout and RAID interfere 
• Multi-file distributed tablespace  

will not help if all files are  
RAID-distributed over the same  
physical disks 
– Mount points are not physical disks 

any more 

• Proper design needs to consider both to prevent 
advantage-cancelling effects 

• Note: Parallel reads must be consumed on upper levels  – 
parallel memory access, parallel processing units 

Database 

Tablespace 

Segment 

Extent 

Block OS Block 

Data file 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23 

Some guidelines (Oracle handbooks) 

• „Tsps should stripe over at least as many devices as CPUs“ 
• “You should stripe tablespaces for tables, indexes, rollback 

segments, and temporary tablespaces. You must also 
spread the devices over controllers, I/O channels, and 
internal buses“ 
– Queries can run in parallel (inter-query parallelization) 
– Single disk is bottleneck – multiple processors become useless 
– Ideally, each disk becomes a “feed” for one processor (thread) 

• Disadvantages 
– No simple backup of tablespace by file copying 
– Increased failure rate – use redundant RAID levels 
– Recovery of a disk might stop operations (all disks are involved) 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24 

Guidelines 2 

• „In high-update OLTP systems, the redo logs are write-
intensive. Moving the redo log files to disks that are 
separate from other disks and from archived redo log files 
has … benefits …“ 
– Every transaction generates REDO information 
– REDO is written in batches before commit, data blocks are written 

sporadically by db-writer 
– Both should not interfere (too many seeks) 

• Hence: Put REDO log files away from data files 
• Disk crash can only effect REDO or data files 

– Redo data is extremely important (rollback, roll-forward) 
• Hence: Spread REDO data redundantly over many disks  
• By system (RAID) or by database (REDO groups) 

– REDO disks are good places to invest in RAID10 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25 

Typical Bottlenecks 

• Temporary tablespace – used especially for large SORTS 
– And sorting is everywhere – sort-merge join, group by, order by, 

distinct, ... 
– Receives many concurrent accesses from many processes 
– Hot spot – fast reads, fast writes, but failure is not critical 
– RAID0 

• System tablespace 
– Holds data dictionary – important for everything 
– Required all the time – logs, latches, system log data, ... 
– Especially logs can be a bottleneck 
– RAID1 

• REDO log files 
– See last slide 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26 

Oracle flexible architecture (OFA) 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 27 

OFA - Quote 

• “The minimum configuration consists of seven data areas, 
either disks, striped sets, RAID sets, ... The more heads 
you have moving at one time, the faster your database will 
be.”  
– AREA1: Oracle executables and user areas, a control file, the 

SYSTEM tablespace, redo logs 
– AREA2: Data-data files, a control file, tool-data files, redo logs 
– AREA3: Index-data files, a control file, redo logs 
– AREA4: Rollback segment-data files 
– AREA5: Archive log files 
– AREA6: Export Files 
– AREA7: Backup Staging 


	Foliennummer 1
	Tasks
	Content of this Lecture
	Magnetic Discs
	Reading from Discs
	Development
	Random versus Sequential IO
	How to get Faster?
	Architectures
	Measuring Fault Tolerance
	Content of this Lecture
	RAID 0: Striping
	RAID 1: Mirroring
	RAID0 versus RAID1
	RAID 0+1: Striping and Mirroring
	RAID 2: Striping Bits (not Blocks)
	RAID 3: RAID2 + Parity
	RAID 4: Block Striping + Parity
	RAID 5: RAID4 with distributed Parity
	Summary
	Oracle: Options without RAID
	Interference with RAID
	Some guidelines (Oracle handbooks)
	Guidelines 2
	Typical Bottlenecks
	Oracle flexible architecture (OFA)
	OFA - Quote

